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Mo#va#on

Physics is complex & changing

Hardware is complex & changing
• muticore/manycore
• hybrid CPU/GPU or other accelerators

Physics'
Models

Algorithms'
&'Solvers

So5ware

Hardware

Software must handle 
complexity & changing 
nature of:

• physics models, 
• algorithms,
• hardware
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Hierarchical.Paralleliza#on

Domain decomposition
• data parallel (MPI)
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Hierarchical.Paralleliza#on

Domain decomposition
• data parallel (MPI)

Algorithm decomposition
• task parallel (threads)

Monday, February 20, 12



Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

rho_O2_RHS (0)

SpeciesDiffusionFlux (2)x_velocity_advect (1)

rhoY_0 (5)

species (4)

density (6)

x_velocity (5)

x_momentum (6)

rhoE0RHS (0)

HeatFlux (1)

rhoE0 (5)

temperature (3)thermal_conductivity (2)

ke (4) e0 (4)

y_velocity (5)

y_momentum (6)

densityRHS (0)

x_momentumRHS (0)

tauxx (1) pressure_xmomrhs (1)

viscosity (2)pressure (2)

y_momentumRHS (0)

tauyx (1)

Hierarchical.Paralleliza#on

data parallel per 
patch/workset

r · (�r�) + s�

Domain decomposition
• data parallel (MPI)

Algorithm decomposition
• task parallel (threads)

Fine-grained field operations
• data parallel (threads)
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Current.Scaling.6.Straight.MPI.♻

Efficiency:
• MPI can scale to 200K cores (Jaguar)

‣ Hypre PFMG solver, ~10 iterations required per 
timestep

• Linear solver is dictating scalability
‣ most of computation time is spent in linear solver
‣ as we add more physics, more time will be spent 

outside the linear solver

Implications:
• Linear solvers must go multicore/GPU within MPI!

• Consider algorithmic changes to eliminate 
dependency on linear solver?

Multicore/accelerator implementations 
are a multiplier on MPI scalability.

♻ Collaborative effort with Martin Berzins, 
funded by NSF awards OCI 0721659, 
PetaApps 0905068.
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Task6Based.Algorithm.Decomposi#on
A.Simple.Example
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Register all expressions.
• Each “expression” calculates one or more field 

quantities, and this is indicated to the registry.

• Each expression advertises its direct dependencies
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Task6Based.Algorithm.Decomposi#on
A.Simple.Example
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Direct (expressed) 
dependencies.

Register all expressions.
• Each “expression” calculates one or more field 

quantities, and this is indicated to the registry.

• Each expression advertises its direct dependencies

Determine a “root” expression & construct 
a graph.

• All dependencies are discovered/resolved 
automatically and an algorithm is deduced.

• Highly localized influence of changes in models.  
Programmer need not know the “whole code” to 
make a local change.

• Not all expressions in the registry may be relevant/
used.
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Task6Based.Algorithm.Decomposi#on
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Register all expressions.
• Each “expression” calculates one or more field 

quantities, and this is indicated to the registry.

• Each expression advertises its direct dependencies

Determine a “root” expression & construct 
a graph.

• All dependencies are discovered/resolved 
automatically and an algorithm is deduced.

• Highly localized influence of changes in models.  
Programmer need not know the “whole code” to 
make a local change.

• Not all expressions in the registry may be relevant/
used.

From the graph, 
• deduce storage requirements & allocate memory 

(externally to each expression).

• iterate graph and bind memory.
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Addi#onal.Model.Complexity
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Addi#onal.Model.Complexity

Example: multiphase flows
• Do we need logic in formulating each 

transport equation to indicate if 
“multiphase” is turned on?
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Addi#onal.Model.Complexity

Example: multiphase flows
• Do we need logic in formulating each 

transport equation to indicate if 
“multiphase” is turned on?
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Addi#onal.Model.Complexity

Example: multiphase flows
• Do we need logic in formulating each 

transport equation to indicate if 
“multiphase” is turned on?

