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ABSTRACT
Transformers, originally prominent in NLP and computer vi-
sion, are now being adapted for ECG signal analysis. This
paper introduces a novel hierarchical transformer architec-
ture that segments the model into multiple stages by assess-
ing the spatial size of the embeddings, thus eliminating the
need for additional downsampling strategies or complex at-
tention designs. A classification token aggregates information
across feature scales, facilitating interactions between differ-
ent stages of the transformer. By utilizing depth-wise convo-
lutions in a six-layer convolutional encoder, our approach pre-
serves the relationships between different ECG leads. More-
over, an attention gate mechanism learns associations among
the leads prior to classification. This model adapts flexibly to
various embedding networks and input sizes while enhancing
the interpretability of transformers in ECG signal analysis.

Index Terms— Hierarchical Transformer, Multi-scale,
ECG Classification, Depth-wise Convolution, Attention

1. INTRODUCTION

Since Dosovitskiy et al. [1] adapted the Transformer model
from natural language processing (NLP) to the computer vi-
sion (CV) domain, the purely Transformer-based Encoder
architecture has demonstrated remarkable potential across
various vision benchmarks. When pre-trained on extensive
datasets such as ImageNet and JFT-300M, Transformers have
outperformed state-of-the-art Convolutional Neural Networks
(CNNs), including ResNets, in smaller image recognition
tasks. The Transformer Encoder employs a patch tokeniza-
tion process that converts the input into a sequence of equal-
length feature embeddings, termed tokens. The tokenization
is followed by a series of Multi-Head Self-Attention (MSA)
layers, which project these tokens and learn the interrela-
tionships among them. This architecture excels at capturing
global dependencies within the input. Despite its high model
capability, Transformer-based models often lack inductive
biases inherent in CNNs—such as translation equivariance,
locality, and hierarchical representations—which are vital for

signal processing tasks. To address this deficiency without
the necessity of large-scale data, researchers in NLP and CV
domains have explored various approaches to integrate nec-
essary inductive biases into Transformers, including convo-
lutional incorporations, novel windowed or local attentions,
hierarchical structuring, and auxiliary self-supervised tasks.

Cardiovascular diseases remain a significant health threat
worldwide [2, 3]. Early diagnosis of cardiac disorders is
crucial, enabling timely interventions that can significantly
improve patient outcomes [2]. Traditional manual arrhyth-
mia detection by clinicians is labor-intensive and prone to
errors. Advances in computer-aided diagnosis have aimed
to enhance the accuracy of ECG interpretation and reduce
associated costs [4]. Recently, deep learning has been applied
to develop more effective computer-aided diagnosis systems.
These models, capable of analyzing comprehensive data sets,
detect complex patterns essential for diagnosing heart con-
ditions, with minimal or no reliance on predefined features
or manual intervention. Previous methodologies applied to
ECG tasks often involved elaborate convolutional and re-
cursive structures [5]. Given the sequential nature of ECG
signals, the application of Transformers has been promising
due to their superior capacity to learn dependencies across
sequences [2]. Recent implementations of Transformer En-
coders in cardiac abnormality classification [2], arrhythmia
detection [3], phonocardiography (PCG)-based valvular heart
diseases (VHD) detection [6], and constrained loss models [7]
have showcased their advantages in simplicity and training ef-
ficiency over CNNs and recurrent neural networks(RNNs). A
few recent studies have experimented with hierarchical trans-
formers to better leverage the capabilities of Transformers on
ECG data while addressing their inductive bias limitations.
For instance, Li et al. [8] utilized a shifted-window-based
Transformer for heartbeat classification. Deng et al. [9] con-
structed a CNN encoder and decoder, utilizing a transformer
to bridge the gap between them for left ventricle segmen-
tation tasks. Wahid et al. [10] integrated ResNet, ViT, and
channel attention mechanisms to introduce inductive biases
for myocardial infarction detection. Similarly, Dong et al. [4]
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employed depthwise separable convolutions based on an In-
ception module and a deformable vision transformer for the
classification of arrhythmias. However, the application of
transformers to ECG signals is still in its early stages and
needs further exploration.

