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Abstract. This paper presents a method for correcting the geometric
and greyscale distortions in diffusion-weighted MRI that result from in-
homogeneities in the static magnetic field. These inhomogeneities may
due to imperfections in the magnet or to spatial variations in the mag-
netic susceptibility of the object being imaged—so called susceptibil-
ity artifacts. Echo-planar imaging (EPI), used in virtually all diffusion
weighted acquisition protocols, assumes a homogeneous static field,
which generally does not hold for head MRI. The resulting distortions
are significant, sometimes more than ten millimeters. These artifacts im-
pede accurate alignment of diffusion images with structural MRI, and
are generally considered an obstacle to the joint analysis of connectivity
and structure in head MRI. In principle, susceptibility artifacts can be
corrected by acquiring (and applying) a field map. However, as shown
in the literature and demonstrated in this paper, field map corrections
of susceptibility artifacts are not entirely accurate and reliable, and thus
field maps do not produce reliable alignment of EPIs with correspond-
ing structural images. This paper presents a new, image-based method
for correcting susceptibility artifacts. The method relies on a variational
formulation of the match between an EPI baseline image and a corre-
sponding T2-weighted structural image but also specifically accounts for
the physics of susceptibility artifacts. We derive a set of partial differen-
tial equations associated with the optimization, describe the numerical
methods for solving these equations, and present results that demon-
strate the effectiveness of the proposed method compared with field-map
correction.

1 Introduction

Echo-planar imaging (EPI), used in virtually all diffusion-weighted MRI acquisi-
tion protocols, including diffusion tensor imaging (DTI), assumes a homogeneous
static magnetic field, which generally does not hold for head MRI. These field
inhomogeneities are caused in large part by spatial variation in the magnetic
susceptibility of the objects being scanned. Thus, these susceptibility artifacts
are image dependent, and will be different for each subject being scanned.
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The effect of static field inhomogeneities is described by a physical model of
the distortions in k-space. These distortions result in both a spatial warp of
the image geometry as well as a change in the image intensities. The geomet-
ric distortion is a nonlinear warping along the phase-encoding direction, which
is typically the same for the baseline (b = 0) and diffusion weighted images
(DWIs). Conventionally, this direction is along the coronal axis of the patient,
and is denoted as the y coordinate. The image intensities are preserved as densi-
ties in this transformation, and thus the intensities of EPIs are affected locally,
proportional to the Jacobian of the corresponding transformation.

The effects of susceptibility artifacts on clinical images are significant. The
geometric distortions can be more than a centimeter, and the effects on EPI-
acquired intensities in brain tissue can be more than 100% of the original signal.
The example in Figure 2 shows a pair of images, an EPI (baseline from a DTI
sequence) of a brain and a coregistered, structural T2 image of the same patient.
Here we see the obvious distortion in frontal cortex (and associated changes in
intensity), but the entire head is also distorted (shortened) in this case. These
artifacts impede accurate alignment of diffusion images with structural MRI,
and are generally considered an obstacle to the joint analysis of connectivity and
structure in head MRI. This joint analysis is one of the primary motivations for
the work in this paper. However, even analysis of DTI alone is impaired by these
artifacts, because tensor estimates depend on the distorted intensities of the each
of the DWIs (with an inhomogeneous relationship), and subsequent geometric
analysis, such as tractography, depends on the distorted geometric relationships
between nearby tensors. Thus, susceptibility artifacts are an important problem
in the analysis of diffusion weighted MRI.

Susceptibility artifacts can be corrected, to a certain extent, by the acquisition
of a corresponding field map, as described in [1]. However, the literature shows
[2] and we will further demonstrate in this paper, that field map corrections
of susceptibility artifacts are not entirely accurate and reliable, and thus field
maps do not produce reliable alignment of EPI to corresponding structural MRI.
The reasons for this discrepency are not entirely understood, but noise in the
field map reconstructions as well as small inaccuracies in the associated physical
model can lead to significant artifacts. Fundamentally, however, any attempt
to correct EPIs so that they align with structural data must explicitly account
for geometry of the structural data (e.g., T1, T2, PD) in order to overcome
inevitable noise and inaccuracies in the physical model as well as distortions
in the structural data itself. This is the motivation for the image-driven EPI
correction proposed in this paper.

