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On the Decentralized Stochastic Gradient Descent
with Markov Chain Sampling

Tao Sun, Dongsheng Li, and Bao Wang

Abstract—The decentralized stochastic gradient method
emerges as a promising solution for solving large-scale machine
learning problems. This paper studies the decentralized Markov
chain gradient descent (DMGD), a variant of the decentralized
stochastic gradient method, which draws random samples along
the trajectory of a Markov chain. DMGD arises when obtaining
independent samples is costly or impossible, excluding the use
of the traditional stochastic gradient algorithms. Specifically,
we consider the DMGD over a connected graph, where each
node only communicates with its neighbors by sending and
receiving the intermediate results. We establish both ergodic
and nonergodic convergence rates of DMGD, which elucidate the
critical dependencies on the topology of the graph that connects
all nodes and the mixing time of the Markov chain. We further
numerically verify the sample efficiency of DMGD.

Index Terms—Markov chain sampling, Gradient descent, De-
centralization, Distributed machine learning, Convergence.

I. INTRODUCTION

Distributed machine learning is a promising solution to
solve large-scale machine learning tasks [1], [2]. In this paper,
we consider solving the optimization problems collaboratively
using m agents connected by an undirected graph. In particu-
lar, we focus on solving the following problem

F(x) := min
x∈Rn

1

m

m∑
i=1

Eξ(i)

(
F (x; ξ(i))

)
, (1)

where Eξ(i)

(
F (x; ξ(i))

)
:=
∫
Πi

F (x, ξ(i))dΠi(ξ(i)), and Ξi

is a statistical sample space with probability distribution Πi

at node i1, and F (·; ξ(i)) : Rn → R is a closed function
associated with ξ(i) ∈ Ξi. Problem (1) formulates various
machine learning problems, including multi-agent machine
learning. We focus on the cases where obtaining an inde-
pendent and identically distributed (i.i.d.) sample ξ(i) from
Ξi is challenging or even impossible at every node i under
a decentralized setting for solving the optimization problem
in Equation (1). The problem under study arises naturally in
machine learning, and we list two motivating examples in the
next subsection.
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1For the sake of presentation, we omit the underlying σ-algebra.

A. Motivating Examples

Example 1. Decentralized Pairwise Learning. Given a
pairwise loss function f(w; z, ẑ), where z, ẑ ∼ D are the
data, and w denotes the parameters of the machine learning
model to be learned. Then the following pairwise learning
model minw∈Rn f(w) := Ez,ẑ∼Df(w; z, ẑ) describes various
classical machine learning tasks, including metric learning
[3], [4], [5], [6], AUC maximization [7], [8], [9], [10], and
ranking problems [11], [12]. The online algorithm for pairwise
learning model employ a “reuse” method [13] to update the
parameters w as follows wk+1 = wk − γ∇f(wk; zk, zk−1),
where (zk)k≥0 are the received data. The authors of [13] point
out that {ξk := (zk, zk−1)}k forms a Markov chain because
ξk is only dependent on ξk−1 but not on (ξk−2, ξk−3, ..., ξ1).
Then the decentralized online algorithm, with m nodes, for
pairwise learning can be formulated as follows

min
w∈Rn

1

m

m∑
i=1

E[z(i),ẑ(i)]∼Di
f(w; z(i), ẑ(i)),

which is a problem with the form in Problem (1).
Example 2. Decentralized Identification of Multi-linear

Dynamics. Consider the following stochastic linear dynam-
ical system xt+1 = Axt + ξt, yt+1 = Byt + ςt where
ξt ∼ D1, ς

t ∼ D2 are i.i.d. samples drawn from a given
distribution. It is evident that (xt)t≥0 and (yt)t≥0 are Markov
chains. The papers [14], [15] consider the following minimiza-
tion problem minW E(x,y)∼D̂∥Wx − y∥2, where D̂ is the
stationary distribution of (xt,yt)t≥0. The online algorithm for
solving the above minimization problem can be formulated as
Wk+1 = Wk − γ(Wkxk − yk)[xk]⊤, which is indeed an
SGD with Markov chain sampling.

Let us further consider the following stochastic dynamical
system xt+1(i) = A(i)xt(i) + ξt(i), yt+1(i) = B(i)yt(i) +
ςt(i) for i = 1, 2, . . . ,m, where ξt(i), ςt(i) are i.i.d. samples
drawn from some distribution. We denote the stationary dis-
tribution of (xt(i),yt(i))t≥0 as Di. Then we can formulate
the online algorithm for identifying multi-linear dynamics as
follows [14]

min
W

1

m

m∑
i=1

E[x(i),y(i)]∼Di
∥Wx(i)− y(i)∥2.

Therefore, decentralized SGD with Markov chain sampling
is a natural algorithm for solving the above optimization
problem.

B. Previous Decentralized Algorithms Lack Sample Efficiency
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The existing algorithm for solving Problem (1) is decentral-
ized SGD (DSGD) with Markov chain sampling [16], which
can be written as follows

xk+1(i) =
∑

l∈N (i)

wi,lx
k(l)− γk∇F (xk(i); ξk(i)), (2)

where xk(i) denotes the parameters at node i in iteration
k, and wi,l is the (i, l)-th entry of the mixing matrix W
(see Definition 1), and ∇F (xk(i); ξk(i)) is a nearly unbiased
stochastic gradient of Eξ(i)

(
F (xk(i); ξ(i))

)
obtained at node

i. In the following, we explain how to implement DSGD under
the Markov chain samplings setting. By using the Markov
chain, to perform one iteration of Equation (2), each node i
has to generate a sequence of samples ξ1(i), ξ2(i), . . . , ξT (i)
and only uses the last one ξk(i) := ξT (i) for updating the
local parameters following Equation (2).

According to [17, Theorem 4.9], to get a sample that is
nearly i.i.d., one needs to simulate the Markov chain for a
sufficiently long time, i.e., a large T . For this reason, we call
the iteration Equation (2) with ξk(i) := ξT (i) as DSGD-T .
Therefore, applying iteration Equation (2) to solve Problem (1)
over the distributed nodes lacks sample efficiency. In particu-
lar, implementing DSGD-T for solving Problem (1) requires
regenerating a Markov chain at each node per iteration, which
can be computationally prohibitive. In contrast, DMGD can
find the near-optimal solution of Problem (1) with sample
efficiency.

C. Preliminaries

1) Notation: For a vector x ∈ RN , we denote its local
copy at node i as x(i). For a squared matrix A, we denote
its i-th eigenvalue as λi(A). For a matrix A = (ai,j)N×n,
we denote its Frobenius norm and infinity norm respectively
as ∥A∥ and ∥A∥∞, i.e., ∥A∥ :=

√∑N
i=1

∑n
j=1 a

2
i,j

2 and
∥A∥∞ := maxi,j |ai,j |. For a positive semidefinite matrix
B, we denote ∥B 1

2A∥ as ∥A∥B. We define the σ-algebra
as χk := σ(x0,x1, . . . ,xk). We use E[·] to denote the
expectation with respect to the underlying probability measure,
i.e., E[·] = E[· | χk].

2) Discretization of Problem (1): Suppose all distributions
(Πi)1≤i≤m, in Problem (1), are supported on a set of M
points, y1,i, . . . ,yM,i (for Πi)3. We define the functions as
f j
i (x) := M ·Prob(ξ = yi,j)·F (x;yi,j), and thus Equation (1)

becomes the following finite-sum optimization problem

minimizex∈Rn f(x) :=
1

m

m∑
i=1

fi(x), (3)

where fi(x) :=
1
M

∑M
j=1 f

j
i (x) is the loss function of the i-th

node.
Denote (ji,k)k≥0 ⊆ {1, 2, . . . ,M} as the trajectory of the

Markov chain in the i-th node and k-th iteration. We use a
connected graph G = (V, E) with vertex set V = {1, ...,m}

2When N = 1 or n = 1, ∥ · ∥ is then the L2 norm of a vector.
3For the sake of exposition, we assume the same cardinal number of the

support set for different distributions.

and edge set E ⊆ V × V . Any edge (i, l) ∈ E represents a
communication channel between nodes i and l. Moreover, let

jk :=


j1,k
j2,k

...
jm,k

 , x :=


x(1)⊤

x(2)⊤

...
x(m)⊤

 , xk :=


xk(1)⊤

xk(2)⊤

...
xk(m)⊤

 ,

uk :=
[
∇f j1,k

1 (xk(1)), . . . ,∇f jm,k
m (xk(m))

]⊤
, (4)

where x(i) is the variable in the i-th node, xk(i) is the k-
th iterate in the i-th node, and uk is the collection of the
stochastic gradients in the k-th iteration.

3) Mixing matrix: The mixing matrix is frequently used in
decentralized optimization. In many cases, it can be designed
by the users according to the given graph. Formally, it is
defined as follows.

