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ABSTRACT
Transmission electron microscopy (TEM) provides res-
olutions on the order of a nanometer. Hence, it is a
critical imaging modality for biomedical analysis at the
sub-cellular level. One of the problems associated with
TEM images is variations in brightness due to electron
imaging defects or non-uniform support films and spec-
imen staining. These variations render image processing
operations such as segmentation more difficult. The correc-
tion requires estimation of the global illumination field. In
this paper, we propose an automatic method for estimating
the illumination field using only image intensity gradients.
The closed-form solution is very fast to compute.

I. INTRODUCTION

The field of image processing has made significant
progress in the quantitative analysis of biomedical images
over the last 20 years. In certain domains, such as brain
imaging with MRI and CT, scientific papers that test
clinical hypotheses using sophisticated image filtering and
segmentation algorithms are not uncommon. Research in
biological image processing is poised to make similar
contributions in answering important neurobiological ques-
tions.

Neurobiologists are collecting large amounts of electron
microscopy image data to gain a better understanding of
neuron organization in the central nervous system. Models
of neural circuits are critical to the study of the central
nervous system. However, relatively little is known about
the connectivities of neurons and state-of-the-art models
are insufficiently informed by anatomical ground truth. The
strategy for reconstructing neural circuitry is to identify
neurons and the synapses that connect them in microscopic
imagery. Serial-section transmission electron microscopy
(TEM) is a desirable modality for achieving this because
it offers a relatively wide field of view—sufficient to
identify large sets of cells that may wander significantly

We thank Dr. Robert Marc and Dr. Eric Jorgensen for providing us
with TEM images. This work was supported by NIH R01 EB005832.

as they progress through the sections—and has an in-plane
resolution that is sufficient for identifying synapses.

In serial-section TEM, a thin specimen is cut and
stained, then it is suspended in an electron beam. The
staining agent, which blocks the electron beam, is selec-
tively picked up by different structures such as membranes.
As a result, stained structures appear darker which is the
source of contrast in TEM images. One of the problems
with TEM images is spatially varying contrast due to non-
uniform illumination. Non-uniform illumination can have
many sources: aging filaments, faulty reference voltages,
contaminated apertures, or non-uniform support film fab-
rication [1]. Subtle electron illumination asymmetries are
more evident at moderate-to-low magnifications and are of-
ten inadvertently enhanced by digital contrast adjustment.
These effects are similar to the the intensity inhomogeneity
problem observed in MRI. The MRI intensity inhomogene-
ity problem is manifested as a slowly varying multiplicative
field in the acquired images. Similarly, the non-uniform
illumination can be modeled as a multiplicative effect [2].
The observed image is given as

f(x, y) = s(x, y)I(x, y) + n(x, y), (1)

where s is the true signal, I is the non-uniform illumination
field and n is additive noise. The I field varies slowly
over the image; in other words, it does not have any high
frequency content.

Removal of non-uniform illumination effects is impor-
tant for later processing stages such as image registration
based on correlation metrics and segmentation based on
intensity thresholding. An automatic correction for non-
uniform illumination in TEM images captured by a CCD
camera has been proposed [2]. This approach makes as-
sumptions about the properties of the CCD camera and
stationarity of the true signal. In this paper, we propose an
approach applicable to both TEM images captured directly
by CCD and TEM images captured on film and scanned
afterwards. Furthermore, the proposed approach does not
make stationarity assumptions about the true signal.

A large amount of research effort has focused on the



intensity inhomogeneity problem in MRI. A good review
of these methods can be found in [3]. Approaches using
tissue class information [4] and combining the inhomo-
geneity correction with segmentation [5], [6], [7] have
been proposed. Other methods perform inhomogeneity
correction based on intensity gradients and entropy [8], [9],
[10]. MRI intensity inhomogeneity correction approaches
that rely on parametric class properties are not useful for
TEM images because histograms of cellular TEM images
do not have well separated classes. However, methods
based on image gradients are suitable for adaptation to
TEM images.

II. METHODS
II-A. Illumination model

Randall et al. [2] propose a radial model for the
illumination. This is motivated by the observation that the
electron beam has a radially symmetric nature. However,
the estimation of a radial model requires knowing the
precise position of the electron beam’s center, which is
not necessarily the center of the image. In [2], this is ac-
complished by the focus adjustment circle that is available
on images captured with a CCD camera. Unfortunately,
this focus adjustment circle is not present in TEM images
captured on film and scanned. We propose a more general
model based on the bivariate polynomial of degree N :

Î(x, y; Γ) = exp

i=N∑
i=0

j=i∑
j=0

γi−j,jx
i−jyj

 , (2)

where Γ is the vector of model parameters γ. The mo-
tivation for the use of the exponential term is two-fold.
First, it guarantees that the illumination model will always
evaluate to a non-negative number. Second, it presents an
advantage in parameter estimation as will be described in
Section II-B.

