
!155 South 1452 East Room 380 !Salt Lake City, Utah 84112 !1-801-585-1233

Graph-Based Parallel Task Scheduling
and Algorithm Generation for

Multiphysics PDE Software
James C. Sutherland

Assistant Professor - Chemical Engineering

Devin Robison
M.S. Student

This work was funded in part by NSF
PetaApps award 0904631

This research was sponsored by the National Nuclear Security
Administration under the Accelerating Development of Retrofitable
CO2 Capture Technologies through Predictivity program through
DOE Cooperative Agreement DE-NA0000740

Monday, February 20, 12

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Mo#va#on

Physics is complex & changing

Hardware is complex & changing
• muticore/manycore
• hybrid CPU/GPU or other accelerators

Physics'
Models

Algorithms'
&'Solvers

So5ware

Hardware

Software must handle
complexity & changing
nature of:

• physics models,
• algorithms,
• hardware

Monday, February 20, 12

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Hierarchical.Paralleliza#on

Domain decomposition
• data parallel (MPI)

Monday, February 20, 12

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

rho_O2_RHS (0)

SpeciesDiffusionFlux (2)x_velocity_advect (1)

rhoY_0 (5)

species (4)

density (6)

x_velocity (5)

x_momentum (6)

rhoE0RHS (0)

HeatFlux (1)

rhoE0 (5)

temperature (3)thermal_conductivity (2)

ke (4) e0 (4)

y_velocity (5)

y_momentum (6)

densityRHS (0)

x_momentumRHS (0)

tauxx (1) pressure_xmomrhs (1)

viscosity (2)pressure (2)

y_momentumRHS (0)

tauyx (1)

Hierarchical.Paralleliza#on

Domain decomposition
• data parallel (MPI)

Algorithm decomposition
• task parallel (threads)

Monday, February 20, 12

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

rho_O2_RHS (0)

SpeciesDiffusionFlux (2)x_velocity_advect (1)

rhoY_0 (5)

species (4)

density (6)

x_velocity (5)

x_momentum (6)

rhoE0RHS (0)

HeatFlux (1)

rhoE0 (5)

temperature (3)thermal_conductivity (2)

ke (4) e0 (4)

y_velocity (5)

y_momentum (6)

densityRHS (0)

x_momentumRHS (0)

tauxx (1) pressure_xmomrhs (1)

viscosity (2)pressure (2)

y_momentumRHS (0)

tauyx (1)

Hierarchical.Paralleliza#on

data parallel per
patch/workset

r · (�r�) + s�

Domain decomposition
• data parallel (MPI)

Algorithm decomposition
• task parallel (threads)

Fine-grained field operations
• data parallel (threads)

Monday, February 20, 12

102 103 104 105

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Cores

Ti
m

e

Total Time
Solver Time

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Current.Scaling.6.Straight.MPI.♻

Efficiency:
• MPI can scale to 200K cores (Jaguar)

‣ Hypre PFMG solver, ~10 iterations required per
timestep

• Linear solver is dictating scalability
‣ most of computation time is spent in linear solver
‣ as we add more physics, more time will be spent

outside the linear solver

Implications:
• Linear solvers must go multicore/GPU within MPI!

• Consider algorithmic changes to eliminate
dependency on linear solver?

Multicore/accelerator implementations
are a multiplier on MPI scalability.

♻ Collaborative effort with Martin Berzins,
funded by NSF awards OCI 0721659,
PetaApps 0905068.

Monday, February 20, 12

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

u

Task6Based.Algorithm.Decomposi#on
A.Simple.Example

T
p

yi

τ

Register all expressions.
• Each “expression” calculates one or more field

quantities, and this is indicated to the registry.

• Each expression advertises its direct dependencies

Ex
pr

es
si

on

R
eg

is
tr

y

ρ φ
sφ

⇥�

⇥t
= �⇥ · (�u) +⇥ · (�⇥�) + s�

Monday, February 20, 12

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

u

Task6Based.Algorithm.Decomposi#on
A.Simple.Example

Γ

T

� = �(T, p, yi)

p

yi

τ

Direct (expressed)
dependencies.

