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Abstract

Temporal difference (TD) learning with function approximations (linear functions
or neural networks) has achieved remarkable empirical success, giving impetus
to the development of finite-time analysis. As an accelerated version of TD, the
adaptive TD has been proposed and proved to enjoy finite-time convergence under
the linear function approximation. Existing numerical results have demonstrated the
superiority of adaptive algorithms to vanilla ones. Nevertheless, the performance
guarantee of adaptive TD with neural network approximation remains widely
unknown. This paper establishes the finite-time analysis for the adaptive TD with
multi-layer ReLU networks approximation whose samples are generated from
a Markov decision process. Our established theory shows that if the width of
the deep neural network is large enough, the adaptive TD using neural network
approximation can find the (optimal) value function with high probabilities under
the same iteration complexity as TD in general cases. Furthermore, we show
that the adaptive TD using neural network approximation, with the same width
and searching area, can achieve theoretical acceleration when the stochastic semi-
gradients decay fast.

1 Introduction

Temporal difference (TD) learning is a popular and successful iterative algorithm in the area of rein-
forcement learning (RL) to evaluate a given policy [47, 51], often employed for critic part evaluation
in various RL algorithms [28, 41, 42]. Classical TD algorithm adopts the tabular representation for the
value function, which stores value estimates on a per-state basis. In large-scale scenarios, the tabular
approach becomes intractable due to a large number of states. Thus, the function approximation
techniques have been integrated with TD for better scalability and efficiency [4, 50, 36, 57]. The
function approximation techniques have achieved remarkable empirical success and are theoretically
justifiable when the linear function approximation is used [23]. As a special function approximation
approach, deep neural networks (DNNs) have also been integrated with TD [38, 37, 33], achieving
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phenomenal performance in several applications. However, from the theoretical perspective, estab-
lishing theoretical convergence guarantees for training DNNs is much more complicated than that for
the linear approximation algorithms, which is still widely open. Some convergence results of TD with
DNN approximations have been proved by the authors of [21, 7, 53], under some extra assumptions
and restrictions. The adaptive methods for DQN have been proposed in [37, 22], inspired by the
adaptive stochastic algorithms to accelerate TD. The numerical results show that the adaptive versions
of TD can outperform the vanilla ones in many tasks.

Mathematically, the (projected) TD (with function approximation) can be described as

θk+1 = ProjV(θk − ηgk), (1)

where V is the constrained set, and ProjV denotes the projection onto V, θk is the iterate, and gk

is the stochastic semi-gradient 2. Although the update scheme of TD looks similar to the stochastic
gradient descent (SGD), it is much more complicated due to the Markov noise, even in the linear
function approximation case. Motivated by the adaptive SGD [20, 27], the adaptive TD with linear
function approximation is proposed in [52, 46]. The main difference between the adaptive TD and
the standard TD lies in the use of adaptive stepsize and momentum. This paper considers the neural
adaptive TD. In the kth iteration of neural adaptive TD, it performs

mk = βmk−1 + (1− β)gk,

vk = vk−1 + ‖gk‖2,

θk+1 = ProjV(θk − ηmk/(vk)
1
2 ),

(2)

where β > 0 is the momentum parameter, and η > 0. The points mk and vk contain past information.
The numerical results have demonstrated the advantage of adaptive TD over vanilla TD. The adaptive
TD is proved to be convergent with linear function approximation, but the convergence remains
unclear when the neural network approximation is used.

This paper proves that the adaptive TD with neural network approximation converges when the width
of a ReLU network is sufficiently large. Moreover, we prove that adaptive TD is faster than TD with

the ReLU DNN approximation.

1.1 Related Works

Analysis and the recent development of TD. Leveraging the stochastic approximation techniques,
the authors in [25] establish the first convergence results for TD. The limiting convergence of TD
with linear function approximation is proved in [50] with the perspective of the dynamics. Since the
seminal work of [50], many works have been using the ODE-based method to study the asymptotic
convergence of TD since TD update does not follow the (stochastic) gradient direction of any objective
function [6, 49]. Some variants of TD have been proposed in [14] with asymptotic convergence
guarantees. The first non-asymptotic analysis for the gradient TD, a variant of the TD, has been
studied in [34]. Finite-time analysis of TD with independent and identically distributed (i.i.d.)
observation assumption has been presented in [13]. The Markov sampling convergence analysis is
proved in a subsequent paper [5]. In a concurrent line of research, TD has been studied from the
perspective of stochastic linear systems [29]. The finite-time analysis for Markov sampling stochastic
linear system has been developed by the authors of [43, 24]. The finite-time analysis of multi-agent
TD is proved in [15]. A unified analysis for a class of TD learning algorithms with Markov jump is
established in [24]. Based on Nesterov’s acceleration method, a class of accelerated TD is developed
and analyzed in [16]. From the algorithmic viewpoint, the adaptive TD has been recently proposed in
[46, 52] to accelerate TD, inspired by the adaptive SGD. In [44], the authors present the finite-time
convergence results of decentralized TD with linear approximations.

TD with deep learning. In contrast to the tremendous empirical success of the deep Q-networks
(DQNs), the theory is still relatively weak; until recently, only a handful of papers have studied the
theoretical results of TD using neural network approximation. In [21], the authors prove the conver-
gence rates of fitting Q-iteration with a sparse multi-layer ReLU network under i.i.d. observations.

2We call it as semi-gradient because its stationary expectation is not the gradient of any fixed objective
function.
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The convergence of TD with two-layer neural network approximation is provided by [7] with i.i.d
assumption on the samples. The TD-based algorithm with multi-layer ReLU networks under Markov
samples is studied in [53]. The theory of the TD with a multi-layer ReLU network relies heavily on
the existing results about overparameterized deep networks [26, 12, 19, 2, 1, 3, 56].

1.2 Difference Between our Work and Existing Works, and Technical Challenges

Existing related works contain two categories: adaptive TD with linear approximations and neural
TD. However, our work is significantly different from these related works. 1) In contrast to adaptive
TD with linear approximations, we consider the neural network approximation, in which case we
do not have nice properties that linear approximation enjoys, and we have to consider the neural
tangent kernel (NTK) regime and develop a new analysis leveraging the semi-Lipschitz continuity
property. 2) Compared to neural TD, we use the adaptive stepsize and momentum, which has never
been considered in neural TD.

1.3 Our Contributions

In this paper, we consider the adaptive TD with a multi-layer ReLU network approximation under
the Markov observations. In contrast to the existing works [21, 7, 53], we study the adaptive variant
of TD. The scheme of the algorithm is much more complicated, raising tremendous challenges in
theoretical analysis. Our main theoretical contributions are summarized below:

• We extend the analysis of adaptive TD with linear function approximation [46, 52] to multi-layer
neural network approximation under Markovian samplings. The theoretical results show that
adaptive TD still works for the neural network approximation, even with deep neural networks.

