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Abstract. We here propose a novel hierarchical transformer model that
adeptly integrates the feature extraction capabilities of Convolutional
Neural Networks (CNNs) with the advanced representational potential
of Vision Transformers (ViTs). Addressing the lack of inductive biases
and dependence on extensive training datasets in ViTs, our model em-
ploys a CNN backbone to generate hierarchical visual representations.
These representations are then adapted for transformer input through
an innovative patch tokenization. We also introduce a ’scale attention’
mechanism that captures cross-scale dependencies, complementing patch
attention to enhance spatial understanding and preserve global percep-
tion. Our approach significantly outperforms baseline models on small
and medium-sized medical datasets, demonstrating its efficiency and gen-
eralizability. The components are designed as plug-and-play for different
CNN architectures and can be adapted for multiple applications. The
code is available at https://github.com/xiaoyatang/DuoFormer.git.

Keywords: Vision Transformer - Inductive Bias - Multi-scale features.

1 Introduction

The Vision Transformer (ViT) [4] has significantly advanced the adaptation
of transformers from language to vision, demonstrating superior performance
over CNNs when pre-trained on large datasets. ViT employs a patch tokeniza-
tion process that converts images into a sequence of uniform token embeddings.
These tokens undergo Multi-Head Self-Attention (MSA), transforming them into
queries, keys, and values that capture extensive non-local relationships. Despite
their potential, ViTs can underperform similarly-sized ResNets [I0] when inad-
equately trained due to their lack of inductive biases such as translation equiv-
ariance and locality[I9/14], which are naturally encoded by CNNs. Recent ef-
forts have focused on mitigating ViTs’ limitations by integrating convolutions or
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adding self-supervised tasks. Prevalent approaches combine CNN feature extrac-
tors with transformer encoders [LJI24ITRI2RIGITHID], such as the hybrid’ ViT [4].
Other methods like knowledge distillation [20] transfer biases from CNNs to ViT.
Nonetheless, ViTs” smaller receptive fields compared to CNNs limit their ability
to capture detailed spatial relationships [I], which can be partially alleviated by
techniques like enriched spatial shifting patches [14].

Histopathology image analysis, critical in medical diagnostics, involves ex-
amining whole slide images (WSIs) to detect and interpret complex tissue struc-
tures and cellular details. This analysis faces challenges due to the varied scales
of visual entities within WSIs, such as the differing sizes of cell nuclei and vascu-
lar structures, both of which can contribute to a model’s task of distinguishing
low- and high-risk kidney cancers. Moreover, vital global features of cancer and
its microenvironment, observable only at lower scales, are crucial for various
downstream tasks. The neglect of these multiple scales can significantly impair
the performance of deep learning models in medical image recognition tasks.
CNNs tackle this issue by utilizing a hierarchical structure created by lower
and higher stages, which allows them to detect visual patterns from simple low-
level edges to complex semantic features. Conversely, ViTs employ fixed-scale
patches, thereby overlooking crucial multi-scale information within the same
image [19], which can hinder their performance across diverse tasks. By har-
nessing a hierarchical structure similar to that of CNNs, ViTs can be prevented
from overlooking the critical multi-scale features, while also imparting necessary
inductive biases. Existing works on directly integrating multi-scale information
into ViTs vary primarily in the placement of convolutional operations: during
patch tokenization|2826]8], within[T2I8/T6] or between self-attention layers, in-
cluding query/key/value projections|[24J28], forward layers [I5], or positional en-
coding [26], etc. Despite the benefits of hierarchical configurations [11], a defini-
tive model for visual tasks has yet to emerge. The challenge remains in effectively
producing and utilizing features across various scales. In response, we propose a
novel hierarchical Vision Transformer model, outlined as follows:

1. Our proposed multi-scale tokenization involves a single-layer projection, patch
indexing, and concatenation, assembling features from different stages of the
CNN into multi-scale tokens.

2. We introduce a novel MSA mechanism called scale attention, combined with
patch attention. This approach enables the model to recognize connections
across scales, expanding ViT’s receptive field and bridging the gap between
CNN and Transformer architectures.

3. Our proposed scale token, part of the scale attention, is initialized with a
fused embedding derived from hierarchical representations. It enriches the
transformer’s multi-granularity representation and aggregates scale informa-
tion, serving as the input for the global patch attention.
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2 Related Work

Various approaches have explored integrating the hierarchical architecture of
CNNs into Vision Transformers (ViTs) across different visual tasks, including

video recognition[6], image classification [2J3I5I7UTTIT2ITEIT6IT8I20122/2312426/27

[28129)3T], object detection [BITITTT2ITOI222526/2728)I31], and segmentation[3/7]
[L2UT6l2T22/261273T]. Notable methods emulate the pyramid structure of CNN

with stage-wise pooling and convolutional embeddings [I1] or integrate pooling
within the attention mechanism|6].