Definition 1: The mixing matrix W = [wij ] ∈ Rm×m is
assumed to have the following properties: (1) (Graph) If i ̸=
j and (i, j) /∈ E , then wij = 0, otherwise, wij > 0; (2)
(Symmetry) W = W⊤; (3) (Null space property) null{I −
W} = span{1}; (4) (Spectral property) I ⪰W ≻ −I.
Since W is a symmetric matrix, its eigenvalues are all
real and can be sorted in non-increasing order. That is,
we can sort the eigenvalues of W as λ1(W) = 1 >
λ2(W) ≥ · · · ≥ λm(W) > −1. Also, we denote λ(W) :=
max{|λ2(W)|, |λm(W)|}.

4) Markov chain: In the following, we recall several def-
initions, properties, and existing results of the finite-state
time-homogeneous Markov chain, which will be used in the
proposed algorithms.

Definition 2: A stochastic process X1, X2, ... in a finite state
space {1, 2, . . . , n} is called a time-homogeneous Markov
chain with transition matrix H ∈ Rn×n if for i, j ∈
{1, 2, . . . , n} and i0, i1, . . . , ik−1 ∈ {1, 2, . . . , n} with k ∈ N,
we have P(Xk+1 = j | X0 = i0, . . . , Xk = i) = P(Xk+1 =
j | Xk = i) = Hi,j .
Denote the probability distribution of Xk as the non-negative
row vector πk = (πk

1 , π
k
2 , . . . , π

k
n), i.e., P(Xk = j) = πk

j and
π satisfies

∑n
i=1 π

k
i = 1. For the time-homogeneous Markov

chain, it holds that πk = πk−1H and πk = πk−1H = · · · =
π0Hk for k ∈ N, where Hk denotes the k-th power of H.

A Markov chain is irreducible if, for any i, j ∈
{1, 2, . . . , n}, there exists k such that (Hk)i,j > 0. State
i ∈ {1, 2, . . . , n} is said to have a period d if Hk

i,i = 0
whenever k is not a multiple of d and d is the largest integer
with this property. If d = 1, then we say state i is aperiodic.
If every state is aperiodic, the Markov chain is said to be
aperiodic. Any time-homogeneous, irreducible, and aperiodic
Markov chain has a stationary distribution π∗ = limk π

k =
[π∗

1 , π
∗
2 , . . . , π

∗
n] with

∑n
i=1 π

∗
i = 1 and mini{π∗

i } > 0, and
π∗ = π∗H. It also holds that

lim
k

Hk =
[
(π∗)⊤, (π∗)⊤, . . . , (π∗)⊤

]⊤
=: Π∗ ∈ Rn×n. (5)

The largest eigenvalue of H is 1, and the corresponding
eigenvector is π∗.

Mixing time is an important notion of the Markov chain,
which describes how long a Markov chain evolves until its
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Algorithm 1 DSGD-T
Require: parameters (γk)k≥0, the mixing matrix W

Initialization: (x0(i))1≤i≤m are i.i.d. selected from the ball B(0, B)
centered at 0 with radius B
for k = 1, 2, . . .

for i = 1, 2, . . . ,m
1. Resample a Markov chain jk0 (i), . . . , j

k
T (i)

2. Collect xk(l) with l ∈ N (i)
3. Update xk+1(i) via

xk+1(i) =
∑

l∈N (i)

wi,lx
k(l)− γk∇f

jkT (i)
i (xk(i)).

end for
end for

Algorithm 2 Decentralized Markov Gradient Descent
(DMGD)
Require: parameters (γk)k≥0, the mixing matrix W

Initialization: (x0(i))1≤i≤m are i.i.d. selected from the ball B(0, B)
centered at 0 with radius B
for k = 1, 2, . . .

for i = 1, 2, . . . ,m
1. Sample ji,k via a Markov chain
2. Collect xk(l) with l ∈ N (i)
3. Update xk+1(i) via

xk+1(i) =
∑

l∈N (i)

wi,lx
k(l)− γk∇f

ji,k
i (xk(i)).

end for
end for

current state has a distribution that is close to its stationary
distribution. The literature on various kinds of mixing times is
mostly about reversible Markov chains, i.e., the Markov chains
that satisfy πiHi,j = πjHj,i. With basic matrix analysis, the
mixing time introduced by [18] provides a direct relationship
between k and the deviation of the distribution of the current
state from the stationary distribution; see Lemma 1 in the
Appendix for details.

D. Our Proposed Algorithm: Decentralized Markov Gradient
Descent

In this subsection, we present the discrete formulation of
DMGD, i.e., the scheme for solving the finite-sum problem
in Equation (3). In the k-th iteration of DMGD, the i-th node
performs the local iteration as follows

xk+1(i) =
∑

l∈N (i)

wi,lx
k(l)− γk∇f

ji,k
i (xk(i)). (6)

In each iteration of DMGD, each node calculates the local
gradient along the Markov chain trajectory (ji,k)k≥0, and
then communicates with its neighbors N (i) using a weighted
average

∑
l∈N (i) wi,lx

k(l) to update the local parameters.
Here, wi,l is the (i, l)-th element of the mixing matrix. It is
easy to see that if the trajectory of the Markov chain satisfies
the uniform sampling, Equation (6) then reduces to the DSGD.
In the above iteration, the stepsize γk needs to go to zero to
guarantee the algorithm’s convergence.

Notice that in the discrete case, i.e., for solving the finite-
sum optimization problem, DSGD-T can be written as follows

xk+1(i) =
∑

l∈N (i)

wi,lx
k(l)− γk∇f

jkT (i)
i (xk(i)), (7)

where [jk0 (i), j
k
1 (i), . . . , j

k
T (i)] is the Markov chain resampled

in node i for the kth iteration. As T is large enough, jkT (i) is
close to the uniform i.i.d. sampling on the set {1, 2, . . . ,M}.
We provide the pseudocode of DSGD-T and DMGD in
Algorithm 1 and Algorithm 2, respectively.

E. Related Works
In this part, we briefly review three lines of related works:

decentralized optimization, decentralized stochastic optimiza-
tion, and Markov chain gradient descent.

1) Decentralized optimization: Decentralized algorithms
have been originally studied in control and signal processing
communities, e.g., calculating the mean of data distributed
over multiple sensors [19], [20], [21], [22]. Decentralized
(sub)gradient descent (DGD) algorithms for the finite-sum
optimization minx∈Rd

∑m
i=1 fi(x) have been studied by [23],

[24], [25], [26], [27]. Instead of directly solving the original
problem, DGD applies the gradient descent to solve the
surrogate problem F (X)+ 1

2α tr(X⊤(I−W)X), where X :=(
[xi]1≤i≤m

)⊤ ∈ Rm×d, F (X) :=
∑m

i=1 fi(xi), α > 0 is the
penalty parameter, and W is the mixing matrix associated with
the graph. Thus, DGD converges to an inexact solution. To fix
this, the dual information is leveraged in recent works such
as decentralized ADMMs and primal-dual algorithms [28],
[29], [30], [31]. Although DGD is slower than decentralized
ADMMs and primal-dual algorithms in convex settings, the
scheme of DGD is much simpler and, therefore, easier to
extend to the nonconvex, online, and delay-tolerant settings
[32], [33], [34], [35].

2) Decentralized stochastic optimization: Decentralized
SGD (DSGD) has been studied recently as a generalization
of the classical decentralized optimization for deterministic
optimization problems. By assuming a local Poisson clock
for each agent, asynchronous gossip algorithms is proposed
by [36], in which each worker randomly selects part of its
neighbors to communicate with. In fact, these algorithms use
random communication graphs. Decentralized algorithms with
random communication graphs for the constrained problem is
introduced by [37], and the subgradient counterpart is given by
[38]. In recent works of [39], [40], [16], the theoretical con-
vergence complexity analysis of convex and nonconvex DSGD
has been established. [39] present the complexity analysis for
a stochastic decentralized algorithm. [40] design a stochastic
decentralized algorithm by recruiting the dual information and
providing the related computational complexity analysis. In
the latter paper [16], the authors show the speedup when the
number of nodes is increased. And in paper [41], the authors
propose the asynchronous DSGD. The generalization analysis
of DSGD is established by [42]. In [43], DSGD has been
modified for federated learning. DSGD has been developed in
different applications under different settings; until 2020, an
elegant algorithmic framework with dynamical graph topology
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and local updates have been proposed by [44]. There are
several recent works on developing communication-efficient
variants of DSGD [45], [46], [47], [48], [49].

3) Markov chain gradient descent: While i.i.d. samples are
not always available in stochastic optimization, recent works
have focused on analyzing stochastic algorithms following
a single trajectory of the Markov chain or other general
ergodic processes. The key challenge of analyzing Markov
chain gradient descent (MCGD) is to deal with the biased
expectation of gradients. The ergodic convergence results have
been established by [50], [51]. Specifically, [50], [51] study the
conditional expectation with a sufficiently large delay which
is sufficiently close to the gradient. [52] prove the almost
sure convergence under the diminishing stepsizes γk = 1/kq ,
2/3 < q ≤ 1. [53] improve the convergence results with larger
stepsizes γk = 1/

√
k in the sense of ergodic convergence. In

all the works above, the Markov chain needs to be reversible,
and the functions have to be convex. In [18], the non-ergodic
convergence of MGD has been shown in the nonconvex case
with non-reversible Markov chain, but the algorithm needs
to be implemented in a centralized fashion. The boundedness
assumption of stochastic gradient or the iterate in MCGD
is removed by [54], [55]. The provably accelerated version
of MCGD in the convex case is proposed by [56]. In [57],
the authors propose the adaptive MCGD with theoretical
convergence guarantees.