II-B. Model Parameter Estimation
After fixing the degree (N ) of the polynomial model

in equation 2, estimation of the non-uniform illumination
field is reduced to the estimation of the γ parameters.
In [2], a direct estimation of parameters is proposed. This
approach requires two assumptions: (i) the illumination
field I is constant over local neighborhoods, and (ii) the
mean value of s in the local neighborhoods is constant
over the entire image. The first assumption is always valid
owing to the physics of TEM imaging; however, the second
assumption fails depending on the type of specimen being
imaged. For instance, there can be large structures in
TEM images that are darker on average than the rest of
the image, see Figure 1. We propose an indirect method
of parameter estimation based on the intensity gradients

instead of intensity means. Our approach fits the gradient
of the illumination model described by equation 2 to those
gradients of the image that are most likely to arise from
contribution of the true illumination.This is explained in
detail next.

The gradient of I , which are needed to fit the model pa-
rameters, is not directly observable. On the other hand, the
gradient of the observed signal,∇f , has three contributing
components:

1) Edges of distinct objects: Large in magnitude; Spa-
tially not smooth, but organized geometrically.

2) Gradients due to noise: Varying magnitudes; Spa-
tially not smooth and unorganized (high frequency).

3) Gradients of I: Small magnitude and slowly varying
(low frequency).

Our goal is to eliminate the first two kinds of gradients, and
fit the model in equation 2 only to the gradients of I . We
begin by convolving the observed image with a Gaussian
kernel Kσ . If the standard deviation σ is chosen large
enough, we can assume that the remaining contribution
of the noise process n in the filtered signal is negligible:

fσ = (sI)σ + nσ ≈ (sI)σ , (3)

where fσ denotes the 2D convolution of image f with a
Gaussian kernel of standard deviation σ pixels. Further-
more, the convolution of the product of s and I with the
Gaussian kernel Kσ can be rewritten in a simpler form.
Since I is slowly varying, it is approximately constant
in the Gaussian kernel’s region of support. Therefore,
equation 3 can be simplified as:

fσ(x) =
∫
s(x + u)I(x + u)Kσ(u)du (4)

≈ I(x)
∫
s(x + u)Kσ(u)du (5)

= I(x)sσ(x),

where x denotes the image coordinates (x,y). To transform
the multiplicative nature of the illumination field into an
additive one, we now take the logarithm of the filtered
signal:

log fσ(x) = log I(x) + log sσ(x). (6)

Taking the gradient of both sides, we get

∇ log fσ(x) = ∇ log I(x) +∇ log sσ(x). (7)

Let g(x) = log fσ(x) and L̂(x; γ) = log Î(x). Then we
set up the following penalty function:

E(Γ) =
P∑
i=1

w(xi)
∣∣∣∇g(xi)−∇L̂(xi)

∣∣∣2, (8)

where i enumerates all image pixels and P is the total
number of pixels in the image. The parameters of the



illumination model are found by minimizing this energy,
but the key point is the selection of weights w(xi).
The gradient of log I can not be isolated exactly from
the gradient of log sσ; however, we know that latter is
dominant in pixels where an edge is present. Therefore, to
decrease the effect of such pixels in the penalty function to
be minimized, we define the weights w(xi) in equation 8
as

w(x) = exp
(
−|| ∇fσ(x) ||

µ2

)
. (9)

This equation assigns monotonously decreasing weights to
pixels with larger gradient magnitudes; the parameter µ
controls the rate of decline. By an appropriate choice of
µ, edge pixels in sσ can be assigned much smaller weights
than non-edge pixels. Finally, the corrected image can be
computed by dividing the original image by the exponential
of the estimated illumination model.

A similar idea was proposed by Samsonov et al. [10]
for MRI intensity inhomogeneity correction. The first
important difference of our method from the one proposed
in [10] is the method of identifying ∇ log I . In that work,
Samsonov et al. use anisotropic diffusion [11] to filter the
image. Then, the gradient magnitude image is thresholded
to remove edge pixels. However, anisotropic diffusion is
designed to filter piece-wise constant images. While MRI
falls into this category, TEM images of cells (and tex-
tured images in general) violate this principle. Therefore,
anisotropic diffusion filtering is not a viable option for our
application. As discussed above, we use Gaussian filtering
combined with an appropriate weighting in the energy
equation (8) to eliminate gradients due to edges and noise
from the polynomial fit. The second difference is in the use
of global histogram information. Samsonov et al. minimize
a weighted combination of the gradient fitting and the
energy of the histogram power spectrum [10]. The weight
for the histogram energy term is negative; therefore, it is
being maximized while the gradient fitting energy is being
minimized. Due to the presence of this non-linear term in
the energy, an iterative solution is required to estimate γ.
By dropping this term, we obtained an energy (equation 8)
that could be solved very fast in a non-iterative (closed-
form) manner as explained next.