Register all expressions.
• Each “expression” calculates one or more field

quantities, and this is indicated to the registry.

• Each expression advertises its direct dependencies

Determine a “root” expression & construct
a graph.

• All dependencies are discovered/resolved
automatically and an algorithm is deduced.

• Highly localized influence of changes in models.
Programmer need not know the “whole code” to
make a local change.

• Not all expressions in the registry may be relevant/
used.

Ex
pr

es
si

on

R
eg

is
tr

y

ρ φ
sφ

⇥�

⇥t
= �⇥ · (�u) +⇥ · (�⇥�) + s�

Monday, February 20, 12

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

u

Task6Based.Algorithm.Decomposi#on
A.Simple.Example

Γ

T

� = �(T, p, yi)

p

yi

τ

Direct (expressed)
dependencies.

Indirect
(discovered)

dependencies.

Register all expressions.
• Each “expression” calculates one or more field

quantities, and this is indicated to the registry.

• Each expression advertises its direct dependencies

Determine a “root” expression & construct
a graph.

• All dependencies are discovered/resolved
automatically and an algorithm is deduced.

• Highly localized influence of changes in models.
Programmer need not know the “whole code” to
make a local change.

• Not all expressions in the registry may be relevant/
used.

Ex
pr

es
si

on

R
eg

is
tr

y

ρ

φ
sφ

⇥�

⇥t
= �⇥ · (�u) +⇥ · (�⇥�) + s�

Monday, February 20, 12

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

u

Task6Based.Algorithm.Decomposi#on
A.Simple.Example

Γ

T

� = �(T, p, yi)

p

yi

τ

Direct (expressed)
dependencies.

Indirect
(discovered)

dependencies.

Register all expressions.
• Each “expression” calculates one or more field

quantities, and this is indicated to the registry.

• Each expression advertises its direct dependencies

Determine a “root” expression & construct
a graph.

• All dependencies are discovered/resolved
automatically and an algorithm is deduced.

• Highly localized influence of changes in models.
Programmer need not know the “whole code” to
make a local change.

• Not all expressions in the registry may be relevant/
used.

From the graph,
• deduce storage requirements & allocate memory

(externally to each expression).

• iterate graph and bind memory.

• schedule evaluation, ensuring proper ordering. Ex
pr

es
si

on

R
eg

is
tr

y

ρ

φ
sφ

⇥�

⇥t
= �⇥ · (�u) +⇥ · (�⇥�) + s�

Monday, February 20, 12

@⇢

@t
= �r · (⇢~u)

@⇢~u

@t
= �r · (⇢~u~u)�r · ⌧ �rp+ ⇢~g

@⇢e0
@t

= �r · (⇢e0~u)�r · (p~u)�r · (⌧~v)�r · q

@⇢yi
@t

= �r · (⇢yi~u)�r · ~Ji + si

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Addi#onal.Model.Complexity

Monday, February 20, 12

@⇢

@t
= �r · (⇢~u) +s⇢

@⇢~u

@t
= �r · (⇢~u~u)�r · ⌧ �rp+ ⇢~g +s⇢~u

@⇢e0
@t

= �r · (⇢e0~u)�r · (p~u)�r · (⌧~v)�r · q + +s⇢e0

@⇢yi
@t

= �r · (⇢yi~u)�r · ~Ji + si +s⇢yi

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Addi#onal.Model.Complexity

Example: multiphase flows
• Do we need logic in formulating each

transport equation to indicate if
“multiphase” is turned on?

Monday, February 20, 12

@⇢

@t
= �r · (⇢~u) +s⇢

@⇢~u

@t
= �r · (⇢~u~u)�r · ⌧ �rp+ ⇢~g +s⇢~u

@⇢e0
@t

= �r · (⇢e0~u)�r · (p~u)�r · (⌧~v)�r · q + +s⇢e0

@⇢yi
@t

= �r · (⇢yi~u)�r · ~Ji + si +s⇢yi

@⇢

@t

⇢~u

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Addi#onal.Model.Complexity

Example: multiphase flows
• Do we need logic in formulating each

transport equation to indicate if
“multiphase” is turned on?