II. CONTRIBUTIONS AND TECHNICAL CHALLENGES

A. Our Contributions
The primary contribution of this paper is the development of

the DMGD accompanied by performance analysis. In contrast
to the well-known DSGD, DMGD leverages Markov chain
sampling rather than uniform random sampling, which gains
sample efficiency. For the first-order DMGD, each node uses
a Markov chain trajectory to sample a gradient and then com-
municates with its neighbors to update the local parameters.

We establish the non-ergodic convergence analysis of the
DMGD and their ergodic convergence rates. The results show
that the DMGD converges at the same rate as the centralized
MCGD. Some novel results are developed based on new
techniques and approaches developed in this paper. We use
varying mixing time rather than fixed ones to get stronger
results in general cases. The numerical results demonstrate that
DMGD outperforms DSGD in terms of sample efficiency.

Although our proof requires the use of the delay expectation
employed by [18], our analysis is substantially different from
that of [18]. This is because the convergence analysis of
DMGD is established on estimating the successive difference
on the average of iterates in all nodes, which does not apply
the objective function in this paper. The proof of DMGD is
built on the average of all nodes’ parameters, which is also
quite different from MCGD. To this end, several techniques are
developed to characterize the difference between the average
and nodes’ parameters under Markov chain sampling.

B. Key Challenges for Analyzing DMGD
The main challenge of this paper is to integrate decen-

tralized SGD with Markov chain sampling. Markov chain

sampling is neither cyclic nor i.i.d. stochastic. For any large
K, it is still possible that a sample is never visited within
some k + 1, ..., k + K iterations. For a fixed node i, un-
less the local graph Gi is complete, there are nodes l, h
not connected by an edge. Hence, given ji,k−1 = li, it
is impossible to have ji,k = hi. So, no matter how one
selects the sampling probability and stepsize γk, we generally
do not have Ejk−1

(γku
k) = C(

∑m
i=1∇fi(xk(i))) for any

constant C. This fact, unfortunately, breaks down all the
existing analyses of stochastic decentralized optimization since
all existing analyses need a non-vanishing probability such that
each node can be sampled.

Moreover, the difficulty of analyzing DMGD differs from
the centralized case because the convergence analysis of
DMGD is established by estimating the successive difference
on the average of iterates in all nodes, which does not apply the
objective function in this paper. Consequently, decentralized
methods use different mathematical characterizations of their
convergence. In particular, the norm of gradients is employed
to characterize the convergence of the centralized case, i.e.,
we analyze the convergence of min1≤k≤K E∥∇f(xk)∥2 for
the centralized case. In contrast, we characterize the con-
vergence of DMGD using the average of all local itera-
tions, i.e., min1≤k≤K E∥∇f(xk)∥2 with xk being defined in
Equation (8) in the following context. The iterative scheme
of xk and xk can be written as follows xk+1 = xk −
γk∇fik(xk), xk+1 = xk − γk

∑m
i=1∇f

ji,k
i (xk(i))/m. No-

tice that the centralized scheme is directly applied to xk, while
the decentralized one uses the local iterates (xk(i))1≤i≤m.
Another technical difference between this work and [18] is
that we further consider the mini-batch version of DMGD; in
contrast, [18] only consider updating using a single sample.

III. CONVERGENCE ANALYSIS OF DMGD

In this section, we present the theoretical convergence
results of DMGD with finite-state Markov chains, and our
analysis builds on the following assumptions.

Assumption 1: The function fi is bounded below; that is,
min fi > −∞, ∀i ∈ {1, 2, . . . ,m}.

Assumption 2: The gradient of f j
i is uniformly bounded;

that is, there exists a constant B > 0 such that ∥∇f j
i (x)∥ ≤

B, for ∀i ∈ {1, 2, . . . ,m}, ∀j ∈ {1, 2, . . . ,M}.
Assumption 3: The gradient of f j

i is Lipschitz continuous
with Lj

i , i.e., ∥∇f j
i (x) − ∇f

j
i (y)∥ ≤ Lj

i∥x − y∥, and ∀i ∈
{1, 2, . . . ,m}, ∀j ∈ {1, 2, . . . ,M}. Moreover, we denote
L := max1≤i≤m,1≤j≤M{Lj

i}.
Assumption 4: The Markov chains in all nodes are time-

homogeneous, irreducible, and aperiodic, which have the same
transition matrix H and the same stationary distribution.4

Following the routines in the stochastic decentralized op-
timization community, the convergence of the algorithm is
described by the quantity below

xk :=
1

m

m∑
i=1

xk(i). (8)

4We require all nodes to employ the Markov chain with same transition
matrix H. This setting is for the convenience of presentations in the proofs
and can be modified as different Markov chains for different nodes.
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Theorem 1: Suppose Assumptions 1-4 hold, and the step-
sizes are selected as follows

γk =
1

(k + 1)θ
,

1

2
< θ < 1. (9)

For (xk)k≥0 generated by DMGD, we have the following
nonergodic convergence result

lim
k

E∥∇f(xk)∥ = 0. (10)

Moreover, the ergodic convergence rate is given by

min
1≤k≤K

E∥∇f(xk)∥2

=
c1(H) + c2(H)

∑+∞
t=τ(H)

3 ln(4MCHB2t) ln t·γ2
t

ln2(1/λ(H))
+ f(x0)−min f

K1−θ

= O
(1 + 1

ln2(1/λ(H))
· [1 + 1√

m(1−λ(W))
] + f(x0)−min f

K1−θ

)
,

(11)
where λ(H) := max{|λ2(H)|,|λmin(H)|}+1

2 ∈ [0, 1), λ2(H) and
λmin(H) denote the second and smallest eigenvalue of H,
respectively, c1(H) :=

∑τ(H)−1
t=1 γtB

2+B3L[τ(H)]4/(4m)+
BL

∑∞
t=1 γ

2
t +
∑∞

t=1
γt

2t with τ(H) being a constant dependent
on H is defined by Equation (37), c2(H) := 2B/

√
m +

B3L/m + 2B2/m + 2B2LCW√
m

, and CW is a constant given
by Equation (52).
Theorem 1 uses complicated forms for several constants
because we want to derive the explicit formula for the upper
bound of the convergence. Due to the bias of the Markov chain
sampling, we use delay expectation techniques in the proofs.
To get the explicit formulation of the upper bound, we need
to determine how large the explicit delay is needed, resulting
in complicated forms.

In Theorem 1, the functions are unnecessary to be convex.
Indeed, it is more challenging to prove Equation (10) than
Equation (11). The descent on a Lyapunov function and
Schwarz’s inequality imply Equation (10), while to prove
Equation (11) requires a technical lemma, which was first
given in [32] and generalized by [18]. An special case is that
m = 1 and W is the identity matrix I, then DMGD reduces to
the classical MCGD. But Theorem 1 cannot cover the existing
convergence results of MCGD. [18] estimate the convergence
of MCGD with the following stepsize constraints

+∞∑
k=1

γk = +∞,

+∞∑
k=1

ln2 k · γ2
k < +∞. (12)

The stepsize Equation (9) can satisfy Equation (12) but not
vice versa.

Theorem 1 provides a favorable nonergodic conver-
gence result, i.e., Equation (10). The result indicates that
(E∥∇f(xk)∥)k≥0 converges to 0, allowing us to directly use
the K-th iterate as the output rather than the average or the
minimizer of (∥∇f(xk)∥)0≤k≤K . The ergodic convergence
rate describes the speed of DMGD, dependent on m, x0,
λ(H), and λ(W). As the number of nodes m increases,
the upper bound decreases. Such a phenomenon is similar to
the minibatch SGD because DMGD uses m-minibatch data
but with decentralized updating and Markov chains sampling.
Inappropriate initializations (i.e., f(x0) − min f is large)

increase the bound and thus hurt the convergence, which
coincides with our intuition. Notice that λ(H) characterizes
the speed of the Markov chain converges to stationary speed:
a smaller λ(H) indicates a faster speed. From the above bound,
we can see a faster Markov chain also yields a faster DMGD.
However, the Markov chain comes from the nature of data and
is usually not controlled by users. The above theoretical results
also show that the graph structure affects the convergence:
a smaller λ(W) means a better convergence rate. A natural
question is what kind of graph would one expect for the
optimal convergence? This question can be mathematically
formulated as finding W with the smallest λ(W) for a given
graph G. It is a very complicated optimization problem, which
is not our focus for this paper, and related results can be found
in [58].

As both λ(H) and λ(W) are closed to 1, the convergence
rate is then dominated by O

(
1√

m ln2(1/λ(H))(1−λ(W))K1−θ

)
.

This bound can be improved if we use the following stepsize
rule

γk =

√
ln(1/λ(H))

(k + 1)θ
,

1

2
< θ < 1. (13)

Proposition 1: Let conditions of Theorem 1 hold and use
the stepsizes in Equation (13), then we have

min
1≤k≤K

E∥∇f(xk)∥2

= O

( 1√
m ln(1/λ(H))(1−λ(W))

+ 1+f(x0)−min f√
ln(1/λ(H))

K1−θ

)
.