Multiple scales have been exploited beyond mere convolution integration. The
Swin Transformer [I8] utilizes a shifting window strategy, while Dong et al. 3]
split multi-heads to perform self-attention in horizontal and vertical stripes.
Chen et al. [2] developed a dual-branch architecture that processes varying
patch sizes, and Zhang et al. [3I] implemented a multi-granularity strategy.
PVT [22] reduces feature size progressively using spatial-reduction attention.
A recent study [7] employed a spatial decay matrix to enhance self-attention
with spatial priors. UNETR [9] constructs a U-shape transformer encoder and
decoder for 3D segmentation, while people also replaced UNet skip connections
with attention mechanisms[2I] for 2D segmentation. Besides, inductive biases
can also be integrated through auxiliary tasks such as unsupervised localization
to enhance local processing capabilities [I7].

3 Methodology

Our model utilizes a CNN as the embedding layer, depicted in Figure [T} Patch
tokenization contains two steps represented by the dashed lines in Figure [T}
First is extracting hierarchical representations from different stages of the CNN
backbone. Second is the projection and patch indexing. After acquiring the multi-
scale features, we use our DuoFormer to learn the local dependencies across scales
and global dependencies across patches, which are needed for downstream tasks.

Classification
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Fig. 1. The pipeline of the proposed DuoFormer. Dimensionalities of the multi-scale
representation: S: scale dimension; P: number of patches; D: embedding dimension.
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Fig. 2. Visualization of Multiscale Patch Tokenization: This figure depicts the process
of converting an image into a sequence of multi-scale patch embeddings, with each
color representing a different scale to illustrate the varied dimensions of the patches.

3.1 Multi-scale Patch Tokenization

Given the input to the backbone, x € RE*W>3 with H = W, we derive hier-
archical outputs from four stages, denoted as x; € RP*FixCi for 4 € 0,1,2,3.
Here, P, = % specifies the spatial resolution, and C; represents the channel
dimension. We apply a linear projection to transform these features into em-
beddings of dimension D. Next, we split the embeddings x’ from each stage
into IV non-overlapping patches, set as N = 49. Each scale yields a sequence of
flattened tokens with spatial size P/ ?, where Pl = 1 N We index and con-
catenate multi-scale embeddings from each patch across all scales to form the
multi-scale tokens th, illustrated in Figure |2l The equation for this process is:

XI c RPL-XPL-XD

x; = Projection(x;), x;

/ HwW
be‘/6RPi2XNXD,Pi/2:m,i€0,1,2,3, (1>

X~ = concat(x}) € R%*N*P g — z:PZ’2

3.2 Duo Attention Module

Our tokenization directly embeds multiscale spatial information into the scale
dimension, inherently enriching the model’s inductive biases. Subsequently, our
encoder employs scale and patch attentions to respectively focus on detailed
image features and broader contexts, as illustrated in Figure a). Our scale at-
tention adapts the Multi-Head Self-Attention (MSA) framework by incorporat-
ing an additional scale dimension. This adaption integrates multi-scale analysis
directly into the attention mechanism and alters tensor operations to accommo-
date multi-dimensional tokens. Details are explained in the equation below and
depicted in Figure [B[b).

S =Xy + MSA(LN(Xy)), Y = X% + FFN(LN(X%~)) (2)
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Fig. 3. Illustration of the Duo attentions. Panel (a) shows the local (yellow arrows) and
global (blue arrows) dependencies among multi-scale patches, maintaining a consistent
grid size of 49; larger patches indicate greater embedding lengths. Panel (b) details
the model architecture, including L layers of scale and patch attention blocks in the
encoder.

After scale attention, the scale token aggregates key details from all scales for
input to patch attention. Patch attention, mirroring standard MSA, omits layer
normalization(LN), feed-forward networks (FFN), and residual connections, as
shown in Figure [3{(b).

3.3 Scale Token

To enhance the hierarchical representations, we use a downsampling strategy
involving simple convolutional layers followed by max pooling. This process nor-
malizes the spatial dimensions of all embeddings to N, maintaining consistent
channel dimensions. IV denotes number of patches, set as 49 in our experiments.
These embeddings are then concatenated along the channel dimension and pro-
jected into the embedding dimension D using lightweight convolutions. The re-
sulting scale token, concatenated with multi-scale tokens, serves as the input for
the scale attention, guiding it effectively, as detailed below.