• We establish the finite-time analyses of adaptive TD with multi-layer ReLU network approxima-
tion under Markov observations. In particular, we show that the adaptive algorithms guarantee
convergence when the neural network is sufficiently wide, and adaptive TD with neural network
approximation converges to a projected optimal action-value function. The technique required to
connect Adam-type algorithms and neural TD is non-trivial since they belong to two very different
research areas. To this end, we develop a new technique that uses expectation with a fixed delay,
which is different from the coupling technique used by the authors of [5, 53].

• We prove that the speed of the adaptive TD can be faster than the vanilla ones with multi-layer
ReLU network approximation. Specifically, we show that the adaptive ones use fewer iterations to
reach the same desired error with the same network widths and searching areas. Our theoretical
results first explained why Adam-type algorithms perform better than TD in DQN, which has been
observed in practice.

2 Preliminaries

We introduce the notation, some basic concepts, and properties of TD in this section.

Notation: We use E[·] to denote the expectation with respect to the underlying probability space
without stochasticity of the initial point, and we use ‖ · ‖ to denote the Frobenius norm. σ(·) denotes
the ReLU activation function. We use φ : S ×A → Rd to denote the feature map. Given a closed set
V, ProjV(x) represents the projection of the vector x onto V. The initial point is defined as θinit.
B(θ, ω) denotes the ball centred at θ with radius ω. We use ak = Õ(bk) to hide the logarithmic
factor of bk still with the same order. We write ak = Θ(bk) if ak = O(bk) and bk = O(ak), and we
use ak = Θ̃(bk) to hide the logarithmic factor. We denote χk as the sub-algebra that generated by
θ0,θ1, . . . ,θk, where θk is the value in the kth iteration.

2.1 Markov Decision Process

For the sake of presentation, we consider the finite state space3. Consider a Markov decision process
(MDP) described as a tuple (S,A,P,R, γ), where S denotes the state space, A denotes the action

3Our results can be extended to infinite state cases, and we consider the finite state for simplicity.
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space, Pa represents the transition matrix associated with action a, and 0 < γ < 1 is the discount
factor. In this case, let Pa(s′|s) denote the transition probability from state s to state s′ under
the action a. The corresponding transition reward is r(s, a). We consider the stochastic policy
π : S → ∆(A) that specifies a probability density of all actions given the current state s. π(s, a)
denotes the probability to choose action a when the current state is s, and

∑
a∈A π(s, a) = 1. We

consider the on policy setting, where both target and behavior policies are π. The corresponding
action-value function Qπ(s, a) : S ×A → R is defined as

Qπ(s, a) := Eπ
[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a
]
,

and the associated value function Vπ : S → R is defined as

Vπ(s) := Eπ
[ ∞∑
t=0

γtr(st, at)|s0 = s
]

=
∑
a

π(s, a)Qπ(s, a).

It is evident that the restriction on discount 0 < γ < 1 can guarantee the boundedness of Qπ(s, a).
The Markovian property of MDP yields the following celebrated Bellman equation

TπQπ = Qπ, (3)

where the Bellman operator Tπ on a value function Qπ can be represented as

(TπQπ)(s, a) = r(s, a) + γ
∑
s′∈S
Pa(s′|s)Vπ(s′)

= r(s, a) + γ
∑
s′∈S
Pa(s′|s)

∑
a′

π(s′, a′)Qπ(s′, a′),

where s ∈ S, a ∈ A. Directly solving (3) needs O(|S|3|A|3) computational cost, which is very
expensive since |S||A| is usually very large. Thus, people turn to use a linear or non-linear approxi-
mation as Qπ ≈ Φ(θ) : RD → R|S||A|, where θ ∈ RD and D � |S||A|. In this way, the dimension
can be significantly reduced, and we can get an approximate solution very efficiently.

We collect necessary assumptions for MDP below.

Assumption 1 The transition rewards are uniformly bounded by 1, that is, |r(s, a)| ≤ 1, s ∈ S, a ∈
A. For any s ∈ A, it holds µ(s) = limt→∞ P(st = s|s0 = s′, a0 = a′) > 0. There exist constants
0 ≤ ρ < 1 and κ̄ > 0 such that∑

s∈S
|P(st = s|s0 = s′, a0 = a′)− µ(s)| ≤ κ̄ρt.

The boundedness of (r(s, s′))s,s′∈S comes from the finiteness of S. In Assumption 1, the uniform
boundedness assumption can be replaced by non-uniform boundedness in the finite state case. In this
paper, it is used for simplicity. The rest part of Assumption 1 is standard for the Markovian property.
It is well-known that irreducible and aperiodic Markov chains can always follow Assumption 1
[30]. For Assumption 1, the time that (st, at)t≥0 needed for its current state distribution to match
the stationary one with ε error in total variation distance is O(log 1

ε /log 1
ρ ). Thus, the constant ρ

represents the speed of the process accessing to the stationary distribution. In finite-time cases, it is
easy to prove that ρ is the second largest eigenvalue of P . We can see that the smaller ρ is, the faster
the process will converge to the stationary states.

2.2 Neural Temporal Difference Learning

Although we can get Qπ by solving the Bellman equation induced by the given policy π, in practice
S may contain a very large number of different states and actions, and it is hard to solve the Bellman
equation directly. Thus, alternative methods have been proposed, including leveraging the linear [48]
or non-linear approximations (e.g., kernel methods and neural networks [38]). This paper is devoted
to the study of the approximation using a L-hidden-layer ReLU neural network defined as

f(θ;x) =
√
mWLσ(WL−1 · · ·σ(W1x) · · · ),

4



where x ∈ Rd is the input data, W1 ∈ Rm×d, WL ∈ R1×m and Wl ∈ Rm×m for l = 2, . . . , L− 1,
and θ := [W1, . . . ,WL] denotes all the weights. In neural TD, we use the following approximation

Qπ(s, a) ≈ f(θ;φ(s, a)) =
√
mWLσ(WL−1 · · ·σ(W1φ(s, a)) · · · ),

where θ ∈ R(L−2)m2+md+m is the parameter vector, and m is usually set such that (L − 2)m2 +
md + m is smaller than |S||A| to reduce the difficulties caused by the high dimensionality. It is
worth mentioning that factor

√
m is multiplied to guarantee the output to be meaningful: in [Lemma

4.4, [8]], it is proved that f(θ;x) = Õ(1) as m is large and θ is randomly initialized. If we remove√
m, the function value is then of the order Õ(1/

√
m), which tends to 0 as m is large. We stress that

such a use is standard in ReLU network theory.

Assumption 2 For any state-action pair (s, a) ∈ S ×A, we assume the feature vector is uniformly
bounded such that ‖φ(s, a)‖ = 1.

A simple normalization can make Assumption 2 hold. This assumption is used to simplify coefficients
in the subsequent proofs.