When λ(W) is not close to 1, Proposition 1 indicates that
to reach the ϵ-error, i.e., E∥∇f(xk)∥2 ≤ ϵ, the iteration

complexity of DMGD is K = O
(

[ln(1/λ(H)]
1

2(1−θ)

ϵ
1

1−θ

)
. Notice

that the iteration complexity of DMGD is almost the same
as that of MCGD, given by O

(
ln(1/λ(H)

ϵ2

)
, because θ can be

arbitrarily close to 1/2. Although the stepsize Equation (13)
can reduce the upper bound of the iteration complexity when
λ(H) is close to 1, we usually cannot use this stepsize rule in
practice since λ(H) is usually unknown.

The convergence results in Theorem 1 are built on As-
sumption 4, i.e., the Markov chain is time-homogeneous,
irreducible, and aperiodic. Assumption 4 gives the geometric
mixing time property, which is crucial for the subsequent
analysis. We stress that the results can be extended to other
Markov chains. For example, [52] and [53] show the geometric
mixing time for other Markov chains under extra assumptions.

IV. ANALYSIS ON CONTINUOUS STATE SPACE

In this part, we consider the case that Π1,Π2, . . . ,Πm

are continuous probability distributions, i.e., we consider the
problem in Equation (1). In this case, we consider time-
homogeneous and reversible infinite-state Markov chains, and
Theorem 4.9 in [17] indicates that the mixing time of the
Markov chain enjoys a geometric decay. Mathematically, such
a geometric decay can be written as

∥δk∥∞ ≤ C · λk, as k ≥ 0, (14)
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where δk still denotes the deviation matrix Π∗ −Hk. Here C
and λ are constants determined by the Markov chain.

Let ξ0(i), ξ1(i), . . . be the trajectory of the Markov chain
of the i-th node and (x0(i))1≤i≤m are i.i.d. selected from the
ball B(0, B) centered at 0 with radius B. By defining

dk :=
[
∇F (xk(1); ξk(1)); . . . ;∇F (xk(m); ξk(m))

]⊤
,

the global scheme is then of the following form

xk+1 = Wxk − γkd
k. (15)

Our theoretical results rely on the following assumption.
Assumption 5: For any ξ ∈ Ξ, it holds that
1) ∥∇F (x; ξ)−∇F (y; ξ)∥ ≤ L∥x− y∥, ∀x,y ∈ Rn;
2) supx∈Rn,ξ∈Ξ{∥∇F (x; ξ)∥} < +∞;
3) Eξ (∇F (x; ξ)) = ∇ (EξF (x; ξ)), ∀x ∈ Rn;
4) infx∈Rn (EξiF (x; ξi)) > −∞, i = 1, 2, . . . ,m;
5) The stationary distribution of the Markov chain in the

i-th node is Πi.
We have the following convergence result of DMGD for
solving Problem (1) when all the underlying distributions are
continuous.

Proposition 2: Let Assumption 5 hold, and (xk)k≥0 denote
the iterates generated by Equation (2) with Markov chain
sampling, and condition Equation (14) hold. If the stepsizes are
selected as Equation (9), we have the following convergence
result

lim
k

E∥∇F(xk)∥ = 0, (16)

where F(x) := 1
m

∑m
i=1 Eξi

(
F (x; ξi)

)
. Moreover, the ergodic

convergence rate is given by

min
1≤k≤K

E∥∇F(xk)∥2

= O

(
1 + 1

ln2(1/λ)
· [1 + 1√

m(1−λ(W))
] + F(x0)−minF

K1−θ

)
.

Unlike Theorem 1, the Markov chain assumption cannot be
weakened, i.e., the Markov chain must be time-homogeneous
and reversible in Proposition 2. Another difference is that the
stationary distributions Π1,Π2, . . . ,Πm are not necessarily to
be uniform in Proposition 2.

V. NUMERICAL RESULTS

In this section, we compare the numerical performance
of our proposed algorithm with DSGD on an autoregressive
model, which closely resembles the first experiment in [53].
Assume that there are m autoregressive processes distributed
on a graph of m nodes. We attempt to recover a consensus
vector u from the multiple processes. On each node j, set
matrix Aj as a subdiagonal matrix with random entries
Al,l−1(i)

i.i.d∼ U [0.8, 0.99]. Randomly sample a vector u ∈ Rn,
with the unit 2-norm. In our experiments, we tested with
m = 50, n = 2000. We want to numerically demonstrate the
advantage of DMGD over DSGD-T in different decentralized
topologies (connected graph). In particular, we select three
classical graphs, including “cycle”, “random” and “bipartite”,
all frequently used in decentralized experiments [31], [30],

[59]. The “cycle” graph merely connects all nodes by a
circle [60]; A “random” graph is more complicated, in which
properties such as the number of graph vertices, graph edges,
and connections between them are determined in some random
way [61]; The “bipartite” graph is a graph in which every
edge connects a vertex of one set to a vertex of the other set
[62]. The data (ξ1t (i), ξ

2
t (i))

∞
t=1 are generated by the following

autoregressive process:

ξ1t (i) = A(i)ξ1t−1(i) + e1w
t, wt i.i.d∼ N(0, 1),

ξ̄2t (i) =

{
1, if ⟨u, ξ1t (i)⟩ > 0,
0, otherwise;

ξ2t (i) =

{
ξ̄2t (i), with probability 0.8,
1− ξ̄2t (i), with probability 0.2.

Clearly, for any i ∈ {1, 2, . . . ,M}, (ξ1t (i), ξ2t (i))∞t=1 forms a
Markov chain. Let Πi denote the stationary distribution of the
Markov chain on the i-th node. Three kinds of loss functions
are used, which are given as follows

1) ℓ(x; ξ1(i), ξ2(i)) = −ξ2(i) log(σ(⟨x, ξ1(i)⟩)) − (1 −
ξ2(i)) log(1− σ(⟨x, ξ1(i)⟩)),

2) ℓ(x; ξ1(i), ξ2(i)) = −ξ2(i) log(σ(⟨x, ξ1(i)⟩)) − (1 −
ξ2(i)) log(1− σ(⟨x, ξ1(i)⟩)) + 10−3/2∥x∥2,

3) ℓ(x; ξ1(i), ξ2(i)) = 1/2∥σ(⟨x, ξ1(i)⟩)− ξ2(i)∥2,

where σ(t) = 1
1+exp(−t) . We reconstruct x as the solution to

the following problem:

min
x

m∑
i=1

E(ξ1(i),ξ2(i))∼Πi
ℓ(x; ξ1(i), ξ2(i)). (17)

We choose γk = 1
(k+1)q as our stepsize, where q = 0.51. This

choice is consistent with our theory below. Specifically, we
compare:

DMGD, where (ξ1,k(i), ξ2,k(i)) is from one trajectory of
the Markov chain on the i-th node;

MCGD, (i.e., the centralized Markov chain gradient de-
scent), where (ξ1,k(i), ξ2,k(i)) is from one trajectory of the
Markov chain on the i-th worker;

DSGD-T , for T = 1, 2, 4, 8, 16, where each
(ξ1,k(i), ξ2,k(i)) is the T -th sample of an independent
trajectory on the i-th node. All trajectories are generated by
starting from the same initial state.

To compute T gradients, DSGD-T uses T times as many
samples as DMGD. The sampling cost of DMGD-T collects
all historical sampling associated with the gradients calculated.
We did not try to adapt T as k increases because there is a lack
of theoretical guidance. The communication cost is counted as
K ·

∑m
i=1 di, where K is the iteration number and di is the

degree of node i. All plots in the numerical tests are averaged
over 5 rounds of simulations. The numerical comparisons are
reported in Figures 1-3, which show that DMGD outperforms
the DSGD-T with T = 1, 2, 4, 8, 16. The numerical results
in Figures 1-3 are quite positive on DMGD. As expected,
DMGD uses significantly fewer total samples than DSGD on
each T. Surprisingly, DMGD did not cost even more gradient
computations. It is important to note that DSGD-1 and DSGD-
2, as well as DSGD-4, stagnate at noticeably lower accuracies
due to their T values being too small. On the other hand,
we observe that DMGD may not beat the centralized MCGD
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Fig. 1. Comparisons of DMGD, centralized MCGD, and DSGD-T for T = 1, 2, 4, 8, 16 with “Random” graph.
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Fig. 2. Comparisons of DMGD, centralized MCGD, and DSGD-T for T = 1, 2, 4, 8, 16 with “Cycle” graph.

in sampling costs, but it can significantly reduce the busiest
node’s communications.

VI. PROOFS

A. Technical lemmas
Lemma 1 (Lemma 1, [18]): Let Assumption 4 hold, and

λi(H) ∈ C be the i-th largest eigenvalue of H ∈ Rd×d,
and λ(H) := max{|λ2(H)|,|λmin(H)|}+1

2 ∈ [0, 1). Then, we can
bound the largest entry-wise absolute value of the deviation
matrix δk := Π∗ −Hk ∈ Rd×d as

∥δk∥∞ ≤ CH · [λ(H)]k (18)

as k ≥ KH, where CH is a constant that depends on the Jordan
canonical form of H and KH is a constant that depends on
λ2(H) and λmin(H).