Building on these insights, this paper proposes a novel
hierarchical transformer model to advance the field of ECG
classification. Our contributions are as follows:

• We apply a simple yet effective six-layer convolutional en-
coder to extract features from raw ECG data. The depth-
wise convolution mechanism is utilized to maintain the
information across multiple leads, enabling further explo-
ration at the model’s end.

• Through the convolutional encoder, we obtain hierar-
chical representations that bring necessary locality and
multi-scale information to the transformer. We propose
a unique method that employs a CLS token to aggregate
information post-attention and transmit it to subsequent
transformer stages without additional pooling or down-
sampling strategies. This approach uses vanilla multi-
head attention without the need for specialized window-
based or local attention mechanisms, avoiding the need
for meticulously handcrafted designs.

• We integrate a lightweight attention-gated module com-
prising three linear layers to learn associations between
different ECG leads. This module enhances performance
when combined with the depth-wise encoder.

The paper demonstrates the efficacy of our model in har-
nessing multi-scale and lead-specific information through
comprehensive experiments. The innovations in multi-scale
processing and lead dependencies signify an important de-
parture from previous transformer-based methods in ECG
analysis. Furthermore, the depiction of attention maps elu-
cidates how the hierarchical transformer design enhances
interpretability compared to conventional architectures, ef-
fectively identifying critical patterns in ECG signals. This
work provides deeper insights into ECG analysis, bridging
the gap between advanced computational techniques and
clinical utility.

2. METHODOLOGY

2.1. Depthwise Convolutional Feature Encoder

The framework of our model is illustrated in fig. 1. We em-
ploy a six-layer simple encoder to extract useful features from
the input ECG signal. Each layer features varying kernel sizes
and strides to facilitate progressive downsampling, adopted
from [2]. The downsampling rates are adjustable based on
needs and can be configured according to user preferences.
This simple encoder creates a multi-scale feature representa-
tion for the ECG input, which has been proven beneficial in
conjunction with transformers for vision tasks [11]. To pre-
serve the critical yet unknown associations between different

ECG leads, we employ depth-wise convolutions in all lay-
ers of our encoder. Depthwise convolutions [12] employ a
distinct filter for each input channel, capturing spatial rela-
tionships without cross-channel interactions. In the context
of multi-lead ECG signals, these convolutions are applied in-
dividually to each lead. Subsequently, the resulting feature
maps from each lead can be transformed separately onto a
new space. [4]. Although depth-wise convolutions and pyra-
mid structures have been previously noted [4], they haven’t
fully mined the inter-lead information nor optimized the use
of hierarchical features. Our experiments indicate that depth-
wise convolutions enhance our model’s performance by not
mixing valuable hidden information between leads.

2.2. Three-stage transformer

According to previous researches, the effective receptive field
of ViT shifts from local to global as it progresses through the
layers. To leverage this characteristic and bring multi-scale
inductive biases, we here propose a novel yet straightforward
hierarchical transformer. This design utilizes the standard
transformer encoder along with Multi-Head Self-Attention
(MSA) mechanisms. We structure the transformer into three
stages, each containing a stack of MSA layers, with the di-
vision of layers tailored to specific needs. Our approach
involves feeding hierarchical feature embeddings(called con-
textual tokens in fig. 1) into three stages, derived from differ-
ent layers of our convolutional encoder using three distinct
downsampling rates from the input ECG segment. Each stage
begins by integrating embeddings with a learnable CLS to-
ken, commonly used in classification tasks. After each stage,
the CLS token is extracted and concatenated with a new se-
quence of embeddings at a larger downsampling rate, then
passed into the next transformer stage. This progressive feed-
ing of downsampled features compels the model to transition
its focus from detailed to more abstract, global patterns. Uti-
lizing the CLS token allows us to efficiently aggregate and
transfer multi-scale information to the final classification
layer.