II-C. Implementation
Taking the gradient of logarithm of the illumination

model in equation 2, we can derive the components of
∇L̂:

∂L̂

dx
(x; Γ) =

i=N∑
i=1

j=i∑
j=0

(i− j)γi−j,jxi−j−1yj (10)

∂L̂

dy
(x; Γ) =

i=N∑
i=1

j=i∑
j=0

jγi−j,jx
i−jyj−1 (11)

The penalty function in equation 8 is written in terms of the
model parameters γ by substituting equations 10 and 11 for
∇L̂. This is a least-squares fitting problem with a closed-
form solution. Equations 10 and 11 can be rewritten in
matrix form

∂L̂

dx
(x; γ) = Q(x)Γ (12)

∂L̂

dy
(x; γ) = R(x)Γ. (13)

where Γ is the vector of parameters in lexographic order.
For a polynomial of degree N in two variables (x, y), there
are (N +1)(N +2)/2 parameters. Since parameter for the
constant term γ0,0 does not appear in equations 10 and 11,
it is dropped from Γ. Hence, Γ is a (N+1)(N+2)/2−1 di-
mensional vector. The row vectors Q(x) and R(x) are the
corresponding monomial terms from equations 10 and 11,
respectively:

Q(x) =
(

1 0 2x y 0 . . . NxN−1 . . . 0
)

R(x) =
(

0 1 0 x 2y . . . 0 . . . NyN−1
)
.

Let M be the 2P × (N + 1)(N + 2)/2 − 1 matrix built
by concatenating the row vectors Q and R for all pixel
locations:

M =


Q(x1)
. . .

Q(xP)
R(x1)
. . .

R(xP)

 (14)

Finally, define the vector of the derivatives from the
logarithm of the image intensities

g =



∂g
dx (x1)
. . .

∂g
dx (xP )
∂g
dy (x1)
. . .

∂g
dy (xP )


. (15)

Then the energy function in equation 8 can be rewritten as

E(Γ) = ‖MΓ− g‖2 . (16)

The solution to this least-squares optimization problem is
found closed-form as

Γ =
(
MTM

)−1
MTg. (17)

III. RESULTS AND DISCUSSION

Figure 1(a) shows sample TEM images from the c-
elegans ventral nerve cord and the rabbit retina. The first
column shows actual TEM images, the second column
shows the corrected image and the third column shows the



Original image Corrected image Estimated illumination

Fig. 1. Examples of illumination correction for TEM images of the c-elegans (rows 1-3) and rabbit retina (row 4).



estimated illumination field. Effects of a non-homogeneous
illumination field is apparent in all of the examples shown
in the first column. For instance, for the TEM images
shown in the first two rows, central locations are brighter
whereas for the TEM image in the last row structures in
the right side of the image appear brighter than those on
the left. However, also notice there are structures in these
images that are naturally darker than other cells. This is
not a case of non-uniform illumination and should not
be corrected. Our approach solves this problem in two
ways: 1) the polynomial illumination model proposed in
this paper has a low number of degrees of freedom so
it can not capture local changes in intensity and 2) the
weights in equation 9 will be low for the edges of these
darker structures since they reflect a sharp transition from
low to high intensity values. The illumination corrected
image for a 1000× 1000 image takes approximately 1− 2
seconds to compute on a PC.

To further demonstrate the utility of our illumination cor-
rection method, we will use a simple membrane detection
example. Cell membranes appear darker in TEM images
than their surroundings; however, their absolute intensity
level is impacted by the illumination field. Figure 2 shows
the results of a simple thresholding experiment to identify
the cell membrane for the image shown in the last row of
Figure 1. As expected, the results with the illumination
corrected image (Figure 2b) are found to be spatially
more consistent than the results with the original image
(Figure 2a).

In this paper, we proposed an automatic illumination
correction for TEM images that does not rely on strong
assumptions about the true signal. The method draws on
ideas from the MRI intensity inhomogeneity correction
method introduced in [10]; however, it uses a different
strategy for identifying image gradients due to non-uniform
illumination that is more suitable for TEM images. Further-
more, we proposed an energy function with a closed-form
solution that can be computed very fast.
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