Monday, February 20, 12

@⇢

@t
= �r · (⇢~u) +s⇢

@⇢~u

@t
= �r · (⇢~u~u)�r · ⌧ �rp+ ⇢~g +s⇢~u

@⇢e0
@t

= �r · (⇢e0~u)�r · (p~u)�r · (⌧~v)�r · q + +s⇢e0

@⇢yi
@t

= �r · (⇢yi~u)�r · ~Ji + si +s⇢yi

@⇢

@t

⇢~u

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Addi#onal.Model.Complexity

Example: multiphase flows
• Do we need logic in formulating each

transport equation to indicate if
“multiphase” is turned on?

“Attach” a dependency to an
expression.
• Allows “push” coupling rather than

“pull” coupling

• Physics that knows about coupling
(particle transport) injects appropriate
coupling terms into gas-phase solver.

• Full dependency structure is maintained;
no “code creep” from additional models.

Monday, February 20, 12

@⇢

@t
= �r · (⇢~u) +s⇢

@⇢~u

@t
= �r · (⇢~u~u)�r · ⌧ �rp+ ⇢~g +s⇢~u

@⇢e0
@t

= �r · (⇢e0~u)�r · (p~u)�r · (⌧~v)�r · q + +s⇢e0

@⇢yi
@t

= �r · (⇢yi~u)�r · ~Ji + si +s⇢yi

@⇢

@t

⇢~u s⇢

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Addi#onal.Model.Complexity

Example: multiphase flows
• Do we need logic in formulating each

transport equation to indicate if
“multiphase” is turned on?

“Attach” a dependency to an
expression.
• Allows “push” coupling rather than

“pull” coupling

• Physics that knows about coupling
(particle transport) injects appropriate
coupling terms into gas-phase solver.

• Full dependency structure is maintained;
no “code creep” from additional models.

registry->attach_dependency(rhoRHS, srho, ADD);

∂ρ/∂t doesn’t directly advertise
a dependency on sρ.

Monday, February 20, 12

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Example.Graph.6.Coal.Combus#on/Gasifica#on

(rhoY_0, 0) (11)

(rhoY_1, 0) (11)

(rhoY_2, 0) (11)

(rhoY_3, 0) (11)

(rhoY_4, 0) (11)

(rhoY_5, 0) (11)

(rhoY_6, 0) (11)

(rhoY_7, 0) (11)

(rhoY_8, 0) (11)

(rhoY_9, 0) (11)

(p_x_RHS, 0) (0)

(p_xmom_RHS, 0) (0)

(p_ymom_RHS, 0) (0)

(p_mass_RHS, 0) (0)

(p_temperature_RHS, 0) (0)

(p_Re, 0) (4)

(p_mass, 0) (4)

(parSc, 0) (4)

(p_yvel, 0) (5)

(p_Xmomdragterm, 0) (2)

(p_Ymomdragterm, 0) (2)

(p_drag_coef, 0) (3)

(p_tau, 0) (3)

(p_xvel, 0) (3)

(p_size, 0) (6)

(p_x, 0) (7)

(wall_temp, 0) (1)

(p_density, 0) (6)(p_temperature, 0) (10)

(cpd_L_RHS, 0) (8)

(cpd_C_RHS, 0) (8)

(cpd_G_RHS_i, 0) (8)(cpd_Delta_RHS_i, 0) (8)

(cpd_volatile_RHS, 0) (7)

(cpd_product_RHS, 0) (7)

(cpd_dy_i, 0) (3)

(cpd_char production rhs, 0) (6)

(char_mass_RHS, 0) (5)

(evaporation_rhs, 0) (3)

(moisture_mass, 0) (4)

(Heat Capacity of Coal, 0) (2)

(char_O2_RHS, 0) (3)

(char_CO2_RHS, 0) (char CO RHS, 0) (4)