Next, we present the scheme of neural temporal difference learning. With (sk, ak)k≥0 be-
ing a trajectory sampled from π and a hyper-parameter η > 0, the neural TD updates with
gk ← g(θk; sk, ak, sk+1, ak+1) in (1), where the stochastic semi-gradient is defined as

g(θ; sk, ak, sk+1, ak+1) := ∇θf(θ;φ(sk, ak)

× [f(θ;φ(sk, ak))− r(sk, ak)− γf(θ;φ(sk+1, ak+1))].
(4)

The projection in scheme (2) is used to ensure the boundedness of θk and simplify the convergence
analysis. In the deep neural network approximation, the searching area V is chosen as a ball around
the initialization θinit = [Winit

1 , . . . ,Winit
L ] for the ease of analysis. The detailed expression of the set

V is given as follows:

V := {θ = [W1, . . . ,WL]
∣∣‖Wl −Winit

l ‖ ≤ ω}, (5)

where 1 ≤ l ≤ L. It is assumed that θinit is chosen randomly from the Gaussian distribution, i.e.,
Winit

l is drawn from N (0, 1/m) with l = 1, . . . ,m.

The collection of all local linearization of f(θ;φ(s, a)) at the initial point θinit is defined as

FV,m := {f(θinit;φ(s, a)) + 〈∇θf(θinit;φ(s, a)),θ − θinit〉 : θ ∈ V}.
If the function f is linear, i.e.,

f(θ;φ(s, a)) = 〈θ, φ(s, a)〉, (6)

we can see that FV,m = {〈θ, φ(s, a)〉 : θ ∈ V}. The approximate stationary point of neural TD
associated with FV,m is defined as follows.

Definition 1 ([7]) A point θ∗ ∈ V is said to be the approximate stationary point if

〈h(θ∗),θ − θ∗〉 ≥ 0, ∀θ ∈ V, (7)

where
h(θ) := E

[
∆̂ (θ)∇θ f̂(θ;φ(s, a))

]
,

and the temporal difference error ∆̂ is defined as

∆̂(θ) = ∆̂(s, a, s′, a′;θ) := f̂(θ;φ(s, a))− r(s, a)− γf̂(θ;φ(s′, a′)), (8)

and f̂(θ;φ(s, a)) ∈ FV,m.

The convergence of neural TD is dependent on θ∗, and so is our result. In [7], it has been proved
that such a definition is well-defined; the approximate stationary point exists, minimizing the mean
squared projected Bellman error (MSPBE). Such a fact is more straightforward if the function f is
linear: the approximate stationary point of TD is identical to the unique solution to the projected
Bellman equation [50].
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Algorithm 1 Neural Adaptive Temporal Difference
Require: Parameters: η, γ, β, L, m, ω

Initialization: g0 = 0, m0 = 0, v0 = 0, Winit
l ∼ N (0, 1/m) with l = 1, . . . ,m, V is set as (5)

For k = 1, 2, . . .
1.sample the trajectory s0, a0, s1, a1, . . . from π
2.calculate gk = g(θk; sk, ak, sk+1, ak+1) as (4)
3.update the parameter θk as (2)

End for

2.3 Neural Adaptive Temporal Difference Learning

This paper considers the neural adaptive TD. In the kth iteration of neural adaptive TD, we sample
gk = g(θk; sk, ak, sk+1, ak+1) in (2) with stochastic semi-gradient (4). The set V is chosen as (5)
with θinit also being sampled from the Gaussian distribution.

2.4 Some Useful Properties

For neural adaptive TD, several bounds and properties are presented in the following lemma (c.f.
Lemma 6.1,[53]; Lemma 4.4, [8])

Lemma 1 Assume that (θk)1≤k≤K ∈ B(θ∗, ω), given any 0 < δ < 1 and K ∈ Z+, m, ω and L
satisfying

m ≥ C max{dL2 log
m

δ
, ω−4/3L−8/3 log

m

ωδ
}, C1d

3/2

Lm3/4
≤ ω ≤ C2

L6(logm)3
, (9)

then it holds

‖∇θf(θ;φ(s, a))‖ ≤ C3

√
m,∀s ∈ S, a ∈ A, (10)

and

|f(θk;x)| ≤ C4

√
log(K/δ), 1 ≤ k ≤ K. (11)

Denote that hk := ∆̂(θk)∇θ f̂(θk) (∆̂(θk) is given by (8)), it follows

‖gk − hk‖ ≤ C3(2 + γ)ω1/3L3
√
m logm log(K/δ) + C4ω

4/3L4
√
m logm+ C5ω

2L4m,
(12)

where gk is the stochastic semi-gradient in neural adaptive TD, and

‖gk‖ ≤ (2 + γ)C7

√
m log(K/δ) (13)

holds with probability at least 1− 2δ − 3L2 exp(−C6mω
2/3L) over the randomness of the initial

point, where {Ci > 0}i=1,...,7 and C > 0 are universal constants.

Lemma 1 has been proved by [Lemma 6.1, [53]] and [Lemma 4.4, [8]]. The bounds (10) and (11)
are only dependent on the structure of the neural networks. Our theory is built on Lemma 1. Without
the ReLU activation, Lemma 1 cannot be guaranteed to hold, and thus we only consider deep ReLU
networks in this paper. Indeed, due to the property of deep ReLU networks, there has been a line of
theoretical research on deep ReLU networks, see e.g. [54, 18, 40, 9, 55, 53]. From Lemma 1, with
high probabilities, vk ≤ (2+γ)2C2

7m log(K/δ)k when k ≤ K. But this is the worst-case bound and
may not always be achievable. From (4), we can see that gk keeps the sparsity of ∇θf(θk;φ(sk, ak)
because

[f(θk;φ(sk, ak))− r(sk, ak)− γf(θk;φ(sk+1, ak+1))] ∈ R.
Thus, the stochastic semi-gradient gk can be very sparse, based on which the following bound is
proposed.

Condition 1 In neural adaptive temporal difference learning, the following bound holds

vk ≤ C0[m log(K/δ)k]α, 0 < α ≤ 1, 1 ≤ k ≤ K. (14)

6



finite-time convergence

upper bound of
∑K
k=1 E(‖mk‖2/vk)

lower bound of
∑K
k=1 E(〈mk,θ∗ − θk〉/(vk)

1
2 )

Lemma 5 Lemma 6 Lemma 3

Figure 1: The roadmap of the proof.

We can see that α = 1 directly holds for (14) due to the bound (13); while 0 < α < 1 indicates the
stochastic semi-gradients decay fast. In applications, the sparse gradients can always obey such a
condition. We stress that such assumption is standard in the analysis of the Adam-type algorithms;
see, e.g., references [32, 20, 39, 11, 35, 45].

Now, we turn to the neural approximation case. As mentioned above, the convergence analysis uses
the approximate stationary point θ∗. One core part of our proofs is investigating h versus the iteration.
Due to the Markovian observation, sk, ak, sk+1, ak+1 may miss visiting several states in a single
sampling, i.e., choosing some states and actions with probability 0. That indicates E[hk] may be
a biased expectation of h. To get controlled difference bound, we consider E(h(θk−T ) | χk) and
h(θk−T ), where

h(θk−T ) := ∆̂(sk, ak, sk+1, ak+1;θk−T )∇θ f̂(θk−T ;φ(sk, ak)).

Although with biased samples, the Markov property means P(sk = s|sk−T = s′, ak−T = a′) is
sufficiently close to µ(s) when T is large. Such a technique then yields following lemma.