“Attach” a dependency to an 
expression.
• Allows “push” coupling rather than 

“pull” coupling

• Physics that knows about coupling 
(particle transport) injects appropriate 
coupling terms into gas-phase solver.

• Full dependency structure is maintained; 
no “code creep” from additional models.
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Addi#onal.Model.Complexity

Example: multiphase flows
• Do we need logic in formulating each 

transport equation to indicate if 
“multiphase” is turned on?

“Attach” a dependency to an 
expression.
• Allows “push” coupling rather than 

“pull” coupling

• Physics that knows about coupling 
(particle transport) injects appropriate 
coupling terms into gas-phase solver.

• Full dependency structure is maintained; 
no “code creep” from additional models.

registry->attach_dependency( rhoRHS, srho, ADD );

∂ρ/∂t doesn’t directly advertise 
a dependency on sρ.
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Example.Graph.6.Coal.Combus#on/Gasifica#on

( rhoY_0, 0 )  (11)

( rhoY_1, 0 )  (11)

( rhoY_2, 0 )  (11)

( rhoY_3, 0 )  (11)

( rhoY_4, 0 )  (11)

( rhoY_5, 0 )  (11)

( rhoY_6, 0 )  (11)

( rhoY_7, 0 )  (11)

( rhoY_8, 0 )  (11)

( rhoY_9, 0 )  (11)

( p_x_RHS, 0 )  (0)

( p_xmom_RHS, 0 )  (0)

( p_ymom_RHS, 0 )  (0)

( p_mass_RHS, 0 )  (0)

( p_temperature_RHS, 0 )  (0)

( p_Re, 0 )  (4)

( p_mass, 0 )  (4)

( parSc, 0 )  (4)

( p_yvel, 0 )  (5)

( p_Xmomdragterm, 0 )  (2)

( p_Ymomdragterm, 0 )  (2)

( p_drag_coef, 0 )  (3)

( p_tau, 0 )  (3)

( p_xvel, 0 )  (3)

( p_size, 0 )  (6)

( p_x, 0 )  (7)

( wall_temp, 0 )  (1)

( p_density, 0 )  (6)( p_temperature, 0 )  (10)

( cpd_L_RHS, 0 )  (8)

( cpd_C_RHS, 0 )  (8)

( cpd_G_RHS_i, 0 )  (8)( cpd_Delta_RHS_i, 0 ) (8)

( cpd_volatile_RHS, 0 )  (7)

( cpd_product_RHS, 0 )  (7)

( cpd_dy_i, 0 )  (3)

( cpd_char production rhs, 0 )  (6)

( char_mass_RHS, 0 )  (5)

( evaporation_rhs, 0 )  (3)

( moisture_mass, 0 )  (4)

( Heat Capacity of Coal, 0 )  (2)

( char_O2_RHS, 0 )  (3)

( char_CO2_RHS, 0 ) ( char CO RHS, 0 )  (4)

( char_Mole_CO/CO2, 0 )  (6)( cpd_kb, 0 )  (9)

( cpd_l, 0 )  (10)

( Volatile Mass, 0 )  (8)

( char_mass, 0 )  (6)

( cpd_delta_2, 0 )  (9)

( cpd_delta_0, 0 )  (9) ( cpd_delta_1, 0 )  (9)

( cpd_delta_10, 0 )  (9)

( cpd_delta_11, 0 )  (9)

( cpd_delta_12, 0 )  (9)

( cpd_delta_13, 0 )  (9)

( cpd_delta_14, 0 )  (9)

( cpd_delta_15, 0 )  (9)

( cpd_delta_3, 0 )  (9)

( cpd_delta_4, 0 )  (9)

( cpd_delta_5, 0 )  (9)

( cpd_delta_6, 0 )  (9)

( cpd_delta_7, 0 )  (9)