2.3. Attention-Gated Module

Given an output from three-stage transformer x with dimen-
sions x ∈ RB×C×S , where B represents the batch size, C
the number of channels, and S the sequence length. The
information for each lead remains distinct and uncombined.
Thus we utilize an attention-gated module to model depen-
dencies between leads, inspired by [13]. This module com-
prises three linear layers designed to uncover latent depen-
dencies between channels, which correspond to associations
between ECG leads in this context. The attention score a
is computed through an element-wise multiplication of the
query and key vectors, resulting in a ∈ RB×C×S , as shown
in eq. (1). Wq ∈ RS×S , bq ∈ RS ,Wk ∈ RS×S , and bk ∈ RS



represent the weights and biases of the linear layer for learn-
ing query and key, with σ denotes the Sigmoid function.

q = tanh(Wqx+ bq)

k = σ(Wkx+ bk)

a = q ⊙ k

(1)

A linear project is applied to the attention scores resulting in
a′ ∈ RB×C×N , where N is the number of classes. The raw
attentions are then normalized by a softmax and multiplied
with the output from the three-stage transformer,yielding v ∈
RB×N×S , shown in eq. (2). These operations are analogous
to the MSA mechanism. Finally, a separate classifier for each
class is applied across the sequences, where vi denotes the
segment of v corresponding to the i-th class.

a′ = Projection(a)
a′′ = softmax(transpose(a′, (0, 2, 1)))
v = a′′@x

logitsi = Wivi + bi for each i ∈ {1, . . . , N}

(2)

3. RESULTS AND ANALYSIS

3.1. Data and Evaluation Metrics

We utilize the public training data from the 2020 Phys-
ioNet/CinC Challenge [14] and KCL data from our group.
The public dataset comprises 43, 101 recordings, and we
adopt the 10-fold split used by the winner model ’Prna’ [2].
This setup involves a multi-label classification task related to
24 diagnoses. Following the preprocessing steps of ’Prna’,
we resample all recordings to 500Hz, apply an FIR band-
pass filter, and perform normalization. We also randomly
crop multiple fixed-length ECG segments of T = 15 seconds
from the input, adding padding when necessary for segments
shorter than 15s. We also leveraged the wide features that
they used. For evaluation metrics, we report macro Fβ , Gβ ,
geometric mean(GM) combining precision and recall and
the challenge score defined by the challenge organizers [14],
detailed in eq. (3). The score S generalizes standard accuracy
by fully crediting correct diagnoses and penalizing incorrect
ones based on the similarity between arrhythmia types. Here
aij represents an entry in the confusion matrix corresponding
to the number of recordings classified as class ci but actually
belonging to class cj , with different weights wij assigned
based on the similarity of classes ci, cj :

Fβ = (1 + β2) · TP

(1 + β2) · TP + FP + β2FN

Gβ =
TP

TP + FP + βFN

GM =
√

Fβ ·Gβ , β = 2

S =
∑
ij

wijaij

(3)

For the KCL potassium classification, all recordings maintain
a uniform sampling rate of 500Hz. After applying normal-
ization, we randomly crop these to fixed segments of T =
5s. The dataset includes 54, 419 recordings for training and
6, 245 for testing. We report the macro-averaged area under
the receiver operating characteristic curve (AUC) on test data.

3.2. Experiments

Our model achieved outstanding results in the 2020 Phys-
ioNet/CinC Challenge dataset, surpassing other commonly
used architectures and even exceeding the performance of
previous challenge winners, Prna [2] and Res-SENet [15],
across all evaluated metrics. Results are shown in table 1. No-
tably, our model can compete with semi-supervised methods,
such as those described by [16], which employed supervised
contrastive learning. An important observation from these re-
sults is the enhanced performance of the standard ViT model,
Prna, upon integration of a CLS token, which validates the
CLS token’s significance in classification tasks. Additionally,
our model demonstrates that both with and without the At-
tention gated module, it maintains competitive performance,
demonstrating the efficiency of our hierarchical transformer.

To further validate the efficiency and generalizability of
our approach, we conducted additional tests on the KCL bi-
nary classification task, comparing our model against other
prominent architectures. Our model showcased the highest
AUC, outperforming models such as SpatialTemporalNet and
ViT (Prna), shown in table 2. These results confirm the ro-
bustness and adaptability of our model, effectively identifying
complex patterns essential for precise ECG classification.