Lemma 2 Assume (θk)0≤k≤K is generated by neural adaptive TD, and condition (9) holds. Given
an integer 1 ≤ T ≤ K, as k ≥ T , we have∥∥∥E(h(θk−T ) | χk)− h(θk−T )

∥∥∥ ≤ (2 + γ)C3C4κ̄

√
m log

K

δ
ρT

with probability at least 1− 2δ − 3L2 exp(−C6mω
2/3L) over the randomness of the initial point.

The factor ρT in the upper bound in Lemma 2 comes from the Markovian noise. The lemma tells that
when T is large enough, the difference between Eh(θk−T ) and h(θk−T ) will be very small.

The lower bound directly holds based on the definitions above.

Lemma 3 For ∀θ ∈ V, it follows that

〈h(θ),θ − θ∗〉 ≥ (1− γ)E
(
f̂(θ; s, a)− f̂(θ∗; s, a)

)2
. (15)

3 Main Results

This section contains the finite-time analysis of adaptive TD using deep neural network approxi-
mations. The descriptions of convergence results are dependent on the notion of the approximate
stationary point θ∗.

3.1 Roadmap

We first provide a high level explanation of the proofs and how the technical lemmas work in the
proofs. Our proofs begin with a traditional idea of algorithmic convergence analysis, i.e., bounding
the gap (‖θ∗ − θk‖2)k≥0 versus the iteration. It is easy to have the following estimate

2η〈mk,θ∗ − θk〉/(vk)
1
2 ≤ ‖θ∗ − θk‖2 − ‖θ∗ − θk+1‖2 + η2‖mk‖2/vk.

7



Summing this inequality from k = 1 to K and taking expectation, we are led to

2η

K∑
k=1

E(〈mk,θ∗ − θk〉/(vk)
1
2 ) ≤ E‖θ∗ − θ1‖2 + η2

K∑
k=1

E(‖mk‖2/vk). (16)

Notice that (16) is very similar to the recursion of the well-known SGD. Recalling the finite-time
convergence analysis of SGD, we then get the big picture for the proof of our algorithms, which
contains two major steps and can be presented by Figure 1.

• Step 1. The first step is quite straightforward, i.e., bounding the summation
∑K
k=1 E(‖mk‖2/vk)

with high probability. This step is proved by Lemma 4 in the supplementary materials.

• Step 2. The second step is to establish a lower bound of
∑K
k=1 E(〈mk,θ∗−θk〉/(vk)

1
2 ). However,

it is much more complicated than the first step. To this end, we need to exploit the relation between
E〈mk,θ∗−θk〉/(vk)

1
2 and E〈h(θk),θ∗−θk〉/(vk−1)

1
2 (proved by Lemma 6 in the supplementary

materials). Nevertheless, we cannot directly get Lemma 6; we have to develop a technical lemma
that connects E〈θk − θ∗,h(θk)〉/(vk−1)

1
2 with E〈θ∗ − θk,gk〉/(vk−1)

1
2 (proved by Lemma 5

in the supplementary materials). Further with the connection between E〈h(θk),θk − θ∗〉 and
E
(
f̂(θk; s, a)− f̂(θ∗; s, a)

)2
(Lemma 3), we then prove the lower bound.

3.2 Finite-Time Analysis of Neural Adaptive TD

Now, we are prepared to present the convergence of neural adaptive TD.

Theorem 1 Suppose (θk)k≥0 is generated by neural adaptive TD under the Markovian observation,
and condition (9) holds, and Assumptions 1, 2, and condition (14) hold. Given the integer T ∈ Z+,
η > 0, v0 ≥ $ > 0, 0 ≤ β < 1, for K ≥ 2

2
2−αT , we have

min
1≤k≤K

E
(
f̂(θk; s, a)− f̂(θ∗; s, a)

)2 ≤ c1(m, η, α, T )

K1−α/2 +
c2(m, η, ω, α, T,K)

K1−α/2

+ c3(m,ω, α,K)ρTK
α
2 + c4(m,ω,K)

(17)

with probability at least 1− 2δ − 3L2 exp(−C6mω
2/3L) over the randomness of the initial point,

where

c1(m, η, α, T ) = Õ([m
α
2 T 2η2 +m

α
2 η] logK),

c2(m, η, ω, α, T,K) = O(ωm
1+α
2 logK +m

1+α
2 ω2T + ω

√
m/(K − T )),

c3(m,ω, α,K) = O([ωm
α+1
2 ] logK),

c4(m,ω,K) = Õ([ω
4
3
√
m+ ω

7
3
√
m+ ω3m] logK),

(18)

and their details are given by (29) in supplementary materials.

If we set the radius as ω = Θ(m−1/2) 4, and T = ln(mK)

ln 1
ρ

, and η = m−1/2, with (18), the right-hand

side of (17) is in the order of

Õ

(
1/(K1−α/2 ln2 1

ρ
) + 1/(K1−α/2 ln

1

ρ
) +m−

1
6

)
.

Thus, with high probability to achieve the ε-accuracy for min1≤k≤K Eπ
(
f̂(θk; s, a)− f̂(θ∗; s, a)

)2
,

we need that
m = Θ̃(1/ε6), 1/(K1−α/2 ln

1

ρ
) = Õ(ε).

Thus, we get the worst-case iteration complexity of K as follows

Õ

(
1

ε
2

2−α · ln
2

2−α ( 1
ρ )

)
. (19)

4Such a choice of the radius in neural TD is also used in [53].
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The worse case is α = 1, in which case we get the complexity as Õ(1/ε2). Note that even for SGD
without strong convexity, the optimal complexity is O(1/ε2) [Theorem 4, [17]]. Thus, our result
is nearly optimal (just with an additional logarithmic factor that barely hurting the rate). We can
see that when 0 ≤ α < 1, the worst iteration complexity of K is smaller than Õ

(
1

ε2 ln2( 1
ρ )

)
when

ε� 1/[ln( 1
ρ )], which indicates a faster speed than the neural TD. Due to that ε is the desired error

and thus can be very small, the acceleration always happens for a small α. Note that α = 1 directly
holds with any extra assumption. In this case, the iteration complexity of the adaptive neural TD
matches existing neural TD [53] in the case of DNN approximation.

It is worth mentioning that compared with the convergence rate of neural TD with ReLU deep
networks, we used the same searching radius and network width as presented by the authors of [53].
In applications, the sparse stochastic semi-gradients always yield the fast decaying condition. In
other words, with sparse stochastic semi-gradients, the neural adaptive TD also accelerates the vanilla
TD even in the ReLU network approximation case. Such a phenomenon resonates with the existing
acceleration results of adaptive methods for stochastic optimization: “for sparse data, the adaptive
methods are likely to perform better than non-adaptive methods” [20].

The scheme of neural TD uses a projection to the set V such that all iterates are constrained in
a small neighborhood around the initialization (also called NTK regime). Such a procedure is to
use the property of deep ReLU networks [7, 53]. Thus, the searching radius is small, which is
reasonable because in DNN training, the parameters usually only change in a very small range in the
overparameterized regime.