The literature does show several examples of image-driven EPI correction
[3,4]. However, the methods in [3] employ low-dimensional, relatively smooth
warps, which are not adequate for many of the examples in this paper. The
methods presented in [4], while using higher-order deformations, do not explic-
itly account for the intensity transformations in the signal that result from lo-
cal expansion or contraction of the corresponding transformation. Thus, these
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methods are not adquate for the very nonlinear distortions that we have observed
in practice, particularly in the frontal cortex.

The proposed method uses an image-based correction for susceptibility art-
facts. We formulate the correction as an optimization of a penalty that captures
the intensity differences between the Jacobian corrected EPI baseline images and
a corresponding T2-weighted structural image. The penalty includes a penalty
on the dervative of the transformation, to ensure smoothness in the final warp.
We derive the first variation of this expression, including the Jacobian term, and
show that this formulation reduces to a novel PDE for intensity-conserving im-
age registration. We present a numerical method that allows the method to solve
for the optimal registration in practical times and we show results on phantoms
and real head data that demonstrates the effectiveness of the method relative to
corrections based solely on the field map.

2 Related Work

There is a significant body of work in the area of correcting susceptibility artifacts
in echo-planar MRI. Here we review some of that work, for context, with an
emphasis on approaches that are technically and strategically related to the
proposed method.

The physical model of susceptibility-related distortion is described by Jezzard
et al. [1], and they present a method for correcting these distortions using an
associated field map. The correction of EPI distortion by field maps is, in prin-
ciple, correct. However, a variety of researchers have noted that such field maps
are not always available, and, when they are, often fail to completely correct
geometric distortions. This was most recently observed by Wu et a. [2], and will
be confirmed by results presented later in this paper.

Therefore, a variety of researchers have proposed image-based methods
for correcting EPI artifacts. For instance, Kybic et al. [5] present a method
that uses a deformable registration, represented by B-splines and minimize the
mean-squared-difference between a B0 (baseline) EPI image and a T2 weighted,
anatomically correct MRI. They optimize by a gradient descent using analytical
derivatives and coarse-to-fine multiresolution framework. They do not account
for the significant changes in image intensity that occur, due to the conservation
of the EPI signal when deformed, which is particularly important with more re-
cent imaging acquisitions that use higher field strengths. Studholme et al. [3] use
a spline-based deformation and include the signal amplitude correction (which
is proportional to the Jacobian of the transformation). They use the log of the
signal to accentuate the impact of low-amplitude image regions, and optimize
mutual information using a gradient descent with a finite difference scheme for
the updates. Wu et al. [2] also propose a B-spline registration between EPI and
structural MRI, and make quantitative comparisons with field maps.

With modern imaging systems, which employ larger magnetic fields to im-
prove noise characteristics, EPI distortions can be quite severe. Thus, there is
a need for EPI-structural registration technologies that incorporate a more ver-
satile set of transformations, such as those described by dense displacement
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fields. For instance, Hellier et al. [6] describe an elastically-regularized displace-
ment field for EPI-structural registration, based on mutual information, but
without a correction for signal conservation. Likewise, Tao et al. [4] describe a
dense, regularized warp between structural images and EPI, without a Jacobian
correction.

The contribution of this paper is to describe a complete variational approach
to the registration of EPI images to structural data which gives a gradient descent
on dense displacement fields with a proper correction for the conservation of the
EPI signal. The result is novel partial differential equation for signal-preserved
image registration with some unique characteristics. We present the derivation,
describe a numerical scheme for solving this equation, and demonstrate its ef-
fectiveness at EPI susceptibility-artifact correction relative to a state-of-the art
field-map correction.

3 EPI Susceptibility Artifact Correction

3.1 Variational Formulation

The correction of susceptibility artifacts, which is the subject of this paper, is a
necessarily part of a processing pipeline [2] for DWI processing, which corrects
for head motion, eddy current artifacts, and coordinate system inconsistencies
between scans. We begin with the methodology for susceptibility correction, and
then describe the entire pipeline which we use for the subsequent experiments.