( cpd_delta_8, 0 )  (9)

( cpd_delta_9, 0 )  (9)

( cpd_kg_i, 0 )  (9)

( cpd_g_0, 0 )  (10)

( cpd_g_1, 0 )  (10)( cpd_g_10, 0 )  (10)

( cpd_g_11, 0 )  (10)

( cpd_g_12, 0 )  (10)

( cpd_g_13, 0 )  (10)

( cpd_g_14, 0 )  (10)

( cpd_g_15, 0 )  (10)

( cpd_g_2, 0 )  (10)
( cpd_g_3, 0 )  (10)

( cpd_g_4, 0 )  (10)
( cpd_g_5, 0 )  (10)

( cpd_g_6, 0 )  (10)

( cpd_g_7, 0 )  (10)

( cpd_g_8, 0 )  (10) ( cpd_g_9, 0 )  (10)

( heat_released_to_gas, 0 )  (2)

( coal_Temperature_rhs, 0 )  (1)

( density, 0 )  (11) ( rhoE0, 0 )  (10) ( x_momentum, 0 )  (11)

( y_momentum, 0 )  (11)

( densityRHS, 0 )  (0)

( rhoE0RHS, 0 )  (0)

( x_momentumRHS, 0 )  (0)

( y_momentumRHS, 0 )  (0)

( rho_O2_RHS, 0 )  (0)

( rho_H2_RHS, 0 )  (0)

( rho_OH_RHS, 0 )  (0) ( rho_H2O_RHS, 0 )  (0)( rho_HO2_RHS, 0 )  (0)

( rho_CH4_RHS, 0 )  (0)
( rho_CO_RHS, 0 )  (0) ( rho_CO2_RHS, 0 )  (0)

( rho_NH3_RHS, 0 )  (0)( rho_HCN_RHS, 0 )  (0)

( positionRHS, 0 )  (0)

( SpeciesDiffusionFluxes, 0 )  (2)

( x_velocity_advect, 0 )  (2)

( species_0, 0 )  (10) ( species_1, 0 )  (10)

( species_10, 0 )  (9)

( species_2, 0 )  (10)( species_3, 0 )  (10)

( species_4, 0 )  (10)

( species_5, 0 )  (10)

( species_6, 0 )  (10)

( species_7, 0 )  (10)

( species_8, 0 )  (10)

( species_9, 0 )  (10)

( temperature, 0 )  (8)

( x_velocity, 0 )  (10)

( e0, 0 )  (9)

( ke, 0 )  (9)

( y_velocity, 0 )  (10)

( heat_capacity, 0 )  (1)

( xcoord, 0 )  (2)

( mixtureMW, 0 )  (7)

( pressure, 0 )  (7)

( pressure_face, 0 )  (2)

( HeatFlux, 0 )  (1)

( viscosity, 0 )  (5)

( thermal_conductivity, 0 )  (2)

( pressure_xmomrhs, 0 )  (1)

( e0src, 0 )  (1)

( tauxx, 0 )  (2)

( tauyx, 0 )  (2)

( int_mixtureMW, 0 )  (6)

( int_pressure, 0 )  (6)

( int_species_1, 0 )  (6)

( int_temperature, 0 )  (6)

( int_species_3, 0 )  (4)

( P2CenergySrc, 0 )  (1)

( P2CmassSrc, 0 )  (1) ( P2CMomSrc_X, 0 )  (1)

( P2CMomSrc_Y, 0 )  (1)

( P2CSpeciesSrc_O2, 0 )  (1)

( P2CSpeciesSrc_CH4, 0 )  (1)

( P2CSpeciesSrc_CO, 0 )  (1)

( P2CSpeciesSrc_CO2, 0 )  (1)

( P2CSpeciesSrc_NH3, 0 )  (1)

( P2CSpeciesSrc_HCN, 0 )  (1)

( P2CSpeciesSrc_H2O, 0 )  (1)

Gas phase terms (CO/H2 combustion - moving to methane...)