Proposition 1 Assume that conditions of Theorem 1 hold, and Condition 1 holds with 0 ≤ α <

1, ω = Θ(m−1/2), η = m−
1
2 ,m = Θ̃(1/ε6), ε� 1/[ln( 1

ρ )], the neural adaptive TD enjoys a faster
finite-time convergence rate than the neural TD in the ReLU DNN approximation of function values
with probability at least 1− 2δ − 3L2 exp(−C6mω

2/3L) over the randomness of the initial point.

In the following, we present a proposition that characterizes the difference between our established
results and the optimal action-value function.

Proposition 2 Assume conditions of Proposition 1 hold, with probability at least 1 − 2δ −
3L2 exp(−C6mω

2/3L) over the randomness of the initial point, we have

min
1≤k≤K

E
(
f(θk; s, a)−Q∗(s, a)

)2
= Õ

(
E[(ΠFV,m

(Q∗(s, a))−Q∗(s, a))2]

1− γ
+

1

ε
2

2−α · ln
2

2−α ( 1
ρ )

)
,

where ΠFV,m
(Q∗(s, a)) is projection of Q∗(s, a) to the linear function family FV,m, that

is, ΠFV,m
(Q∗(s, a)) := f(θinit;φ(s, a)) + 〈∇θf(θinit;φ(s, a)),θ† − θinit〉 with θ† ∈

arg minθ∈V

{∥∥∥f(θinit;φ(s, a)) + 〈∇θf(θinit;φ(s, a)),θ − θinit〉 −Q∗(s, a)
∥∥∥}.

Proposition 2 indicates that the algorithm can find the optimal action-value function Q∗(s, a) provided
that the function family FV,m contains Q∗(s, a).

4 Conclusions

This paper studies the finite-time convergence analyses of temporal difference learning with adaptive
learning rates and momentum approximated by deep ReLU neural networks using the Markovian
samplings. Our established theoretical results show that the neural adaptive temporal difference
learning is convergent when the neural network is sufficiently wide. Our work shows convergence
results and establishes the theoretical advantages of the adaptive algorithms for neural network
approximation cases, i.e., adaptive schemes achieve better rates than neural temporal difference
learning when the stochastic semi-gradients decay fast. There are numerous avenues for future works,
including 1) Can we extend the multiple ReLU active functions to others, e.g., sigmoid or more
general functions? 2) Can we establish the finite-time convergence of adaptive temporal difference
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learning with other kinds of neural network approximation, e.g., recurrent neural networks and graph
neural networks? 3) Can we get a relaxed bound for the radius of the searching area?
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A Other Technical Lemmas

In the proofs, we use three shorthand notations for simplifications. Those three notations are all related
to the iteration k. Assume (mk)k≥0, (θk)k≥0, (vk)k≥0 are all generated by the neural adaptive TD.
We denote

Ξk := E
(
‖mk‖2/(vk)

)
,

Υk := E
(
〈θk − θ∗,mk〉/(vk)

1
2

)
,

<k := (1− β)(1 + γ)C3C4

√
m log(K/δ)

T∑
h=1

Ξk−h

+ (1− β)(1 + γ)C3C4

√
m log(K/δ)

(1− β)ω2LT

$

+ ηβΞk +
(1− β)(2 + γ)C3C4ωκ̄

√
Lm log K

δ√
$

ρT

+ ω(2 + γ)C7

√
Lm log(K/δ)[

1

(vk−1)
1
2

− 1

(vk)
1
2

]

+
ω
√
L(1− β)

(vk)
1
2

(C3(2 + γ)ω1/3L3
√
m logm log(K/δ)

+ C4ω
4/3L4

√
m logm+ C5ω

2L4m).

(20)

The technical lemmas are all described using the notations given above.

Lemma 4 Let (Ξk)k≥0 be defined in (20) and v1 ≥ $ > 0, then we have
K∑
k=1

Ξk ≤
K−1∑
j=1

‖gj‖2/vj .

Further, if condition (9) holds, we then get
K∑
k=1

Ξk ≤ log
[ (K − 1)(2 + γ)2C2

7m log(K/δ)

$

]
.

with probability at least 1− 2δ − 3L2 exp(−C6mω
2/3L) over the randomness of the initial point.

Lemma 5 Assume condition (9) holds, given T ∈ Z+, with probability at least 1 − 2δ −
3L2 exp(−C6mω

2/3L), we have

E
[
〈θk − θ∗,gk〉/(vk−1)

1
2

]
≤ E

[
〈θk − θ∗,h(θk)〉/(vk−1)

1
2

]
+
ω
√
L

(vk)
1
2

(C3(2 + γ)ω1/3L3
√
m logm log(K/δ) + C4ω

4/3L4
√
m logm+ C5ω

2L4m)

+
(2 + γ)C3C4ωκ̄

√
Lm log K

δ ρ
T

√
$

+ (1 + γ)C3C4

√
m log(K/δ)

( T∑
h=1

E‖mk−h‖2

vk−h
+
ω2LT

$

)
.

Lemma 6 Let (Υk)k≥0 and (<k)k≥0 be defined in (20), then the following result holds for neural
adaptive TD

Υk + (1− β)E
(
〈θk − θ∗,h(θk)〉/(vk−1)

1
2

)
≤ βΥk−1 + <k. (21)
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B Proof of Theorem 1

The bounds in the proof are all with probability at least 1 − 2δ − 3L2 exp(−C6mω
2/3L). Given

K ∈ Z+, summing k = 1 to K of (21) gives us

(1− β)

K∑
k=T+1

E
(
〈θk − θ∗,h(θk)〉/(vk−1)

1
2

)

≤ −ΥK + (1− β)

K−1∑
k=T

(−Υk) +

K∑
k=T+1

<k

≤ (1− β)

K−1∑
k=T

(−Υk) +

K∑
k=T+1

<k +
ω(2 + γ)C7

√
m log(K/δ)

(vK)
1
2

,

(22)

where we used the fact that mk ≤ (2 + γ)C7

√
m log(K/δ) when k ≤ K. The convex projection is

contractive,

‖θ∗ − θk+1‖2 ≤ ‖θ∗ − θk − ηmk/(vk)
1
2 ‖2

≤ ‖θ∗ − θk‖2 + 2η〈mk,θk − θ∗〉/(vk)
1
2 + η2‖mk‖2/vk.

Taking the total condition expectation gives us

E‖θ∗ − θk+1‖2 ≤ E‖θ∗ − θk‖2 + 2ηΥk + η2Ξk,

which directly indicates the following inequality

K−1∑
k=T

−Υk ≤
E‖θ∗ − θT ‖2

2η
+
η

2

K−1∑
k=T

Ξk.

With (22), we can derive

K∑
k=T+1

E
(
〈θk − θ∗,h(θk)〉/(vk−1)

1
2

)

≤
K−1∑
k=T

(−Υk) +
1

1− β

K∑
k=T+1

<k + ω(2 + γ)C7

√
m log(K/δ)/[(1− β)($)

1
2 ]

≤ E‖θ∗ − θT ‖2

η
+ η

K−1∑
k=T

Ξk +
1

1− β

K∑
k=T+1

<k + ω(2 + γ)C7

√
m log(K/δ)/[(1− β)(vK)

1
2 ].