(char_Mole_CO/CO2, 0) (6)(cpd_kb, 0) (9)

(cpd_l, 0) (10)

(Volatile Mass, 0) (8)

(char_mass, 0) (6)

(cpd_delta_2, 0) (9)

(cpd_delta_0, 0) (9) (cpd_delta_1, 0) (9)

(cpd_delta_10, 0) (9)

(cpd_delta_11, 0) (9)

(cpd_delta_12, 0) (9)

(cpd_delta_13, 0) (9)

(cpd_delta_14, 0) (9)

(cpd_delta_15, 0) (9)

(cpd_delta_3, 0) (9)

(cpd_delta_4, 0) (9)

(cpd_delta_5, 0) (9)

(cpd_delta_6, 0) (9)

(cpd_delta_7, 0) (9)

(cpd_delta_8, 0) (9)

(cpd_delta_9, 0) (9)

(cpd_kg_i, 0) (9)

(cpd_g_0, 0) (10)

(cpd_g_1, 0) (10)(cpd_g_10, 0) (10)

(cpd_g_11, 0) (10)

(cpd_g_12, 0) (10)

(cpd_g_13, 0) (10)

(cpd_g_14, 0) (10)

(cpd_g_15, 0) (10)

(cpd_g_2, 0) (10)
(cpd_g_3, 0) (10)

(cpd_g_4, 0) (10)
(cpd_g_5, 0) (10)

(cpd_g_6, 0) (10)

(cpd_g_7, 0) (10)

(cpd_g_8, 0) (10) (cpd_g_9, 0) (10)

(heat_released_to_gas, 0) (2)

(coal_Temperature_rhs, 0) (1)

(density, 0) (11) (rhoE0, 0) (10) (x_momentum, 0) (11)

(y_momentum, 0) (11)

(densityRHS, 0) (0)

(rhoE0RHS, 0) (0)

(x_momentumRHS, 0) (0)

(y_momentumRHS, 0) (0)

(rho_O2_RHS, 0) (0)

(rho_H2_RHS, 0) (0)

(rho_OH_RHS, 0) (0) (rho_H2O_RHS, 0) (0)(rho_HO2_RHS, 0) (0)

(rho_CH4_RHS, 0) (0)
(rho_CO_RHS, 0) (0) (rho_CO2_RHS, 0) (0)

(rho_NH3_RHS, 0) (0)(rho_HCN_RHS, 0) (0)

(positionRHS, 0) (0)

(SpeciesDiffusionFluxes, 0) (2)

(x_velocity_advect, 0) (2)

(species_0, 0) (10) (species_1, 0) (10)

(species_10, 0) (9)

(species_2, 0) (10)(species_3, 0) (10)

(species_4, 0) (10)

(species_5, 0) (10)

(species_6, 0) (10)

(species_7, 0) (10)

(species_8, 0) (10)

(species_9, 0) (10)

(temperature, 0) (8)

(x_velocity, 0) (10)

(e0, 0) (9)

(ke, 0) (9)

(y_velocity, 0) (10)

(heat_capacity, 0) (1)

(xcoord, 0) (2)

(mixtureMW, 0) (7)

(pressure, 0) (7)

(pressure_face, 0) (2)

(HeatFlux, 0) (1)

(viscosity, 0) (5)

(thermal_conductivity, 0) (2)

(pressure_xmomrhs, 0) (1)

(e0src, 0) (1)

(tauxx, 0) (2)

(tauyx, 0) (2)

(int_mixtureMW, 0) (6)

(int_pressure, 0) (6)

(int_species_1, 0) (6)

(int_temperature, 0) (6)

(int_species_3, 0) (4)

(P2CenergySrc, 0) (1)

(P2CmassSrc, 0) (1) (P2CMomSrc_X, 0) (1)

(P2CMomSrc_Y, 0) (1)

(P2CSpeciesSrc_O2, 0) (1)

(P2CSpeciesSrc_CH4, 0) (1)

(P2CSpeciesSrc_CO, 0) (1)

(P2CSpeciesSrc_CO2, 0) (1)

(P2CSpeciesSrc_NH3, 0) (1)

(P2CSpeciesSrc_HCN, 0) (1)

(P2CSpeciesSrc_H2O, 0) (1)

Gas phase terms (CO/H2 combustion - moving to methane...)