X9 = MaxPool(Conv(xg)), %3 = MaxPool(Conv(x;))
%y = MaxPool(x3), X3 =x3, where x; € RV*C
XZ = concat(x), X1, X, %3) € RVX¢ ¢ = ZC“
Scale Token = ReLU(BN(Conv(Xs~))) € RNV*P

(3)

4 Experiments

4.1 Experimental Setup

Our evaluation utilized two datasets, Utah ccRCC and TCGA c¢cRCC [30], with
varying ResNet backbones for a thorough analysis. The Utah ccRCC dataset
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comprises 49 WSIs from 49 patients, split into training (32 WSIs), validation
(10 WSIs), and testing (7 WSIs). Tiles were extracted from marked polygons at
400x400 pixel resolution at 10X magnification with a 200-pixel stride and center-
cropped to 224x224 pixels for model compatibility. The training set included
28,497 Normal/Benign, 2,044 Low Risk, 2,522 High Risk, and 4,115 Necro-
sis tiles, with validation and test sets proportionately distributed. The TCGA
ccRCC dataset features 150 labeled WSIs divided into 30 for training, 60 for val-
idation, and 60 for testing, using similar cropping methods but adjusted strides
to gather more training patches. It contains 84,578 Normal/Benign, 180,471
Cancer, and 7,932 Necrosis tiles in the training set, with similar distributions in
validation and test sets. For model details, please refer to Appendix.

4.2 Result Analysis

In this study, we utilized ResNet18 and ResNet50 backbones [10] pre-trained on
extensive datasets, assessing our model under two paradigms: with ImageNet
supervised pre-trained and pathology(TCGA and TULIP) self-supervised pre-
trained [I3] backbones. Results, shown in Table [1} indicate our model surpasses
ResNet baselines by over 2% across all settings and outperforms various Hybrid-
ViTs in all scenarios. The results underscore our model’s capacity to harness
multi-scale features and integrate crucial inductive biases without necessitating
additional tasks or additional pre-training of the transformer encoder.

In the supervised pre-training scenario, particularly with TCGA using a
ResNet 50 backbone, deeper encoders sometimes hindered performance, high-
lighting the need for careful design when integrating CNN architectures, es-
pecially considering domain shifts. Our DuoFormer improved performance by
3.83%, demonstrating its effectiveness in leveraging multi-scale representations
and likely guiding the feature extractor to adapt better to domain shifts when
trained together. In the self-supervised pre-trained experiments, our model sig-
nificantly outperformed the baseline by 9.88% and clearly surpassed the Hybrid-
ViTs, showing the superiority of our model in leveraging multi-scale features.
These findings suggest that with the proposed designs, the model can effectively
capture essential local features while preserving global attention capabilities,
thereby addressing the typical inductive bias limitations found in transformers.

4.3 Ablation Studies

Ablation on Scale Attention For ablation studies, we utilized our best mod-
els in both settings, employing ResNet18 pretrained on ImageNet for UTAH
and ResNet50 pretrained on histopathology images for TCGA. We evaluated
the individual contributions of scale and patch attention mechanisms using con-
figurations of 6 layers for UTAH and 8 layers for TCGA. The different depths
were chosen to adapt to the larger size of the TCGA dataset and the smaller
size of the UTAH dataset. Results in Table @lindicate that scale attention alone
outperforms setups using only patch attention, suggesting the robustness of our
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Table 1. Feature extractors were unfrozen unless specified otherwise. Results here are
reported as mean values from several independent experiments.

ImageNet Supervised Pretrained

Model | Params. Accuracy (%)

TCGA
ResNet50 23.50M 72.74
ResNet50-ViT Base 112.5M 75.89
ResNet50-ViT Large 197.6M 73.34
ResNet50-DuoFormer (Ours) 186.0M 76.57

UTAH
ResNet18 11.20M 88.87
ResNet18-ViT Base 99.03M 82.35
ResNet18-ViT Large 184.1M 86.39
ResNet18-DuoFormer (Ours) 39M 91.22

Pathology Self Supervised Pretrained

TCGA
Model Params. Accuracy (%)
ResNet50-SwaV (Freeze) 0.008M 77.98
ResNet50-SwaV (Freeze)-ViT Base 89.03M 74.00
ResNet50-SwaV (Freeze)-ViT Large 174.1M 85.81
ResNet50-SwaV (Freeze)-DuoFormer (Ours) 124.7M 86.45

Table 2. Ablation study comparing scale and patch attention individually and in
combination. Configurations with only scale attention use a single fully-connected (FC)
layer to adapt the scale token for the classification head, trained alongside the entire
network.

Dataset|Scale Attn|Patch Attn|Scale Attn & Patch Attn (Ours)
UTAH 90.31 82.35 91.22
TCGA 79.90 74.00 86.45

scale token and attention mechanism in harnessing multi-scale features. The re-
sults also confirm that the best performance on both datasets is achieved when
both attention modules are employed together, emphasizing the necessity of in-
tegrating both local and global information for effective visual processing.