(23)

We use the following shorthand notations

ℵ0 = (1− β)(1 + γ)C3C4

√
m log(K/δ)

(1− β)ω2LT

$
,

ℵ1 :=
(2 + γ)C3C4ωκ̄

√
Lm log K

δ√
$

,

ℵ2 := ω(2 + γ)C7

√
Lm log(K/δ),

ℵ3 := ω
√
L(C3(2 + γ)ω1/3L3

√
m logm log(K/δ)

+ C4ω
4/3L4

√
m logm+ C5ω

2L4m).
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Using Lemma 7 and Lemma 4, we have the following bound

η

K−1∑
k=T

Ξk +
1

1− β

K∑
k=T+1

<k

≤ (1 + γ)C3C4η
√
m log(K/δ)

K∑
k=T+1

T∑
j=1

Ξk−j + η

K−1∑
k=T

Ξk +
ηβ

1− β

K∑
k=T+1

Ξk +
ℵ2

(vK)1/2

+ ℵ1ρT (K − T ) + ℵ0(K − T ) +

K∑
k=T

ℵ3
(vk−1)

1
2

≤
(
η + (1 + γ)C3C4η

√
m log(K/δ)T 2 +

ηβ

1− β

)
×

K∑
k=1

Ξk

+
ℵ2

(vK)1/2
+ ℵ1ρT (K − T ) + ℵ0(K − T ) +

K∑
k=T

ℵ3
(vk−1)

1
2

.

Further with Lemma 4, the upper bound of right side is bounded by(
η + (1 + γ)C3C4η

√
m log(K/δ)T 2 +

ηβ

1− β

)
× log

[ (K − 1)(2 + γ)2C2
7m log(K/δ)

$

]
+

ℵ2
(vK)1/2

+ ℵ1ρT (K − T ) + ℵ0(K − T ) +

K∑
k=T

ℵ3
(vk−1)

1
2

.

(24)

On the other hand, we have

K∑
k=T

E〈θk − θ∗,h(θk)〉/(vk−1)
1
2

≥
K∑
k=T

(1− γ)E
(
f̂(θk; s, a)− f̂(θ∗; s, a)

)2
(vk−1)

1
2

≥
[ K∑
k=T

(1− γ)

(vk−1)
1
2

]
· min
T≤k≤K

E
(
f̂(θk; s, a)− f̂(θ∗; s, a)

)2
.

(25)

Thus, we can get

min
T≤k≤K

E
(
f̂(θk; s, a)− f̂(θ∗; s, a)

)2
≤
(
η + (1 + γ)C3C4η

√
m log(K/δ)T 2 +

ηβ

1− β

)
× log

[ (K − 1)(2 + γ)2C2
7m log(K/δ)

$

]
/
[ K∑
k=T

(1− γ)

(vk−1)
1
2

]

+

(1+β)ℵ2
(vK)1/2

+ (ℵ1ρT + ℵ0)(K − T ) +
∑K
k=T

ℵ3
(vk−1)

1
2

+ Lω2

η

(
∑K
k=T

(1−γ)
(vk−1)

1
2

)
.

(26)

Notice that (vk)k≥0 is increasing,
∑K
k=T

(1−γ)
(vk−1)

1
2
≥ (K−T )(1−γ)

(vK−1)
1
2

, and thus

[ (1 + β)ℵ2
(vK)1/2

]/[ K∑
k=T

(1− γ)

(vk−1)
1
2

]
≤ (1 + β)ℵ2

(K − T )(1− γ)

(vK−1)
1
2

(vK)
1
2

≤ (1 + β)ℵ2
(K − T )(1− γ)

. (27)
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On the other hand, from Lemma 1, with high probabilities, vk ≤ (2 + γ)2C2
7m log(K/δ)k when

k ≤ K, and then we can get

K∑
k=T

1/(vk−1)
1
2 ≥

K∑
k=T

1

C0(m log(K/δ)k)α/2
≥ 2(K1−α/2 − T 1−α/2)

αC0(m log(K/δ))α/2
≥ K1−α/2

αC0(m log(K/δ))α/2
,

(28)

where we used K ≥ 2
2

2−αT to get 2(K1−α/2 − T 1−α/2) ≥ K1−α/2. Combing (27), (28) and (26),
we are led to

min
1≤k≤K

E
(
f̂(θk; s, a)− f̂(θ∗; s, a)

)2
≤ min
T≤k≤K

E
(
f̂(θk; s, a)− f̂(θ∗; s, a)

)2
≤
(

(1 + γ)C3C4η
√
m log(K/δ)T 2 +

η + ηβ

(1− γ)(1− β)

)
× log

[ (K − 1)(2 + γ)2C2
7m log(K/δ)

$

]
× C0(m log(K/δ))α/2/K1−α/2 +

ω(2 + γ)C0C7L[m log(K/δ)]
1+α
2

(1− γ)(1− β)
√
$

/K1−α/2

+ (1− β)2(1 + γ)C0C3C4(m log(K/δ))
α+1
2
ω2LT

$
/K1−α/2

+
(2 + γ)C0C3C7ωκ̄

√
Lm log K

δ (m log(K/δ))α/2

√
$(1− γ)

ρTKα/2

+
ω
√
L(1− β)

(1− γ)
(C3(2 + γ)ω1/3L3

√
m logm log(K/δ)

+ C4ω
4/3L4

√
m logm+ C5ω

2L4m) +

Lω2

η C0(m log(K/δ))α/2

(1− γ)K1−α/2 +
2(2 + γ)C7ω

√
Lm log(K/δ)

(K − T )(1− γ)
.

Letting

c1(m, η, α, T,K) :=

(
(1 + γ)C3C4η

√
m log(K/δ)T 2 +

η + ηβ

(1− γ)(1− β)

)
× log

[ (K − 1)(2 + γ)2C2
7m log(K/δ)

$

]
C0(m log(K/δ))

α
2 ,

c2(m, η, ω, α, T,K) :=
2ω(2 + γ)C0C7L[m log(K/δ)]

1+α
2

(1− γ)(1− β)
√
$

+

Lω2

η C0(m log(K/δ))α/2

1− γ
+

2(2 + γ)C7ω
√
Lm log(K/δ)

(K − T )(1− γ)

+ (1− β)2(1 + γ)C0C3C4(m log(K/δ))
α+1
2
ω2LT

$
,

c3(m,ω, α,K) :=
2(2 + γ)C0C3C7ωκ̄

√
Lm log K

δ (m log(K/δ))α/2

√
$(1− γ)

,

c4(m,ω,K) :=
ω
√
L(1− β)

(1− γ)

(
C3(2 + γ)ω1/3L3

√
m logm log(K/δ)

+ C4ω
4/3L4

√
m logm+ C5ω

2L4m
)
,

(29)

which complete the proof.
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C Proof of Proposition 2

The proof is similar to the the proof of [Theorem 5.6,[53]] and is presented here for completeness.
With the Cauchy’s inequality,

E
(
f(θk; s, a)−Q∗(s, a)

)2 ≤ 3E
(
f(θk; s, a)− f̂(θk; s, a)

)2
+ 3E

(
f̂(θk; s, a)− f̂(θ∗; s, a)

)2
+ 3E

(
f̂(θ∗; s, a)−Q∗(s, a)

)2
. (30)

With (Theorems 5.3 and 5.4 in [8]] and ω = Θ(m−1/2), we have

E
(
f(θk; s, a)− f̂(θk; s, a)

)2
= Õ(m−1/3)

with probability at least 1− δ.