Particle evolution terms

Particle - gas coupling terms

Particle source terms

NO modification to gas-phase code to get 2-way coupling on mass, momentum, energy!

15 Gas-phase PDEs,
~25 ODEs per particle.

Monday, February 20, 12

Mul#core.Scheduling
A

CB

D

E

FG H

“Bottom” nodes are placed in execution
queue.

When a node completes, its “wait count” is
decremented.

When all of a node’s “children” are done
(wait count=0) it is placed in the priority
execution queue.
• priority determined to optimize graph execution time.

• backfilling naturally occurs (particularly for broad
graphs) while “heavy” nodes execute.

• resources may be dynamically migrated between
thread pool associated with task graph to threads
associated with data-parallel execution (within a node)

Monday, February 20, 12

Mul#core.Scheduling
A

CB

D

E

FG H

“Bottom” nodes are placed in execution
queue.

When a node completes, its “wait count” is
decremented.

When all of a node’s “children” are done
(wait count=0) it is placed in the priority
execution queue.
• priority determined to optimize graph execution time.

• backfilling naturally occurs (particularly for broad
graphs) while “heavy” nodes execute.

• resources may be dynamically migrated between
thread pool associated with task graph to threads
associated with data-parallel execution (within a node)

Prioritize G, H because
they are “deeper” than F.

Monday, February 20, 12

Mul#core.Scheduling
A

CB

D

E

FG H

“Bottom” nodes are placed in execution
queue.

When a node completes, its “wait count” is
decremented.

When all of a node’s “children” are done
(wait count=0) it is placed in the priority
execution queue.
• priority determined to optimize graph execution time.

• backfilling naturally occurs (particularly for broad
graphs) while “heavy” nodes execute.

• resources may be dynamically migrated between
thread pool associated with task graph to threads
associated with data-parallel execution (within a node)

Serialization point - push
resources into data parallel on E.

Monday, February 20, 12

Mul#core.Scheduling
A

CB

D

E

FG H

“Bottom” nodes are placed in execution
queue.

When a node completes, its “wait count” is
decremented.

When all of a node’s “children” are done
(wait count=0) it is placed in the priority
execution queue.
• priority determined to optimize graph execution time.

• backfilling naturally occurs (particularly for broad
graphs) while “heavy” nodes execute.

• resources may be dynamically migrated between
thread pool associated with task graph to threads
associated with data-parallel execution (within a node)

Prioritize D (may push
resources into “D” if possible)

Monday, February 20, 12

Mul#core.Scheduling
A

CB

D

E

FG H

“Bottom” nodes are placed in execution
queue.

When a node completes, its “wait count” is
decremented.

When all of a node’s “children” are done
(wait count=0) it is placed in the priority
execution queue.
• priority determined to optimize graph execution time.

• backfilling naturally occurs (particularly for broad
graphs) while “heavy” nodes execute.

• resources may be dynamically migrated between
thread pool associated with task graph to threads
associated with data-parallel execution (within a node)

Serialization point - push
resources into data parallel on C.

Monday, February 20, 12

Mul#core.Scheduling
A

CB

D

E

FG H

“Bottom” nodes are placed in execution
queue.

When a node completes, its “wait count” is
decremented.

When all of a node’s “children” are done
(wait count=0) it is placed in the priority
execution queue.
• priority determined to optimize graph execution time.

• backfilling naturally occurs (particularly for broad
graphs) while “heavy” nodes execute.

• resources may be dynamically migrated between
thread pool associated with task graph to threads
associated with data-parallel execution (within a node)

Serialization point - push
resources into data parallel on A.