Lemma 2 (Corollary 1.14., [17]): Let P ∈ Rm×m be the
matrix whose elements are all 1/m. Given any k ∈ Z+, the
mixing matrix W ∈ Rm×m satisfies

∥Wk −P∥ ≤ [λ(W)]k.

Lemma 3: Let (xk)k≥0 be generated by DMGD and As-
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Fig. 3. Comparisons of DMGD, centralized MCGD, and DSGD-T for T = 1, 2, 4, 8, 16 with “Bipartite” graph.

sumption 2 hold, then we have

1

m

m∑
i=1

∥xk(i)− xk∥ ≤ B

k∑
j=0

γj [λ(W)]k−j . (19)

for any k ≥ 0. Further if γj = 1
(j+1)θ

with 1
2 ≤ θ < 1, it

follows

1

m

m∑
i=1

∥xk(i)− xk∥ ≤ BCW

(k + 1)θ
= BCWγk, (20)

and CW is a positive constant dependent on W, and CW =
O( 1

1−λ(W) ).
Lemma 4 (Lemma 2, [18]): Consider two nonnegative

sequences (βk)k≥0 and (hk)k≥0 that satisfy 1) limk hk = 0
and

∑
k hk = +∞, 2)

∑
k βkhk < +∞, 3) |βk+1−βk| ≤ chk

for some c > 0 and k = 0, 1, . . .. Then, we have limβk = 0.
Lemma 5: Let a > 0, c be a real number, and x ≥

max{|a(ln 2a − 1) − c|, e
|c|
a /4, 16}. If y − a ln y + c = x,

it then holds y − x ≤ 3a lnx.
Lemma 6: Given any fixed positive number a > 0, it holds

t ≤ a
e e

t
a , where t > 0.

B. Proof of Theorem 1

The proof consists of four major steps: 1. Introduce the
delay Tk and its property. 2. Bound

∑
k γkE∥∇f(xk−Tk)∥2

by four terms. 3. Prove the upper bound of the sum of the four
terms. 4. Establish the upper bound for

∑
k

(
γkE∥∇f(xk)∥2−

γkE∥∇f(xk−Tk)∥2
)
.

Step 1: For integer k ≥ 1, denote the integer Tk as

Tk := min{max
{⌈

ln
(
2MCHB2k

)/
ln

1

λ(H)

⌉
,KH

}
, k},

where KH and λ(H) are defined in Lemma 1. We can see
that Tk ≤ k for any k ∈ Z+.

Because we need to prove the upper bound, which is still
finite when some fixed terms are removed. We can choose
k that is sufficiently large. Thus, in the following part, there
are some arguments of the form of “as k ≥ c”. Indeed, we
want to determine the constant c, which can guarantee the
upper bounds to be finite in the four steps when k ≥ c (see
Equation (37)).

When k ≥
[ 1
λ(H)

]KH

2MCHB2 , we have

⌈ ln(2MCHB2k
)

ln 1
λ(H)

⌉
≥ ln

(
2MCHB2k

)/
ln

1

λ(H)
≥ KH,

and Tk = min{
⌈
ln(2MCHB2k)

/
ln 1

λ(H)

⌉
, k} in this case.

In Equation (53), letting t← k and a← 2
ln 1

λ(H)

, we can get

ln k ≤
k ln 1

λ(H)

2
−ln ln 1

λ(H)
+ln

2

e
≤

k ln 1
λ(H)

2
−ln ln 1

λ(H)
,

where we used the fact that ln 2
e < 0. Due to 0 < λ(H) < 1

and ln 1
λ(H) > 0, we then get ln k

ln 1
λ(H)

≤ k
2 −

ln ln 1
λ(H)

ln 1
λ(H)

, based

on which we get ln(2MCHB2k)

ln 1
λ(H)

≤ k
ln 1

λ(H)

+ ln 2MCHB2

ln 1
λ(H)

≤

k
2 −

ln ln 1
λ(H)

ln 1
λ(H)

+ ln 2MCHB2

ln 1
λ(H)

≤ k, provided k ≥
2 ln

2MCHB2

ln 1
λ(H)

ln 1
λ(H)

.
In summary, when

k ≥ max

{
[ 1
λ(H) ]

KH

2MCHB2
,
2 ln 2MCHB2

ln 1
λ(H)

ln 1
λ(H)

,KH

}
, (21)

we have Tk =
⌈
ln(2MCHB2k)

/
ln 1

λ(H)

⌉
. Assume (21)

holds, in this case notice that Tk ≥ KH as k ≥ KH, by
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using Lemma 1, we then get∣∣∣[HTk ]i,j −
1

M

∣∣∣ ≤ ∥δTk∥∞ ≤ CH · [λ(H)]Tk

a)

≤ max{min{ 1/k

2MB2
, CH · [λ(H)]KH}, CH · [λ(H)]k},

(22)

for any i, j ∈ {1, 2, . . . ,M}, where δk, CH and KH are given
in Lemma 1, and a) uses the following result

CH · [λ(H)]

⌈
ln(2MCHB2k)

/
ln 1

λ(H)

⌉
≤ CH · [λ(H)]

ln(2MCHB2k)

/
ln 1

λ(H)

= CH · [exp(− ln
1

λ(H)
)]
ln(2MCHB2k)

/
ln 1

λ(H)

= CH · [exp(− ln
1

λ(H)
· ln(2MCHB2k)

/
ln

1

λ(H)
)]

= CH · exp(ln(
1

2MCHB2k
)) =

1

2MB2k
.

Furthermore, if k ≥ KH, the rightmost part of Equation (22)
can be bounded by max{ 1/k

2MB2 , CH · [λ(H)]k}. In Equation
(53), by letting t← k and a← 1

ln 1
λ(H)

, we obtain k lnλ(H)+

ln ln 1
λ(H)+1 ≤ − ln k. Adding lnCH to both sides and taking

the exponential, we have CH · [λ(H)]k ≤ CH

e ln 1
λ(H)

1
k . Note that

k is unnecessary to be an integer here. By replacing k ← k/2,
we get

CH · [λ(H)]k/2 ≤ 2CH

e ln 1
λ(H)

1

k
. (23)

With Equation (23), we can further get

CH · [λ(H)]k ≤ CH · [λ(H)]k/2 · [λ(H)]k/2

≤
(
[λ(H)]k/2

2CH

e ln 1
λ(H)

)1
k
. (24)

When k ≥
2 ln

4MCHB2

e ln 1
λ(H)

ln 1
λ(H)

, we have

[λ(H)]k/2
2CH

e ln 1
λ(H)

≤ 1

2MB2

(24)
=⇒ CH · [λ(H)]k ≤ 1/k

2MB2
.

Note that Equation (24) is established based on the fact that
k ≥ KH and k ≥ 1. Thus, when

k ≥ max

2 ln 4MCHB2

e ln 1
λ(H)

ln 1
λ(H)

,KH, 1

 , (25)

we have CH · [λ(H)]k ≤ 1/k
2MB2 , and∣∣∣[HTk ]i,j −

1

M

∣∣∣ ≤ 1/k

2MB2
. (26)

Step 2. Denote the shorthand notations ũk :=∑m
h=1 ∇f

jh,k
h (xk(h))

m , ũk−Tk :=
∑m

h=1 ∇f
jh,k
h (xk−Tk (h))

m ,
when Equation (25) holds, we have

Ejk(ũ
k−Tk | χk−Tk)

a)
=

1

m

m∑
h=1

M∑
i=1

∇f jh,k

h (xk−Tk(h)) · P(jh,k = i | χk−Tk)
〉

b)
=

1

m

m∑
h=1

M∑
i=1

∇f jh,k

h (xk−Tk(h)) · P(jh,k = i | jh,k−Tk
)

c)
=

1

m

m∑
h=1

M∑
i=1

∇f i
h(x

k−Tk(h)) · [HTk ]jh,k−Tk
,i, (27)

where a) is due to the conditional expectation, and b) uses
the property of Markov chain, and c) is the matrix form of
the probability. On the other hand, we are led to the following
estimate

Ejk(⟨∇f(xk−Tk), ũk−Tk⟩ | χk−Tk)

=

〈
∇f(xk−Tk),

1

m

m∑
h=1

1

M

M∑
i=1

∇f i
h(x

k−Tk(h))

〉

+
〈
∇f(xk−Tk),

1

m

m∑
h=1

M∑
i=1

∇f i
h(x

k−Tk(h))

·
[
[HTk ]jh,k−Tk

,i −
1

M

]〉
Equation (26)
≥

〈
∇f(xk−Tk),

1

m

m∑
i=1

∇fi(xk−Tk(i))

〉

− ∥∇f(xk−Tk)∥ · 1
m

m∑
h=1

M∑
i=1

∥∇f i
h(x

k−Tk(h))∥ · 1/k

2MB2

≥

〈
∇f(xk−Tk),

1

m

m∑
i=1

∇fi(xk−Tk(i))

〉
− 1

2k
.