Ablation on Scale Token To evaluate the role of the scale token, we con-
ducted experiments comparing configurations with and without a scale token,
and against a learnable scale token, as shown in Table [3] Our scale token effec-
tively enhanced local information capture, outperforming the learnable version.
Without a scale token, using the first token from scale attention yielded better
results than averaging all tokens, likely due to the first token’s representation of
the final CNN stage’s output, which provides crucial, concise information. This
suggests that averaging introduces noise.



8

Table 3. Ablation study on the impact of different scale token configurations, including
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a learnable scale token implemented as nn.Parameters().

Dataset| The first token | Avg. of tokens Learnable Ours

w/o Scale-Token|w/o Scale-Token|w /i Scale-Token|w /i Scale-Token
UTAH 90.61 89.62 88.80 91.22
TCGA 83.22 82.62 83.13 86.45

Ablation on Multi-Scale Representations We explored the impact of dif-
ferent combinations of stages on the UTAH dataset. Sy represents the shallowest
stage (56 x 56), and S5 is the deepest (7 x 7). According to the results, incorpo-
rating all stages slightly harmed performance, likely due to overfitting given the
small UTAH dataset. Including S3 generally improved performance, highlight-
ing the final stage’s importance for classification accuracy. Including Sy often
decreased performance, possibly due to its larger spatial embeddings and higher
overfitting risk. Conversely, on larger datasets, as shown in Table [} including
all stages proved beneficial. The highest three configurations here used S7, Ss,
and S3, demonstrating the benefits of multi-scale integration while managing
computational complexity.

Classification Accuracy by Feature Combinations
S1 . S2

- s -

ResNet Utah Baseline

Classification Accuracy (%)

Fig. 4. Ablation study on combinations of hierarchical stages. Stages are represented
by colors from light to dark. Bar heights and black error bars show mean accuracies
and standard deviations, and the blue dashed line marks the ResNet baseline.

5 Conclusion

In this study, we introduced a novel hierarchical transformer with dual atten-
tion mechanisms that enhance visual data interpretation across scales, improv-
ing medical image classification. Ablation studies confirm performance optimiza-
tion, demonstrating the model’s robustness and adaptability across various CNN
backbones and tasks, paving the way for broader applications in medical imaging
and vision-related fields.
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6 Appendix

Model Training Details All models, including the ResNet baselines, were
trained using the Adam optimizer with 5; = 0.9 and 8y = 0.999, without apply-
ing weight decay. For the DuoFormer model, batch sizes were set to 32 for the
Utah dataset and 6 for the TCGA dataset. We employed a OneCycle learning
rate scheduler that starts from a minimal learning rate, progressively increasing
to a set rate of 1 x 10~*. Each model underwent training for 50 epochs on Utah
and 100 epochs on TCGA, utilizing early stopping with patience of 20 and 50
epochs, respectively. We saved the best-performing model from the validation
data for inference. Model performance was evaluated using balanced accuracy
for both datasets. All computations were performed on an NVIDIA RTX A6000
with 48 GB of memory.

Ablation on Numbers of Heads and Layers We assessed our model’s sensi-
tivity to two hyperparameters: the number of heads and the number of layers in
two attention modules. Initially, we fixed the number of heads at 12 and varied
the number of layers from 4 to 12 to identify optimal configurations for each
dataset. Subsequently, we tested heads from 4 to 12, excluding 10 due to in-
compatibility with the feature dimension D = 768, using the optimal number
of layers. We observed that performance generally increases and then decreases
with attention depth. Specifically, performance peaks at 6 layers for the Utah
dataset and at 8 layers for the TCGA dataset, likely due to the varying sizes of
the datasets. Additionally, we noted a similar pattern of initial increase followed
by a decrease in performance for the number of heads across both datasets, peak-
ing at 8 heads. Notably, our models with all tested numbers of heads and layers
performed better than baseline ResNets, except in one case where performance
was slightly worse, demonstrating the effectiveness of our proposed model.

—— ResNetTCGA Baseline B TCGA —— ResNet TCGA Baseline  B®B TCGA
—=— ResNet Utah Baseline  mmm Utah —— ResNet Utah Baseline  mmm Utah

Accuracy (%)

6 8
Number of Heads

s 10
Number of Layers

Fig. 5. Ablation studies comparing the number of layers and heads in the dual attention
modules for both the TCGA (solid bars) and Utah (striped bars) datasets. The dashed
lines represent ResNet baselines for each dataset. Each configuration synchronizes the
layers between scale and patch attention.
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