Particle evolution terms

Particle - gas coupling terms

Particle source terms

NO modification to gas-phase code to get 2-way coupling on mass, momentum, energy!

15 Gas-phase PDEs,
~25 ODEs per particle.
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Mul#core.Scheduling
A

CB

D

E

FG H

“Bottom” nodes are placed in execution 
queue.

When a node completes, its “wait count” is 
decremented.

When all of a node’s “children” are done 
(wait count=0) it is placed in the priority 
execution queue.
• priority determined to optimize graph execution time.

• backfilling naturally occurs (particularly for broad 
graphs) while “heavy” nodes execute.

• resources may be dynamically migrated between 
thread pool associated with task graph to threads 
associated with data-parallel execution (within a node)
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Mul#core.Scheduling
A

CB

D

E

FG H

“Bottom” nodes are placed in execution 
queue.

When a node completes, its “wait count” is 
decremented.

When all of a node’s “children” are done 
(wait count=0) it is placed in the priority 
execution queue.
• priority determined to optimize graph execution time.

• backfilling naturally occurs (particularly for broad 
graphs) while “heavy” nodes execute.

• resources may be dynamically migrated between 
thread pool associated with task graph to threads 
associated with data-parallel execution (within a node)

Prioritize G, H because 
they are “deeper” than F.
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Mul#core.Scheduling
A

CB

D

E

FG H

“Bottom” nodes are placed in execution 
queue.

When a node completes, its “wait count” is 
decremented.

When all of a node’s “children” are done 
(wait count=0) it is placed in the priority 
execution queue.
• priority determined to optimize graph execution time.

• backfilling naturally occurs (particularly for broad 
graphs) while “heavy” nodes execute.

• resources may be dynamically migrated between 
thread pool associated with task graph to threads 
associated with data-parallel execution (within a node)

Serialization point - push 
resources into data parallel on E.
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Mul#core.Scheduling
A

CB

D

E

FG H

“Bottom” nodes are placed in execution 
queue.

When a node completes, its “wait count” is 
decremented.

When all of a node’s “children” are done 
(wait count=0) it is placed in the priority 
execution queue.
• priority determined to optimize graph execution time.

• backfilling naturally occurs (particularly for broad 
graphs) while “heavy” nodes execute.

• resources may be dynamically migrated between 
thread pool associated with task graph to threads 
associated with data-parallel execution (within a node)

Prioritize D (may push 
resources into “D” if possible)
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Mul#core.Scheduling
A

CB

D

E

FG H

“Bottom” nodes are placed in execution 
queue.

When a node completes, its “wait count” is 
decremented.

When all of a node’s “children” are done 
(wait count=0) it is placed in the priority 
execution queue.
• priority determined to optimize graph execution time.

• backfilling naturally occurs (particularly for broad 
graphs) while “heavy” nodes execute.

• resources may be dynamically migrated between 
thread pool associated with task graph to threads 
associated with data-parallel execution (within a node)

Serialization point - push 
resources into data parallel on C.
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Mul#core.Scheduling
A

CB

D

E

FG H

“Bottom” nodes are placed in execution 
queue.

When a node completes, its “wait count” is 
decremented.

When all of a node’s “children” are done 
(wait count=0) it is placed in the priority 
execution queue.
• priority determined to optimize graph execution time.

• backfilling naturally occurs (particularly for broad 
graphs) while “heavy” nodes execute.