3.3. Interpretability

The multi-head self-attention(MSA) allows each head to learn
distinct attention patterns across the time sequence. These
patterns can be analogized to distinct attentions across differ-
ent ECG leads, facilitated by our depthwise encoder. Dur-
ing the evaluation phase of the KCL classification, we ran-
domly selected an abnormal sample, with the attention map
at the final stage shown in fig. 2 and fig. 3. We qualitatively
assessed the attention map by examining which areas of the
ECG signals garnered the highest attention in this unhealthy
case. Notably, our model exhibited heightened attention to
clinically significant features such as the QRS complex, S-T
segment, and T-wave, which are recognized as clinical indi-
cators of changes in serum potassium levels. The proposed
approach also underscores how the model’s attention shifts
across different stages. While we do not leverage lead atten-
tion here, the attn gated module after MSA allowed us to dis-
cern dependencies among multiple leads. This capability fur-
ther provides valuable insights into how the model relies on
different leads, enhancing our understanding of deep learning
models for ECG diagnosis.
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Fig. 1: Framework: Six-layer encoder, three-stage transformer, and attention-gated module for classification(left to right).

Table 1: Performance comparison of various models on multi-label classifications. All models were evaluated using 10-fold
validation. Results for the first six models are sourced from [8]. Following [2], for computational efficiency, results for all other
models are averaged over three of the ten folds.

Model Fbeta measure Gbeta measure Geometric mean Challenge metric Params.
LSTM 0.4323± 0.0024 0.2742± 0.0052 0.3443±− 0.4372± 0.0073 -
CNN 0.4519± 0.0070 0.2862± 0.0083 0.3596±− 0.4542± 0.0076 -
ResNet 0.5088± 0.0021 0.3278± 0.0088 0.4084±− 0.5158± 0.0041 -
ViT 0.3263± 0.0054 0.1970± 0.0037 0.2535±− 0.3197± 0.0078 -
Swin Transformer 0.4812± 0.0042 0.3045± 0.0020 0.3828±− 0.4811± 0.0068 -
BaT [8] 0.5011± 0.0034 0.3125± 0.0036 0.3957±− 0.4958± 0.0041 -
Res-SENet [15] 0.5607± 0.0073 0.3264± 0.0096 0.4278± 0.0090 0.5939± 0.0018 8.84M
SpatialTemporalNet 0.4296± 0.0121 0.2403± 0.0072 0.3212± 0.0050 0.4322± 0.0424 4.52M
Prna [2] 0.4975± 0.0257 0.2679± 0.0187 0.3650± 0.0219 0.5463± 0.0176 13.64M
Prna + CLS Token 0.5211± 0.0051 0.2926± 0.0072 0.3905± 0.0068 0.5732± 0.0121 13.64M
Ours-No Attn gated 0.5672± 0.0034 0.3296± 0.0110 0.4309± 0.0076 0.6174± 0.0065 16.62M
Ours 0.5778± 0.0044 0.3407± 0.0074 0.4436± 0.0032 0.5980± 0.0051 16.78M

Table 2: Performance comparison of typical models for KCL.

Model Test AUC Params.
Prna(ViT) 0.8126± 0.0088 13.63M
Swin Transformer-Tiny 0.7954± 0.0009 47.47M
SpatialTemporalNet 0.8218± 0.0029 4.41M
Res-SENet 0.8203± 0.0007 8.82M
Ours 0.8232± 0.0027 10.94M

Fig. 2: Attentions in an abnormal case (high potassium) for
leads 1 to 4, illustrating final stage attentions.

Fig. 3: Attentions in an abnormal case (high potassium) for
leads 5 to 8, illustrating final stage attentions.

4. CONCLUSION

We proposed a hierarchical transformer for ECG diagnosis
that includes a depthwise encoder, a three-stage transformer,
and an attention-gated module. The experimental results
demonstrate our model’s efficiency in handling varied and
challenging ECG diagnostic tasks. The attention maps illus-
trate that our model focuses on clinically significant features
relevant to the diagnostic task. Additionally, our model is
capable of learning dependencies between multiple leads,
enhancing interpretability compared to previous models.
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