Direct calculations yield〈
∇f(xk−Tk),

1

m

m∑
i=1

∇fi(xk−Tk(i))

〉
= ∥∇f(xk−Tk)∥2

+ ⟨∇f(xk−Tk),
1

m

m∑
i=1

∇fi(xk−Tk(i))−∇f(xk−Tk)⟩

≥ ∥∇f(xk−Tk)∥2 −B
L

m

m∑
i=1

∥xk−Tk(i)− xk−Tk∥, (28)

where the last inequality uses Assumptions 2 and 3. Rear-
rangement of Equation (27) together with Equation (28) gives
us

γkE∥∇f(xk−Tk)∥2 ≤ γkE(⟨∇f(xk−Tk), ũk−Tk⟩)

+B
L

m

m∑
i=1

γkE∥xk−Tk(i)− xk−Tk∥+ γk
2k

. (29)
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We can bound f(xk+1)− f(xk) as follows

f(xk+1)− f(xk)
a)

≤ ⟨∇f(xk),xk+1 − xk⟩

+
L

2
∥xk+1 − xk∥2 b)

= ⟨∇f(xk−Tk),xk+1 − xk⟩

+ ⟨∇f(xk)−∇f(xk−Tk),xk+1 − xk⟩+ L

2
∥xk+1 − xk∥2

c)

≤ ⟨∇f(xk−Tk),xk+1 − xk⟩

+
(L+ 1)∥xk+1 − xk∥2

2
+

L2∥xk − xk−Tk∥2

2
, (30)

where a) depends on the continuity of ∇f , and b) is the basic
algebraic computation, c) uses Schwarz inequality ⟨∇f(xk)−
∇f(xk−Tk),xk+1 − xk⟩ ≤ L∥xk − xk−Tk∥ · ∥xk+1 − xk∥ ≤
L2∥xk−xk−Tk∥2

2 + ∥xk+1−xk∥2

2 . Moving ⟨∇f(xk−Tk),xk+1 −
xk⟩ to left-hand side, we have

⟨∇f(xk−Tk),xk − xk+1⟩ ≤ f(xk)− f(xk+1)

+
L2∥xk+1 − xk−Tk∥2

2
+

(L+ 1)∥xk+1 − xk∥2

2
. (31)

We then consider the following bound:

E(⟨∇f(xk−Tk),xk − xk+1⟩ | χk−Tk)

= γkE(⟨∇f(xk−Tk), ũk−Tk⟩ | χk−Tk)

+ γkE(⟨∇f(xk−Tk), ũk − ũk−Tk⟩ | χk−Tk)

≥ γkE(⟨∇f(xk−Tk), ũk−Tk⟩ | χk−Tk)

−BL · E(γk∥xk − xk−Tk∥ | χk−Tk)

− γkBLE
(∑m

h=1 ∥xk(h)− xk∥
m

+

∑m
h=1 ∥xk−Tk(h)− xk−Tk∥

m
| χk−Tk

)
(32)

where the last inequality uses the following estimate

γkE(⟨∇f(xk−Tk), ũk − ũk−Tk⟩ | χk−Tk)

≥ −γkE(∥∇f(xk−Tk)∥ · ∥ũk − ũk−Tk∥ | χk−Tk)

≥ −γkBLE
(∑m

h=1 ∥xk(h)− xk−Tk(h)∥
m

| χk−Tk

)
≥ −γkBLE

(∑m
h=1 ∥xk(h)− xk∥

m

+ ∥xk − xk−Tk∥+
∑m

h=1 ∥xk−Tk − xk−Tk(h)∥
m

| χk−Tk

)

with the Lipschitz continuity of ∇f jh,k

h and boundedness of
∇f . Taking conditional expectations on both sides of Equation
(31) on χk−Tk and rearrangement of Equation (32), then we

have

γkEjk(⟨∇f(xk−Tk), ũk−Tk⟩ | χk−Tk)

≤ E
(
f(xk)− f(xk+1) | χk−Tk

)
+

(L+ 1) · E(∥xk+1 − xk∥2 | χk−Tk)

2

+BL · E(γk∥xk − xk−Tk∥ | χk−Tk)

+
L2 · E(∥xk+1 − xk−Tk∥2 | χk−Tk)

2

+ γkBLE
(∑m

h=1 ∥xk − xk(h)∥
m

| χk−Tk

)
+ γkBLE

(∑m
h=1 ∥xk−Tk − xk−Tk(h)∥

m
| χk−Tk

)
. (33)

Taking the expectation on both sides of Equation (33)
on χk and with (29), using the total expectation
rule E

[
Ejk(⟨∇f(xk−Tk), ũk−Tk⟩ | χk−Tk) | χk

]
=

E(⟨∇f(xk−Tk), ũk−Tk⟩ | χk), we are then led to

γkE∥∇f(xk−Tk)∥2 ≤ (I) + (II) + (III) + (IV) + (V) +
γk
2k

,

(34)

where (I) := E
(
f(xk)−f(xk+1)

)
, (II) := (L+1)·E∥xk+1−xk∥2

2 ,

(III) := BLγk · E∥xk − xk−Tk∥, (IV) := L2·E∥xk+1−xk−Tk∥2

2 ,
and (V) := 2B L

m

∑m
i=1 γkE∥xk−Tk(i) − xk−Tk∥ +

B L
m

∑m
i=1 γkE∥xk(i)− xk∥.

Step 3: We now prove that (II), (III), (IV) and (V) are all
summable. The summability (I) is obvious. For (II), (III) and

(IV), with the fact that xk+1 − xk = −γk
∑m

i=1 ∇f
ji,k
i (xk(i))

m ,
we can derive (we omit the constant hyper-parameters in
following)

(II) : E∥xk+1 − xk∥2 = γ2
kE
∥∥∥ m∑

i=1

∇f ji,k
i (xk(i))/m

∥∥∥2
= γ2

k

m∑
i=1

E
∥∥∥∇f ji,k

i (xk(i))
∥∥∥2/m2 ≤ γ2

kB
2/m

due to the dependence of {ji,k}1≤i≤m, and

(III) :E(γk∥xk − xk−Tk∥) ≤ γk

k−1∑
d=k−Tk

E∥xd+1 − xd∥

≤ B√
m

k−1∑
d=k−Tk

γdγk ≤
B

2
√
m

k−1∑
d=k−Tk

(γ2
d + γ2

k)

=
TkB
2
√
m
γ2
k +

B

2
√
m

k−1∑
d=k−Tk

γ2
d ,

and

(IV) : E(∥xk+1 − xk−Tk∥2) ≤ (Tk + 1)

k∑
d=k−Tk

E∥xd+1 − xd∥2

≤ B2(Tk + 1)/m

k∑
d=k−Tk

γ2
d ,
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and

(V) : 2BLγk(
1

m

m∑
i=1

E∥xk−Tk(i)− xk−Tk∥)

+BLγk(
1

m

m∑
i=1

E∥xk(i)− xk∥)

(20)
≤ 2B2LCWγkγk−Tk

+B2LCWγ2
k ≤ B2LCW(γ2

k−Tk
+ γ2

k)

+B2LCWγ2
k ≤ 2B2LCW

k∑
d=k−Tk

γ2
d .

It is easy to see that if (Tk
∑k

d=k−Tk
γ2
d)k≥1 is summable, (II),

(III) and (IV) are all summable. We consider the case

k ≥ K0 := max

{
[ 1
λ(H) ]

KH

2MCHB2
,
2 ln 2MCHB2

ln 1
λ(H)

ln 1
λ(H)

,KH,

2e
(∣∣∣ ln ln 1

λ(H)

ln 1
λ(H)

∣∣∣+ ∣∣∣ ln 2MCHB2

1
λ(H)

∣∣∣)
e− 2

}
, (35)

which can let Lemma 1 be active, and Tk =⌈
ln(2MCHB2k)

/
ln 1

λ(H)

⌉
. Note that the summability

of sequence is free of finite items; we then consider
(Tk

∑k−1
d=k−Tk

γ2
d)k≥K0

. For any fixed integer t ≥ K0,
γ2
t only appears at index k ≥ K0 satisfying

St := {k ∈ Z+ | k − Tk ≤ t ≤ k − 1, k ≥ K0}
in the inner summation. Let k = k(t) be the
solution of k − ln(2MCHB2k)

/
ln 1

λ(H) = t. As

t ≥ max{|
1+ln ln 1

λ(H)
−ln 2MCHB2

ln 1
λ(H)

|, e| ln 2MCHB2|/4, 16},
Lemma 5 gives us ♯(St) ≤ k(t) − t ≤ 3 ln t

ln(1/λ(H)) , where
♯(St) denotes the cardinality of set St. Using Equation (53)
with a = e

ln 1
λ(H)

and t = k, we get

ln k ≤
k ln 1

λ(H)

e
− ln ln

1

λ(H)
⇒ ln k

ln 1
λ(H)

≤ k

e
−

ln ln 1
λ(H)

ln 1
λ(H)

,

based on which we have ln 2MCHB2k
ln 1

λ(H)

= ln 2MCHB2

ln 1
λ(H)

+

ln k
ln 1

λ(H)

≤ k
e −

ln ln 1
λ(H)

ln 1
λ(H)