• resources may be dynamically migrated between 
thread pool associated with task graph to threads 
associated with data-parallel execution (within a node)

Serialization point - push 
resources into data parallel on A.
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0_rhs

0_flux

0_src

var_0 var_1 var_10 var_11 var_12 var_13 var_14 var_15var_2 var_3 var_4 var_5 var_6 var_7 var_8 var_9

1_rhs

1_flux

1_src

2_rhs

2_flux

2_src

3_rhs

3_flux

3_src

4_rhs

4_flux

4_src

5_rhs

5_flux

5_src

6_rhs

6_flux

6_src

7_rhs

7_flux

7_src

8_rhs

8_flux

8_src

9_rhs

9_flux

9_src

10_rhs

10_flux

10_src

11_rhs

11_flux

11_src

12_rhs

12_flux

12_src

13_rhs

13_flux

13_src

14_rhs

14_flux

14_src

15_rhs

15_flux

15_src

• Broad graphs required for 
task-based parallelism.

• Currently not obtaining close 
to theoretical scalability - 
cache issues?

• To obtain many-core 
scalability, we need to expose 
concurrency within each task!

Idealized.Scaling.Example.(Task.Parallel)

Graph analysis indicates theoretical 
parallelizability and speedup.

P. K. Notz, R. P. Pawlowski, and J. C. Sutherland, “Graph-based software design for managing complexity 
and enabling concurrency in multiphysics PDE software,” ACM Transactions on Mathematical 
Software, to appear, 2012
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“Naive” implementation
1. Calculate λ
2. Interpolate λ to faces (3 loops)
3. Calculate gradient of φ at faces (3 loops)

4. Multiply ∂φ/∂xi by λ (3 loops)
5. Calculate divergence (3 loops)
6. Form full RHS (1 loop)
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Current (13 loops)
Monolithic (1 loop)
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Granularity.&.Mul#core.Scaling.(Data.Parallel)

Loop.Fusing

• Cache contention is a real issue (work/write)

• Loop fusing is important (works against 
traditional abstraction)

• DSLs can help ease this pain significantly!

1 loop, λ and ∂φ/∂xi held as 
temporaries on inner loops.
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Domain6Specific.Languages
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• Need “loop fusing” - more 
work per loop, fewer loops.

• Many threads overload 
memory bus.

rhs <<= Dx( Rx(Gamma) * Gx(phi) )
      + Dy( Ry(Gamma) * Gy(phi) )
      + Dz( Rz(Gamma) * Gz(phi) )
      + Sphi

DSL hides details of implementation - fast refactors
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Stage 2
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Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Dynamic fields
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For deep graphs, this can 
result in very significant 

memory savings.
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Current.Work.6.Hybrid.CPU/GPU
A

C

B D

E

F G H

I

GPU - enabled 
nodes

Does execution 
time exceed data 
movement time?

Is task GPU-
ready?

Execute
on CPU

Execute
on GPU

Task
Scheduler

yes

yes

no

no

‘C’ and ‘D' may be computed on GPU 
with a single copy-in/copy-out penalty.

“Graph coalescing” prevents “D” 
from being allocated on CPU

•DSL provides support for GPU 
deployment of operations.
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Current.Work.6.Hybrid.CPU/GPU
A

C

B D
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F G H

I

GPU - enabled 
nodes

‘H’ may be copied while ‘E’ is 
computing, thereby hiding some 

latency.

Does execution 
time exceed data 
movement time?

Is task GPU-
ready?

Execute
on CPU

Execute
on GPU

Task
Scheduler

yes

yes

no

no

•DSL provides support for GPU 
deployment of operations.

• Graph provides optimal scheduling of 
tasks across the heterogeneous system.

• Need many of tasks with lots of work 
(data parallel) in each.
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Conclusions

Multiple levels of parallelism will be required

Task-based approaches can provide a great deal of insight into the 
structure of the problem
• advanced memory management

• automatic task-parallelism

• “optimal” task scheduling in hybrid compute environments

DSLs can simplify life (a lot!)
• provide high-level interface to express intent, dispatch through highly optimized back-ends 

tuned to an architecture.

• Programmer need not worry about architecture details, or data layout details.

• C++ template meta programming ensures robust (correct) code.

• Write more robust, efficient code in shorter time.

• revise DSL back-end to affect changes through the entire code base.
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