A Novel Computational Framework for Reactive Flow and Multiphysics Simulations

James C. Sutherland
and
Tony Saad

AICHE Annual Meeting
October 16-21, 2011
Minneapolis, MN, USA

Exascale

Challenges

"It says it's sick of doing things like inventories and paryrolls, and it wants to make some breakthroughs in astrophysics"

- Hardware

2 Giga-Watts of power!!!

Hardware

Software

Software

formulate problem

difference equations

algorithm

IMPLEMENT

© Scott Adams, Inc./Dist. by UFS, Inc.

other discretization

What If?

other models

Software Complexity

cluster, thread. GPU

Imagine...

Data Dependencies!

$$
\mathbf{J}_{h}=-\lambda \nabla T+\sum_{i=1}^{n_{i}} h_{i} \mathbf{J}_{i}
$$

MODEL A

$$
\lambda=\lambda_{0}=\text { const }
$$

$$
\mathbf{J}_{i}=-\sum_{j=1}^{n_{5}} D \nabla Y_{j}
$$

$$
h_{i}=h_{i}(T)
$$

Đxpression Concepts

$$
\frac{\partial \phi}{\partial t}+\nabla \cdot \mathbf{u} \phi=\nabla \cdot \Gamma \nabla \phi+S_{\phi}
$$

An Expression is a software representation of a mathematical expression

- An Expression computes fields it represents
- Each Expression indicates which expressions it depends on

In Practice...

$$
\begin{aligned}
& \frac{\partial \phi}{\partial t}+\nabla \cdot \mathbf{u} \phi=\nabla \cdot \Gamma \nabla \phi+S_{\phi} \\
& \Gamma \equiv \Gamma\left(T, p, y_{i}\right)
\end{aligned}
$$

- Construct tree

- Deduce storage requirements, and other metrics from graph
- Execute graph in reverse order: That's the algorithm!

Example

$$
\frac{\partial m_{k}}{\partial t}+m_{k+1}=0 ; \quad k=0,1, \ldots, 2 n-1
$$

$$
m_{n+1}=\sum_{i=1}^{n} w_{i} r_{i}^{i}
$$

Parallelism

- Algorithm Decomposition

$$
\nabla^{2} \phi+s
$$

One expression
(calculated on a patch/workset)

Priority Queue Threading Allows "backfilling" based on graph

Each expression receives signals from its dependents when they complete execution. When all are done, the expression enters the priority queue.

Overhead?

$$
\frac{\partial T}{\partial t}=-\frac{1}{\rho c_{p}} \nabla \cdot(-\lambda \nabla T)
$$

- Staggered, structured FV mesh
- Gradient, interpolant \&e divergence operators.
- The overhead of the expression graph approach does not contribute in any meaningful way to the execution time.

Independent of parallel framework

Acknowledgments

- James C. Sutherland (PI) Assistant Prof. Chemical Bngineering
- Matthew Might Assistant Prof., School of Computing
- Devin Robinson M. S. Student
- Christopher Earl Ph.D. Candidate

Questions?

THE \#1 PROGRAMMER EXCUSE FOR LEG ITIMATELY SLACKING OFF: "MY CODE'S COMPILING."

HEY! GET BACK TO WORK!

OH. CARRY ON.