Notice that that f̂(θ∗; s, a) is the fixed point of ΠFV,m
Tπ(·) and Q∗(s, a) is the fixed point of Tπ(·),

respectively. For any (s, a), we thus have

|f̂(θ∗; s, a)−Q∗(s, a)| = |f̂(θ∗; s, a)−ΠFV,m
Tπ(Q∗(s, a)) + ΠFV,m

Tπ(Q∗(s, a))−Q∗(s, a)|

= |ProjFV,m
Tπ(f̂(θ∗; s, a))−ΠFV,m

Tπ(Q∗(s, a)) + ΠFV,m
Tπ(Q∗(s, a))−Q∗(s, a)|

= |ProjFV,m
Tπ(f̂(θ∗; s, a))−ΠFV,m

Tπ(Q∗(s, a)) + ΠFV,m
(Q∗(s, a))−Q∗(s, a)|

≤ γ|f̂(θ∗; s, a)−Q∗(s, a)|+ |ΠFV,m
(Q∗(s, a))−Q∗(s, a)|,

where we used that fact that ΠFV,m
Tπ(·) is γ-contract. Hence, we are led to

|f̂(θ∗; s, a)−Q∗(s, a)| ≤
|ΠFV,m

(Q∗(s, a))−Q∗(s, a)|
1− γ

.

Turing back to (30),

E
(
f(θk; s, a)−Q∗(s, a)

)2
= Õ(m−1/3 + E

(
f̂(θk; s, a)− f̂(θ∗; s, a)

)2
+

E[(ΠFV,m
(Q∗(s, a))−Q∗(s, a))2]

(1− γ)2
).

Note that E
(
f̂(θk; s, a) − f̂(θ∗; s, a)

)2
has been bounded by Proposition 1, we then proved the

result.

D Proofs of Technical Lemmas

D.1 Proof of Lemma 2

Given a fixed integer T , direct calculations give us

E(h(θk−T ; sk, ak, sk+1, ak+1) | σk−T )

=
∑

s,s′∈S,a,a′∈A
P(sk = s | sk−T , ak−T )P(a, s′, a′|s)

×∇θ f̂
(
θk−T ;φ(s, a)

)
∆̂
(
θk−T ; s, a, s′, a′

)
=

∑
s,s′∈S,a,a′∈A

µ(s)P(a, s′, a′|s)∇θ f̂
(
θk−T ;φ(s, a)

)
× ∆̂

(
θk−T ; s, a, s′, a′

)
+

∑
s,s′∈S,a,a′∈A

P(a, s′, a′|s)(P(sk = s | sk−T , ak−T )− µ(s))∇θ f̂
(
θk−T ;φ(s, a)

)
× ∆̂

(
θk−T ; s, a, s′, a′

)
.

(31)

Notice that the following expectation∑
s,s′∈S,a,a′∈A

µ(s))P(a, s′, a′|s)∇θ f̂
(
θk−T ;φ(s, a)

)
∆̂
(
θk−T ; s, a, s′, a′

)
= h(θk−T ).
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The Markovian property tells us
∑
s∈S |P(sk = s | sk−T , ak−T )− µ(s)| ≤ κ̄ρT . Due to that f̂ ∈

FV,m, ∇θ f̂
(
θk−T ;φ(s, a)

)
= ∇θf

(
θinit;φ(s, a)

)
. With Lemma 1, ‖∇θ f̂

(
θk−T ;φ(s, a)

)
‖ ≤

C3
√
m and

|∆̂
(
θk−T ; s, a, s′, a′

)
| =

∣∣∣f̂(θk−T ;φ(s, a))− r(s, s′)− γf̂(θk−T ;φ(s′, a′))
∣∣∣

≤ (2 + γ)C4

√
log

K

δ
,

with probability at least 1− 2δ − 3L2 exp(−C6mω
2/3L).

D.2 Proof of Lemma 3

With the definition of the stationary point, we have 〈h(θ∗),θ − θ∗〉 ≥ 0. Therefore, we are led to

〈h(θ),θ − θ∗〉 ≥ 〈h(θ)− h(θ∗),θ − θ∗〉
= E

[(
∆̂(s, a, s′, a′;θ)− ∆̂(s, a, s′, a′;θ∗)

)
〉 × ∇θf(θ0; s, a),θ − θ∗〉 | θinit]

= E
[(
f̂(θ; s, a)− f̂(θ∗; s, a)

)
× 〈∇θf(θ0; s, a),θ − θ∗〉 | θinit]

− γE
[(
f̂(θ; s′, a′)− f̂(θ∗; s′, a′)

)
× 〈∇θf(θ0; s, a),θ − θ∗〉 | θinit

]
= E

[
|f̂(θ; s, a)− f̂(θ∗; s, a)|2 | θinit]
− γE

[(
f̂(θ; s′, a′)− f̂(θ∗; s′, a′)

)
×
(
f̂(θ; s, a)− f̂(θ∗; s, a)

)
| θinit

]
≥ (1− γ)E

[
|f̂(θ; s, a)− f̂(θ∗; s, a)|2 | θinit],

where we used

E
[(
f̂(θ; s′, a′)− f̂(θ∗; s′, a′)

)(
f̂(θ; s, a)− f̂(θ∗; s, a)

)
| θinit

]
≤E
[
f̂(θ; s′, a′)− f̂(θ∗; s′, a′) | θinit

]
· E
[
f̂(θ; s, a)− f̂(θ∗; s, a)) | θinit

]
and

E
[
f̂(θ; s′, a′)− f̂(θ∗; s′, a′) | θinit

]
= E

[
f̂(θ; s, a)− f̂(θ∗; s, a)) | θinit

]
for the same distribution for s, a and s′, a′. Furthermore, with Assumption 3, we then proved the
result.

D.3 Proof of Lemma 4

Recall mk = (1− β)
∑k−1
j=1 β

k−1−jgj and vk ≥ v1 ≥ $ > 0, we then have

‖mk‖2/vk ≤ (1− β)2‖
k−1∑
j=1

βk−1−jgj/(vk)
1
2 ‖2

a)

≤ (1− β)2(

k−1∑
j=1

βk−1−j) ·
k−1∑
j=1

βk−1−j‖gj‖2/vk

≤ (1− β)2 · 1

1− β
·
k−1∑
j=1

βk−1−j‖gj‖2/vk

= (1− β) ·
k−1∑
j=1

βk−1−j‖gj‖2/vk

b)
= (1− β) ·

k−1∑
j=1

βk−1−j‖gj‖2/vj

19



where a) uses the fact
∑d
i=1(

∑k−1
j=1 ajbi,j)

2 ≤
∑d
i=1

∑k−1
j=1 a

2
j

∑k−1
j=1 b

2
i,j with aj = β

k−1−j
2 and

bi,j = β
k−1−j

2 gji /(v
k)

1
2 for any i ∈ {1, 2, . . . , d}, and b) is due to vj ≤ vk when j ≤ k − 1. Then,

we get

K∑
k=1

k−1∑
j=1

βk−1−j‖gj‖2/vj =

K−1∑
j=1

K−1∑
k=j

βk−j‖gj‖2/vj

=

K−1∑
j=1

K−1∑
k=j

βk−j‖gj‖2/vj ≤ 1

1− β

K−1∑
j=1

‖gj‖2/vj .