Monday, February 20, 12

2 4 6 8
1

2

3

4

5

6

7

8

Threads

Sp
ee

du
p

n=8
n=16
n=32

@yi
@t

= �r · (�iryi) + si(y1, . . . , yn) i = 1 . . . n

n P S1

8 0.89 7.5
16 0.94 13.7
32 0.97 28.6

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

0_rhs

0_flux

0_src

var_0 var_1 var_10 var_11 var_12 var_13 var_14 var_15var_2 var_3 var_4 var_5 var_6 var_7 var_8 var_9

1_rhs

1_flux

1_src

2_rhs

2_flux

2_src

3_rhs

3_flux

3_src

4_rhs

4_flux

4_src

5_rhs

5_flux

5_src

6_rhs

6_flux

6_src

7_rhs

7_flux

7_src

8_rhs

8_flux

8_src

9_rhs

9_flux

9_src

10_rhs

10_flux

10_src

11_rhs

11_flux

11_src

12_rhs

12_flux

12_src

13_rhs

13_flux

13_src

14_rhs

14_flux

14_src

15_rhs

15_flux

15_src

• Broad graphs required for
task-based parallelism.

• Currently not obtaining close
to theoretical scalability -
cache issues?

• To obtain many-core
scalability, we need to expose
concurrency within each task!

Idealized.Scaling.Example.(Task.Parallel)

Graph analysis indicates theoretical
parallelizability and speedup.

P. K. Notz, R. P. Pawlowski, and J. C. Sutherland, “Graph-based software design for managing complexity
and enabling concurrency in multiphysics PDE software,” ACM Transactions on Mathematical
Software, to appear, 2012

Monday, February 20, 12

“Naive” implementation
1. Calculate λ
2. Interpolate λ to faces (3 loops)
3. Calculate gradient of φ at faces (3 loops)

4. Multiply ∂φ/∂xi by λ (3 loops)
5. Calculate divergence (3 loops)
6. Form full RHS (1 loop)

0 5 10 15 20 25
0

5

10

15

20

25

Number of Threads

Sc
al

in
g

Stencil Chaining Scaling

Current (13 loops)
Monolithic (1 loop)

@�

@t

= � @

@x

✓
��

@�

@x

◆
� @

@y

✓
��

@�

@y

◆
+

@

@z

✓
��

@�

@z

◆
Granularity.&.Mul#core.Scaling.(Data.Parallel)

Loop.Fusing

• Cache contention is a real issue (work/write)

• Loop fusing is important (works against
traditional abstraction)

• DSLs can help ease this pain significantly!

1 loop, λ and ∂φ/∂xi held as
temporaries on inner loops.

Monday, February 20, 12

Domain6Specific.Languages

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Number of Threads

Sp
ee

du
p

1 Loop
3 Loops
5 Loops
13 Loops
35 Loops
71 Loops

@

@x

✓
�
@�

@x

◆
+

@

@y

✓
�
@�

@y

◆
+

@

@z

✓
�
@�

@z

◆
+ s�

• Need “loop fusing” - more
work per loop, fewer loops.

• Many threads overload
memory bus.

rhs <<= Dx(Rx(Gamma) * Gx(phi))
 + Dy(Ry(Gamma) * Gy(phi))
 + Dz(Rz(Gamma) * Gz(phi))
 + Sphi

DSL hides details of implementation - fast refactors

Monday, February 20, 12

Dynamic fields

Static fieldsA

C

B D

E

F G H

I
Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

D
ir

e
ct

io
n

 o
f

E
xe

cu
ti

o
n

Memory.Management.6.Pool.Alloca#on

Monday, February 20, 12

Dynamic fields

Static fieldsA

C

B D

E

F G H

I
Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Stage 1
‘I’, ‘A’ allocated

statically

D
ir

e
ct

io
n

 o
f

E
xe

cu
ti

o
n

Memory.Management.6.Pool.Alloca#on

AI

Monday, February 20, 12

Stage 2

Dynamic fields

Static fieldsA

C

B D

E

F G H

I
Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Stage 1
‘I’, ‘A’ allocated