Generally, we denote the transformation between the EPI and structural coor-
dinate systems as xE = φ(x), where x = (x, y, z) is a shorthand for vectors, and
the “E” subscript indicates the EPI coordinate system. The coordinate trans-
formation associated with field inhomogeneities is usually approximated as a
displacement along the phase direction of the scan (e.g. as described in [3]). For
most protocols this is along the posterior-anterior axis, Thus we denote, with-
out a loss of generality, this displacement direction as y. The displacement is
v(x, y, z) and EPI image coordinates are

(xE , yE , zE) ≈ (x, y + v(x, y, z), z). (1)

The relationship between the uncorrected and corrected EPI images must ac-
count for the conservation of signal [3], and thus the expression of the EPI image,
IE , in structural coordinates is:

IE−S(x, y, z) = Jφ(x, y, z)IE(x, y + v(x, y, z), z), (2)

where Jφ is the Jacobian of φ, which, in this case, has a conventient form:

Jφ(x, y, z) = 1 +
∂v(x, y, z)

∂dy
. (3)

The strategy we use in this paper is to register the B0 image in an DWI ac-
quisition with a T2-weighted structural image. Because these two images are
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correlated, we contruct a squared-error penality between the T2 and the cor-
rected EPI, and include an elastic penalty on v. That is,

Ev =
1
2

∫
D

[(
1 +

∂v

∂y

)
IE(x, y + v, z) − IS(x, y, z)

]2

dx dy dz

+
λ

2

∫
D
|∇v|2dx dy dz,

where we have left out the formal dependency of v on x to keep the expres-
sions concise. We optimize with gradient descent, which we derive from the first
variation. Thus we have

δEv = IE(x, y + v, z)
∂

∂y
[IE(x, y + v, z) − IS(x, y, z)]

−IE(x, y + v, z)
∂

∂y

[
IE(x, y + v, z)

∂v

∂y

]
− λ∇ · ∇v.

We introduce a dummy variable, t, and let v descend the energy Ev as a function
of t, and thus we have the PDE which describes the evolution of v as we optimize
the EPI-structural alignment. This gives

∂v

∂t
= ĨE

∂

∂y

[
IS − ĨE

]
+ ĨE

∂

∂y

[
ĨE

∂v

∂y

]
+ λ∇ · ∇v, (4)

= E(v) + F (v) + G(x), (5)

where ĨE = ĨE(x, y, z) = IE(x, y + v, z) is a shorthand for the unwarped EPI
image, without the Jacobian correction.

We have factored the first variation into three terms; E, F , and G; so that
Equation 5 has a particular form that demonstrates its unique nature. The equa-
tion differs from many other elastic-registration PDEs in two ways. The first
term (on the right hand side), which is often considered as a forcing term that
drives the two images to correspond, depends on the derivative of the image
residual rather than the image residual itself, as is typical with elastically regu-
larized registration methods. Second, besides the regularization in the third term,
there is an extra heterogeneous diffusion in the second term, which is a result of
the Jacobian correction. This second term has important implications for the
numerical implementation of this PDE.

3.2 Numerical Implementation

The numerical approach is to iterate with discrete time steps, Δt, on the trans-
formation v until ∂v/∂t falls below some threshold, and we have reached some
approximate steady state. The time steps should be chosen so that the updates
in v are smaller than the grid spacing and the solution does not jump over image
data in our attempt to find a minimum. We use a coarse-to-fine multiresolution
minimization strategy in order to overcome this computational burden of these
relatively small steps and to alleviate the tendency toward local minima.
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With this limitation on Δt, the first term in Equation 5, E(v), can be treated
as a reaction term and implemented with finite forward differences. The third
term, G(v), is a diffusion term, but it is stationary and is usually implemented
as convolution. The second term, however, must be treated with care. The F
term is a nonstationary diffusion. Because this diffusion is proportional to the
square of the image intensity, it results in a very large diffusion number for this
equation. Thus, the time steps required for this equation to be stable in a forward
difference scheme are so small it becomes impractical.

For this reason, we solve for the second term using a semi-implicit method.
Here we describe briefly the numerical scheme, in one dimension; that is, the y
axis along which the diffusion takes places. Subsequently we describe how the
regularization (third term in Eq. 5), which is the only part of this equation that
depends on x − z, is solved for the 3D case.