+ ln 2MCHB2

1
λ(H)

. If

k ≥
2e
(∣∣∣ ln ln 1

λ(H)

ln 1
λ(H)

∣∣∣+ ∣∣∣ ln 2MCHB2

1
λ(H)

∣∣∣)
e− 2

, (36)

we have ln 2MCHB2k
ln 1

λ(H)

≤ k
e +

∣∣∣ ln ln 1
λ(H)

ln 1
λ(H)

∣∣∣ + ∣∣∣ ln 2MCHB2

1
λ(H)

∣∣∣ ≤
k
e +

(e−2)k
2e = k

2 , which indicates Tk ≤ k
2 . Recall the definition

St := {k ∈ Z+ | k−Tk ≤ t ≤ k−1, k ≥ K0}, we then have
k ≤ 2t, ∀k ∈ St. Combining Equations (21), (25), (35) and

(36), we consider

k ≥ τ(H) := max

{
[ 1
λ(H) ]

KH

2MCHB2
,KH,

2 ln
e ln 1

λ(H)

4MCHB2

ln 1
λ(H)

,

2e
(∣∣∣ ln ln 1

λ(H)

ln 1
λ(H)

∣∣∣+ ∣∣∣ ln 2MCHB2

1
λ(H)

∣∣∣)
e− 2

,
2 ln 4MCHB2

e ln 1
λ(H)

ln 1
λ(H)

, 16,

∣∣∣1 + ln ln 1
λ(H) − ln 2MCHB2

ln 1
λ(H)

∣∣∣, e| ln 2MCHB2|/4

}
.

(37)

Note that Tk increases with respect to k, we then have Tk ≤
T2t, ∀k ∈ St. That means in

∑+∞
k=τ(H)(Tk

∑k−1
d=k−Tk

γ2
d), γ

2
t

appears at most T2t ·♯(St) ≤ 3 ln(4MCHB2t) ln t
ln2(1/λ(H))

. The
direct calculations then give us

+∞∑
k=τ(H)

(
Tk

k−1∑
d=k−Tk

γ2
d

)
≤

+∞∑
t=τ(H)

3 ln(4MCHB2t) ln t · γ2
t

ln2(1/λ(H))
.

(38)

Going back to Equation (34) and Lemma 3, we are then led
to

+∞∑
k=τ(H)

γkE∥∇f(xk−Tk)∥2 ≤ f(x0)−min f

+
(
2B/
√
m+ 2B2/m+ 2B2LCW

)
·

+∞∑
t=τ(H)

3 ln(4MCHB2t)
ln t · γ2

t

ln2(1/λ(H))
.

(39)

Furthermore, with the boundedness ∥∇f(xk−Tk)∥2 ≤ B2, we
can get

+∞∑
k=1

γkE∥∇f(xk−Tk)∥2 =

τ(H)−1∑
k=1

γkE∥∇f(xk−Tk)∥2

+

+∞∑
k=τ(H)

γkE∥∇f(xk−Tk)∥2 ≤
τ(H)−1∑

t=1

γtB
2

+
(
2B/
√
m+ 2B2/m+

2B2LCW√
m

)
·

+∞∑
t=τ(H)

3 ln(4MCHB2t)
ln t · γ2

t

ln2(1/λ(H))
+ f(x0)−min f

= O
(
1 +

1

ln2(1/λ(H))
· [1 + 1√

m(1− λ(W))
]

+ f(x0)−min f
)
.

(40)
Step 4: With Lipschitz of ∇f , it holds that

γk∥∇f(xk)∥2 − γk∥∇f(xk−Tk)∥2

= γk⟨∇f(xk)−∇f(xk−Tk),∇f(xk) +∇f(xk−Tk)⟩
≤ γk∥∇f(xk)−∇f(xk−Tk)∥ · ∥∇f(xk) +∇f(xk−Tk)∥

≤ 2BLγk∥xk − xk−Tk∥
a)

≤ BLγ2
k +BL∥xk − xk−Tk∥2,
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where a) uses Cauchy’s inequality 2ab ≤ a2 + b2 with a =√
BLγk and b =

√
BL∥xk − xk−Tk∥. Taking the expectation

of both sides of the inequality above gives us

γkE∥∇f(xk)∥2 − γkE∥∇f(xk−Tk)∥2

≤ BLγ2
k +BLE∥xk − xk−Tk∥2.

(41)

Direct computations give us

+∞∑
k=1

E∥xk − xk−Tk∥2 ≤ Tk
+∞∑
k=1

k∑
d=k−Tk

E∥xd+1 − xd∥2

≤ B2/m

+∞∑
k=1

Tk
k∑

d=k−Tk

γ2
d = B2/m

τ(H)−1∑
k=1

Tk
k∑

d=k−Tk

γ2
d

+B2/m

∞∑
k=τ(H)

Tk
k∑

d=k−Tk

γ2
d

≤ B2[τ(H)]4/(4m) +B2/m

∞∑
k=τ(H)

Tk
k∑

d=k−Tk

γ2
d

Equation (38)
≤ B2[τ(H)]4/(4m)

+B2/m

+∞∑
t=τ(H)

3 ln(4MCHB2t)
ln t · γ2

t

ln2(1/λ(H))
.

(42)
Thus, we can get

K∑
k=1

γkE∥∇f(xk)∥2 ≤
∞∑
k=1

γkE∥∇f(xk−Tk)∥2

+

∞∑
k=1

(
γkE∥∇f(xk)∥2 − γkE∥∇f(xk−Tk)∥2

)
≤

τ(H)−1∑
t=1

γtB
2 +B3L[τ(H)]4/(4m) +BL

∞∑
t=1

γ2
t +

∞∑
t=1

γt
2t

+
(
2B/
√
m+B3L/m+ 2B2/m+

2B2LCW√
m

)
·

+∞∑
t=τ(H)

3 ln(4MCHB2t)
ln t · γ2

t

ln2(1/λ(H))
+ f(x0)−min f =

O
(
1 +

1

ln2(1/λ(H))
· [ 1√

m(1− λ(W))
] + f(x0)−min f

)
< +∞.

We bound
∑K

k=1 γk as

K∑
k=1

γk ≥
K∑

k=1

∫ k+1

k

1

(t+ 1)θ
dt =

∫ K+1

1

1

(t+ 1)θ
dt

=
(K + 1)1−θ − 21−θ

1− θ
≥ (1− 1

21−θ
)(K + 1)1−θ,

as K ≥ 3. Thus, the proof of the convergence rate is completed
by 1/(

∑K
k=1 γk) ≤

1
1− 1

21−θ
· 1

(K+1)1−θ , as K ≥ 3. With

the fact min1≤k≤K{E∥∇f(xk)∥2} ≤
∑K

k=1 γkE∥∇f(xk)∥2∑K
k=1 γk

, we
then get the ergodic convergence rate.

Proof of the nonergodic convergence: Notice that xk+1 −
xk = −γk

∑m
i=1 ∇f

ji,k
i (xk(i))

m , we have

∥xk+1 − xk∥ = γk

∥∥∥∑m
i=1∇f

ji,k
i (xk(i))

m

∥∥∥
≤ γk

m

m∑
i=1

∥∇f ji,k
i (xk(i))∥ ≤ B · γk. (43)

Based on Equation (43), we can get∣∣∣∥∇f(xk+1)∥2 − ∥∇f(xk)∥2
∣∣∣

=
∣∣∣⟨∇f(xk+1)−∇f(xk),∇f(xk+1) +∇f(xk)⟩

∣∣∣
≤ ∥∇f(xk+1) +∇f(xk)∥ · ∥∇f(xk+1)−∇f(xk)∥
≤ 2BL∥xk+1 − xk∥ = 2B2Lγk.

(44)

Thus, we derive∣∣∣E∥∇f(xk+1)∥2 − E∥∇f(xk)∥2
∣∣∣

≤ E
∣∣∣∥∇f(xk+1)∥2 − ∥∇f(xk)∥2

∣∣∣ = 2B2Lγk. (45)

Notice that we have proved
∑

k γkE∥∇f(xk)∥2 < +∞, and
Equation (45) has shown

∣∣∣E∥∇f(xk+1)∥2−E∥∇f(xk)∥2
∣∣∣ =

2B2Lγk. Recalling Lemma 4 with hk ← γk and βk ←
E∥∇f(xk)∥2, we then get limk E∥∇f(xk)∥ = 0.

C. Proof of Proposition 1

First, it is easy to see CW = O(
√

ln(1/λ(H))

1−λ(W) ) in Lemma
3 with the stepsizes. Applying the stepsizes choice Equation
(13) to the upper Equation (42) directly gives us

∞∑
k=1

γkE∥∇f(xk)∥2 ≤
τ(H)−1∑

t=1

γtB
2 +B3L[τ(H)]4/4

+BL

∞∑
t=1

γ2
t +

(
2B +BL+ 2B2 +

2B2LCW√
m

)
·

+∞∑
t=τ(H)

3 ln(4MCHB2t)
ln t · γ2

t

ln2(1/λ(H))
+ f(x0)−min f

= O
(
1 +

1
√
m(1− λ(W))

√
ln(1/λ(H))

+ f(x0)−min f
)
.