statically

‘F’, ‘G’, ‘H’
allocated

D
ir

e
ct

io
n

 o
f

E
xe

cu
ti

o
n

Memory.Management.6.Pool.Alloca#on

F G

AI

H

Monday, February 20, 12

Stage 2

Stage 3

Dynamic fields

Static fieldsA

C

B D

E

F G H

I
Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Stage 1

‘E’ allocated

‘I’, ‘A’ allocated
statically

‘F’, ‘G’, ‘H’
allocated

D
ir

e
ct

io
n

 o
f

E
xe

cu
ti

o
n

Memory.Management.6.Pool.Alloca#on

F G

AI

H E

Monday, February 20, 12

Stage 2

Stage 3

Stage 4
Dynamic fields

Static fieldsA

C

B D

E

F G H

I
Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Stage 1

‘E’ allocated

‘F’, ‘G’, ‘H’ released
‘B’, ‘D’ allocated

‘I’, ‘A’ allocated
statically

‘F’, ‘G’, ‘H’
allocated

D
ir

e
ct

io
n

 o
f

E
xe

cu
ti

o
n

Memory.Management.6.Pool.Alloca#on

F G

AI

H EB D

Monday, February 20, 12

Stage 2

Stage 3

Stage 4

Stage 5

Dynamic fields

Static fieldsA

C

B D

E

F G H

I
Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Stage 1

‘E’ allocated

‘F’, ‘G’, ‘H’ released
‘B’, ‘D’ allocated

‘E’ released
‘C’ allocated

‘I’, ‘A’ allocated
statically

‘F’, ‘G’, ‘H’
allocated

D
ir

e
ct

io
n

 o
f

E
xe

cu
ti

o
n

Memory.Management.6.Pool.Alloca#on

F G

AI

H EB D C

Monday, February 20, 12

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Dynamic fields

Static fieldsA

C

B D

E

F G H

I
Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Stage 1

‘E’ allocated

‘F’, ‘G’, ‘H’ released
‘B’, ‘D’ allocated

‘E’ released
‘C’ allocated

‘I’, ‘A’ allocated
statically

‘F’, ‘G’, ‘H’
allocated

D
ir

e
ct

io
n

 o
f

E
xe

cu
ti

o
n

‘D’ released

Memory.Management.6.Pool.Alloca#on

F G

AI

H EB D C

For deep graphs, this can
result in very significant

memory savings.

Monday, February 20, 12

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Current.Work.6.Hybrid.CPU/GPU
A

C

B D

E

F G H

I

GPU - enabled
nodes

Does execution
time exceed data
movement time?

Is task GPU-
ready?

Execute
on CPU

Execute
on GPU

Task
Scheduler

yes

yes

no

no

‘C’ and ‘D' may be computed on GPU
with a single copy-in/copy-out penalty.

“Graph coalescing” prevents “D”
from being allocated on CPU

•DSL provides support for GPU
deployment of operations.

Monday, February 20, 12

Institute for
CLEAN AND SECURE ENERGY
THE UNIVERSITY OF UTAHTM

Current.Work.6.Hybrid.CPU/GPU
A

C

B D

E

F G H

I

GPU - enabled
nodes

‘H’ may be copied while ‘E’ is
computing, thereby hiding some

latency.

Does execution
time exceed data
movement time?

Is task GPU-
ready?

Execute
on CPU

Execute
on GPU

Task
Scheduler

yes

yes

no

no

•DSL provides support for GPU
deployment of operations.

• Graph provides optimal scheduling of
tasks across the heterogeneous system.

• Need many of tasks with lots of work
(data parallel) in each.

Monday, February 20, 12

Conclusions

Multiple levels of parallelism will be required

Task-based approaches can provide a great deal of insight into the
structure of the problem
• advanced memory management

• automatic task-parallelism

• “optimal” task scheduling in hybrid compute environments

DSLs can simplify life (a lot!)
• provide high-level interface to express intent, dispatch through highly optimized back-ends

tuned to an architecture.

• Programmer need not worry about architecture details, or data layout details.

• C++ template meta programming ensures robust (correct) code.

• Write more robust, efficient code in shorter time.

• revise DSL back-end to affect changes through the entire code base.

Monday, February 20, 12