Let vk
i be the ith grid point of the displacement for the kth time step. We de-

note the discretely sampled input images, the EPI and the structural images, as ei

and si, respectively. Let ẽk
i denote the deformed EPI image, which is computed by

sampling the discrete image ei at position i + vk
i using a linear interpolation. We

denote the discrete forms of intermediate quantities in Eq. 5 as Ei, Fi, and Gi.
Now we consider the three terms in Eq. 5 one by one. For the first term we have:

Ei ≈ ẽk
i

2
(
(si+1 − si−1) − (ẽk

i+1 − ẽk
i−1)

)
(6)

The second and third terms are linear operations on vk+1, which forms the
implicit part of the update:

Fi + Gi ≈ +

(
λ + ẽk

i

ẽk
i + ẽk

i−1

2

)
vk+1

i−1 (7)

−
(

2λ + (ẽk
i )2 + ẽk

i

ẽk
i+1 + ẽk

i−1

2

)
vk+1

i +

(
λ + ẽk

i

ẽk
i+1 + ẽk

i

2

)
vk+1

i+1

We treat this as a linear system, letting the grid quantities without subscripts
denote the vector forms of the corresponding grid data and the linear operator
in Eq. 7 be A. For the update of v, we have the following

vk+1 = (I − ΔtA)−1 (
vk + ΔtE

)
. (8)

The matrix (I − ΔtA) is tridiagonal, and we can efficiently solve this system
using a two-pass Gaussian elimination. We choose Δt so that max[ΔtE] < 0.4.

For three dimensions, the discrete method is the same, except that we have two
extra terms in Eq. 7 that are proportional to second derivatives in x and z, which
result from the 3D Laplacian. There are several ways to include these. Because
λ is usually small relative to max(Ĩ2), this regularization term is not time-step
limiting, and we can include the second derivatives from regularization in the
explicit part of the equation, which we do in the results that follow. Alternatively,
one could treat all of these second order terms implicitly, and use some type of
splitting scheme to solve this system [7].
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(a) (b) (c) (d)

Fig. 1. Phantom data EPI correction. (a) Structural image. (b) squashed EPI image.
(c) field map corrected EPI image. (d) Proposed method corrected EPI image.

3.3 EPI-Structural Processing Pipeline

The proposed EPI distortion correction is, in practive, the final step in a com-
bined diffusion and structural image processing pipeline. This full pipeline for
aligning a set o DWI images with structural data consists of the following steps:

1. Preprocess structural images (T1 and T2) to remove skull, correct bias field,
normalize intensities, and segment tissue classes (to provide a white matter
mask) [8].

2. Correct diffusion weighted images for eddy currents and head motion [9].
3. Rigidly align the T1, T2, and segmentation label images to the B0 image

based on mutual information metric.
4. Calculate the deformation field v using the proposed method.
5. Concatenate the eddy current transformation and the deformation field v

and apply the resulting transformation to all DWIs. By sampling the original
images using the composed transformations, we interpolate the images only
once.

4 Results

In this section we present results of the proposed method for EPI distortion cor-
rection on real data. The first experiment is applying the correction to phantom
data, and the second experiment is to apply the method to diffusion imagery of
the human brain. In each experiment we compare the results of our method to
field-map correction, which was done using the Statistical Parametric Mapping
(SPM) field map toolbox [1,10,11,12] 1.

4.1 Phantom Data Results

We applied our method and field-map correction to a phantom dataset provided
with the SPM field map toolbox 2. The phantom is a gel phantom with a spherical
1 Statistical Parametric Mapping : http://www.fil.ion.ucl.ac.uk/spm/
2 ftp://ftp.fil.ion.ucl.ac.uk/spm/toolbox/FieldMap2/FieldMapExampleData.tar.gz
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geometry. Figure 1 shows a slice from the original phantom dataset. Notice that
the geometry of the phantom has been globally squashed as well as a smaller
local change on the left. The results from the field-map correction (Figure 1(c))
show that the field map does a good job correcting the global squashing in the
image, but it does not do a good job correcting the local “dimple” on the left
side. The results from our proposed method (Figure 1(d)) show a correction of
both global and local distortions. The field map correction may be unable to
handle small scale geometric distortions because the field map must be blurred
to remove noise.

4.2 Data Acquisition

Head data were acquired on a 3 Tesla Siemens scanner. Diffusion weighted images
were acquired with a single-shot spin-echo EPI sequence with high-resolution
(2×2×2.5mm3), which was performed using bipolar gradients with dual-echo re-
focusing to reduce eddy currents. This consisted of one image with b = 0s/mm2

and 12 images with b = 1000s/mm2 with different gradient orientations. An

(a) (b)

(c) (d)

Fig. 2. EPI Correction. (a) T2 Image. (b) B0. (c) field map corrected EPI image. (d)
Proposed method corrected EPI image.
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(a) (b)

Fig. 3. EPI Correction. (a)field map overlay T2. (b) Proposed method corrected EPI
image overlay T2.

undistorted T2 weighted scan was acquired with a turbo spin echo (TSE) se-
quence. For field mapping, two gradient-echo images with different echo times
(TE = 4 and 6.46 ms) were collected.