Further with the fact
∑k

i=1 γi = Θ[
√
ln(1/λ(H))k1−θ], we

then get the result.

D. Proof of Proposition 2

The proof of Proposition 2 is similar to the proof of
Theorem 1. Note that

1

m

m∑
i=1

∥xk(i)− xk∥ = O( 1

1− λ(W)
· 1

(k + 1)θ
)

still holds for scheme Equation (2), if the stepsizes are selected
as Equation (9) and Assumption 5 holds.

Like previous proofs, the proof also consists of four steps:
1. Introduce the delay Hk. 2. the second one is to Bound
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∑
k γkE∥∇F(xk−Tk)∥2 by four terms. 3. Prove the summa-

bility of the four terms. 4. Establish an upper bound for∑
k

(
γkE∥∇F(xk)∥2 − γkE∥∇F(xk−Tk)∥2

)
.

Step 1. Assume that Ci and λi are the factors in Equa-
tion (14) for Markov chain in the i-th node. Let C :=
max{C1, C2, . . . , Cm} and λ := max{λ1, λ2, . . . , λm}. For
integer k ≥ 1, we consider the integer Hk as

Hk := min{
⌈
ln(2CB2k)/ ln(1/λ)

⌉
, k}. (46)

It is easy to see Hk ≤ k. With [Theorem 4.9, [17]], we have
the following inequality∫

Ξ

|ps+Hk
s (ξ)− π(ξ)|dµ(ξ) ≤ 1

2 ·B2 · k
,∀s ∈ Z+,

where ps+Hk
s (ξ) denotes the transition probability density

function (p.d.f.) from s to s + Hk with respect to ξ. The
property of time-homogeneous of the Markov chain directly
gives that ps+Hk

s (ξ) = pHk
0 (ξ), i.e.,∫

Ξ

|pHk
0 (ξ)− π(ξ)|dµ(ξ) ≤ 1

2 ·B2 · k
,∀s ∈ Z+ (47)

Step 2. Denote the shorthand notation d̃k−Hk :=
1
m

∑m
i=1∇F (xk−Hk(i); ξk(i)), we calculate the lower bound

for following inner product:

Ejk(⟨∇F(xk−Hk), d̃k−Hk⟩ | χk−Hk)

a)
=

〈
∇F(xk−Hk),

1

m

m∑
i=1

∇F (xk−Hk(i); ξ)pkk−Hk
(ξ)dµ(ξ)

〉
b)
=

〈
∇F(xk−Hk),

1

m

m∑
i=1

∇F (xk−Hk(i); ξ)pHk
0 (ξ)dµ(ξ)

〉

=

〈
∇F(xk−Hk),

1

m

m∑
i=1

∇F (xk−Hk(i); ξ)π(ξ)dµ(ξ)

〉

+
〈
∇F(xk−Hk),

1

m

m∑
i=1

∇F (xk−Hk(i); ξ)

· [pHk
0 (ξ)− π(ξ)]dµ(ξ)

〉
c)

≥ ∥∇F(xk−Hk)∥2 − 1

2k
+
〈
∇F(xk−Hk),

1

m

m∑
i=1

[∇F (xk−Hk(i); ξ)−∇F (xk−Hk ; ξ)]π(ξ)dµ(ξ)
〉

d)

≥ ∥∇F(xk−Hk)∥2 − 1

2k
− BL

m

m∑
i=1

∥xk−Hk(i)− xk−Hk∥,

(48)

where a) uses the conditional expectation, and b) comes from
the property of Markov chain, and c) depends on Equation
(47), and d) is due to the Lipschitz property. Rearranging
Equation (48) gives us

γkE∥∇F(xk−Hk)∥2 ≤ γkE(⟨∇F(xk−Hk), d̃k−Hk⟩)

+
γk
2k

+ γk
BL

m

m∑
i=1

E∥xk−Hk(i)− xk−Hk∥. (49)

Then we need to bound
∑

k γkE(⟨∇F(xk−Hk), d̃k−Hk⟩), the
rest part is almost identical to the one of previous proof and
will not be repeated.

Step 3 and Step 4. These two parts are very similar to ones
of Theorem 1 and will not be repeated.

VII. CONCLUDING REMARKS

In this paper, we propose decentralized Markov chain gra-
dient descent, where the samples are drawn along a trajectory
of a Markov chain over the network. Our proposed algorithms
can be used when it is expensive or even impossible to sample
directly from a distribution, but sampling via a Markov chain
is possible and relatively cheap. The convergence analysis is
established in various settings.

APPENDIX

We define 1 := [1, 1, · · · , 1]⊤ ∈ Rm, and the projection
matrix is given as P := 11⊤

m ∈ Rm×m. It is easy to see

WP = PW = P. (50)

A. Proof of Lemma 3

The global scheme can be described as xk+1 = Wxk −
γku

k, where uk has been defined in Equation (4).
With direct calculation, we have

xk = Wkx0 −
k−1∑
j=0

γjW
k−juj . (51)

Recalling Equation (50), i.e., PW = P, we have

PWk−j = PWWk−j−1 = PWk−j−1 = . . . = P

as j < k. Further using the direct expansion of Equation (51)
and the fact that initializations are all selected from B(0, B),
we have

∥(I−P)xk∥ = ∥(Wk −P)x0 −
k−1∑
j=0

γj(W
k−j −P)uj∥

≤ ∥Wk −P∥ · ∥x0∥+
k−1∑
j=0

γj∥Wk−j −P∥ · ∥uj∥

≤ max
k


√√√√ m∑

i=1

∥∇f ji,k
i (xk(i))∥2,

√
mB

 ·
k∑

j=0

γjλ(W)k−j

≤
√
mB

k∑
j=0

γjλ(W)k−j ,

where the second inequality uses Lemma 2 as ∥Wk−j−P∥ ≤
λ(W)k−j . Notice that ∥(I−P)xk∥2 =

∑m
i=1 ∥xk(i)−xk∥2,

we have

1

m

m∑
i=1

∥xk(i)− xk∥ ≤

√
m
∑m

i=1 ∥xk(i)− xk∥2

m

≤ 1√
m
∥(I−P)xk∥ ≤ B

k∑
j=0

γjλ(W)k−j .
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If γj = 1
(j+1)θ

, it holds γj ≤ 2θ

(k+1)θ
as j ≥ ⌜k

2⌝+ 1 ≥ k−1
2 ,

and we have

k∑
j=0

γjλ(W)k−j =

⌜ k
2 ⌝∑

j=0

γjλ(W)k−j +

k∑
j=⌜ k

2 ⌝+1

γjλ(W)k−j

≤ kλ(W)k/2 +
2θ

(k + 1)θ

k∑
j=⌜ k

2 ⌝+1

λ(W)k−j

≤ kλ(W)k/2 +
2θ

(k + 1)θ
1

1− λ(W)
≤ CW

(k + 1)θ
,

where

CW :=
2θ

1− λ(W)
+ sup

k
{(k + 1)1+θλ(W)k/2}. (52)

Now, we turn to show the finiteness of supk{(k +
1)1+θλ(W)k/2}. By setting t = k + 1, with Lemma 6, it
follows that k + 1 ≤ a

e e
k+1
a with a > 0 to be determined.

By setting a = 2+2θ
ln 1

λ(W)

> 0, with the fact 0 ≤ λ(W) < 1, it

holds 0 < a < 2+2θ
ln 2 . Then for any k ≥ 1, we are then led to

(k + 1)1+θλ(W)k/2 ≤ (
a

e
)1+θe

1+θ
a (k+1)λ(W)k/2

= a1+θe(1−
1
a )(1+θ)e

1+θ
a ke(k lnλ(W))/2

= a1+θe(1−
1
a )(1+θ)e(

1+θ
a + 1

2 lnλ(W))k

= a1+θe(1−
1
a )(1+θ) ≤

(2 + 2θ

ln 2

)1+θ
e1+θ.

Thus, we get CW = O( 1
1−λ(W) ).

B. Proof of Lemma 5

As y ≥ e
|c|
a , it holds that

a ln y − c ≤ |a ln y − c| ≤ a ln y + |c| ≤ 2a ln y.

In Equation (53) with a ← 2a and t ← y, ln y ≤ y/2a +
ln 2a− 1 ≤ y/2. Considering the fact y − a ln y + c = x, we
have

y + c = x+ a ln y ≤ x+ y/2 + a(ln 2a− 1)

⇒ y/2 ≤ x+ a(ln 2a− 1)− c.

Thus, if x ≥ |a(ln 2a − 1) − c|, we then get y ≤ 4x. In
summary, as x ≥ max{|a(ln 2a− 1)− c|, e

|c|
a /4, 16},

y − x = a ln y − c ≤ 2a ln y = 2a lnx+ 4a ln 2 ≤ 3a lnx.

C. Proof of Lemma 6

Consider the function g(t) := ln t− t
a − ln a+ 1. Noticing

that g′(t) = 1
t −

1
a , g(t) gets the maximum at t = a. We then

get

ln t ≤ t

a
+ ln a− 1, (53)

which also yields

t = eln t ≤ e
t
a+ln a−1 =

a

e
e

t
a .
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