4.3 Validation Methods

A common problem in validating results from non-rigid image registration algo-
rithms, is the lack of ground truth. Therefore, we are limited to using indirect
measures to establish the reliability of our variational approach. Since a primary
motivation for this work is to facilitate joint analysis of diffusion and structural
imagery, we will use the fit of the diffusion images to the structural images as a
validation measure. In each experiment the result of the correction presented in
this paper is compared to the correction from application of a field map. Since
our method explicitly minimizes the mean-squared error between the EPI and
structural T2 image, we use two independent measures for comparison: visual
assessment of edges and mutual information between the DWIs and a T1 struc-
tural image. First, we show the results of our EPI distortion correction method
alongside the field-corrected image in Figure 2.

Visual Assessment of Edges. As an initial check, we confirm through visual in-
spection that the DWIs and the corresponding T2 image are well aligned after
registration by superimposing the contour of the EPIs onto the T2. Figure 3
shows the resulting edge map of the corrected baseline image overlaid onto the
T2 image. Also shown for comparison is the edge map for the field-map corrected
image. Notice that the result of the proposed method shows better alignment to
the T2 than the field map result.

Mutual information of DWIs and T1. We compared the corrected DWIs with
the structural T1 image using mutual information. The T1 image has been
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Table 1. Mutual Information Comparison

Measure B0 Average DWIs

Before 0.725 0.731
Proposed 0.839 0.814
Fieldmap 0.736 0.718

Table 2. B-spline Mutual Information Comparison

Measure B0 Average DWIs

B-spline (8x10x15) 0.764 0.762
B-spline (16x20x10) 0.781 0.780
B-spline (24x30x15) 0.795 0.786

coregistered with the T2 image in step 3 of the pipeline described in Section 3.3.
Mutual information to T1 was chosen because it gives a good metric of align-
ment of the diffusion images to the structural image, but it is independent of the
registration metric used in the proposed method (mean-squared error to T2).
Table 1 gives the results of the comparison for both our method and for field
map correction. The table shows a comparison of mutual information of the T1
to corrected B0 image as well as the average mutual information of the T1 to
each of the diffusion-weighted images. Notice that the mutual information im-
proves for our method in all cases, while it actually decreases on average for the
field-map corrected DWIs.

Comparison to Low-Order Deformation. In order to test the need for the high-
order deformation (dense displacement field) that we use, we compared the re-
sults to a B-spline representation of the deformation. To do this we projected the
final deformation field onto a cubic B-spline basis with control point spacings of
increasing resolution. These lower-order deformations were then applied to the
diffusion images in the same way. The results of a mutual information compar-
ison to the T1 image are shown in Table 2. The high-order deformation of the
proposed method achieves the best mutual information, and mutual information
increases monotonically with increased resolution. This suggests that the local
deformations present in the EPI are best handled with a dense displacement
field.

5 Discussion

We have presented a variational image registration framework for correcting the
geometric distortions from susceptibility artifacts in EPI, which has application
to the alignment of diffusion and structural imaging. We have shown results
on phantom data as well as a clinical DTI dataset that our method compares
favorably to field map correction. Because of the variability of field maps and the
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dependence of field distortions on the geometry of the objects being imaged, this
method will need to be tested on further data to thoroughly compare it to field
maps. Another area of future investigation is the interaction between the various
geometric corrections required in DTI, including head motion, eddy current, and
susceptibility artifacts. Currently, we perform a head motion and eddy current
correction jointly, followed by the EPI distortion correction presented in this
paper. Since performing the head motion and eddy current corrections changes
the phase-encoding direction, this should be accounted for in the EPI distortion
correction. Future work will investigate a joint correction model that includes
all three models of geometric distortion inherent in DTI. Finally, another useful
improvement would be a formulation that uses mutual information rather than
image correlation as an image match function. This would allow registration
directly to a T1 image in cases where an undistorted structural T2 image is not
available.
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