Combining the inequalities above, we then get the result. To get the second bound, we used Lemma 7
below.

Lemma 7 ([10, 31]) For $ ≤ ai ≤ ā, we have

T∑
t=1

at∑t
i=1 ai

≤ log(
T ā

$
).

Directly using Lemma 7 and Lemma 10, we then get the results.

D.4 Proof of Lemma 5

Notice that

E
[
〈θk − θ∗,gk〉/(vk−1)

1
2

]
= E

[
〈θk − θ∗,hk〉/(vk−1)

1
2

]
+ E

[
〈θk − θ∗,gk − hk〉/(vk−1)

1
2

]
. (32)

We have known that 〈θk − θ∗,gk − hk〉/(vk−1)
1
2 , which can be bounded by Lemma 1. Now we

consider the term E
[
〈θk − θ∗,hk〉/(vk−1)

1
2

]
. Direct calculation gives us

E
[
〈θk − θ∗,hk〉/(vk−1)

1
2

]
a)
= E

[
〈θk − θ∗,h(θk)〉/(vk−1)

1
2

]
+ E
| 〈θk − θ∗,

[
hk − h(θk−T ; sk, ak, sk+1, ak+1)

]
〉 |

(vk−1)
1
2︸ ︷︷ ︸

I

+ E
| 〈θk − θ∗,

[
h(θk−T ; sk, ak, sk+1, ak+1)− h(θk−T )

]
〉 |

(vk−1)
1
2︸ ︷︷ ︸

II

+ E
[
| 〈θk − θ∗,

[
h(θk−T )− h(θk)

]
〉 | /(vk−1)

1
2

]
︸ ︷︷ ︸

III

, (33)

where a) depends on the fact that hk = h(θk) + hk − h(θk−T ; sk, ak, sk+1, ak+1) +

h(θk−T ; sk, ak, sk+1, ak+1) − h(θk−T ) + h(θk−T ) − h(θk). Note that, with probability at least
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1− 2δ − 3L2 exp(−C6mω
2/3L), we have∥∥∥ [hk − h(θk−T ; sk, ak, sk+1, ak+1)

] ∥∥∥
≤ ‖∆̂

(
θk; sk, ak, sk+1, ak+1

)
∇θ f̂(θk;φ(sk, ak))

− ∆̂
(
θk−T ; sk, ak, sk+1, ak+1

)
∇θ f̂(θk−T ;φ(sk, ak))‖

≤ ‖∆̂
(
θk; sk, ak, sk+1, ak+1

)
∇θ f̂(θk;φ(sk, ak))

− ∆̂
(
θk−T ; sk, ak, sk+1, ak+1

)
∇θ f̂(θk;φ(sk, ak))‖

a)

≤ ‖∆̂
(
θk; sk, ak, sk+1, ak+1

)
− ∆̂

(
θk−T ; sk, ak, sk+1, ak+1

)
‖ · ‖∇θ f̂(θk;φ(sk, ak))‖

b)

≤ (‖∇θ f̂(θk;φ(sk, ak))‖+ γ‖∇θ f̂(θk;φ(sk+1, ak+1))‖)× ‖θk − θk−T ‖ · ‖∇θ f̂(θk;φ(y))‖

≤ (1 + γ)C3C4

√
m log(K/δ)‖θk − θk−T ‖,

where a) used∇θ f̂(θk−T ) = ∇θ f̂(θk), and b) is from Lemma 1. Thus, with the same probability,
we have

I ≤ (1 + γ)C3C4

√
m log(K/δ)× E

[
‖θk − θ∗‖ · ‖θk − θk−T ‖/(vk−1)

1
2

]
.

With definition of h and the same procedure of the bound for I ,

III ≤ (1 + γ)C3C4

√
m log(K/δ)× E

[
‖θk − θ∗‖ · ‖θk − θk−T ‖/(vk−1)

1
2

]
.

With Lemma 2, we can get

II ≤ (2 + γ)C3C4ωκ̄

√
Lm log

K

δ
ρT /(vk−1)

1
2

≤ (2 + γ)C3C4ωκ̄

√
Lm log

K

δ
ρT /($)

1
2 .

with probability at least 1− 2δ − 3L2 exp(−C6mω
2/3L). Combing the bounds I and III together,

we have

I + III ≤ (1 + γ)C3C4

√
m log(K/δ)×

T∑
h=1

E
[‖θk − θ∗‖ · ‖θk+1−h − θk−h‖

(vk−1)
1
2

]
≤ 2(1 + γ)C3C4η

√
m log(K/δ)×

T∑
h=1

E
[‖θk − θ∗‖ · ‖mk−h‖

(vk−1)
1
2 · (vk−h)

1
2

]
, (34)

where we used the following estimate

‖θk+1−h − θk−h‖ = ‖ProjV(θk−h − ηmk−h/(vk−h)
1
2 )−ProjV(θk−h)‖ ≤ η‖mk−h/(vk−h)

1
2 ‖.

The Cauchy-Schwarz inequality then gives us

T∑
h=1

‖θk − θ∗‖ · ‖mk−h‖
(vk−1)

1
2 · (vk−h)

1
2

≤
T∑
h=1

‖θk − θ∗‖
(vk−1)1/2

· ‖m
k−h‖

(vk−h)1/2

≤
T∑
h=1

(‖θk − θ∗‖2

vk−1
+
‖mk−h‖2

vk−h

)
≤

T∑
h=1

(ω2L

$
+
‖mk−h‖2

vk−h

)
. (35)

Combining (33), (34), (35) and (12), we then get the result.
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D.5 Proof of Lemma 6

Obviously it holds that

E

(
〈θk − θ∗,mk〉

(vk)
1
2

)
= E

(
〈θk − θ∗,mk〉

(vk−1)
1
2

)
︸ ︷︷ ︸

I

+E

(
〈θk − θ∗,mk〉

(vk)
1
2

− 〈θ
k − θ∗,mk〉
(vk−1)

1
2

)
︸ ︷︷ ︸

II

We first consider the term II. With the Cauchy’s inequality, we are led to

II ≤ ‖θk − θ∗‖ · ‖mk‖ · (1/(vk−1)
1
2 − 1/(vk)

1
2 )

≤ ω(2 + γ)C7

√
Lm log(K/δ)(1/(vk−1)

1
2 − 1/(vk)

1
2 ),

with probability at least 1 − 2δ − 3L2 exp(−C6mω
2/3L). We use a shorthand notation Λ :=

E(〈θk − θ∗,gk〉/(vk−1)
1
2 ) and then get

I = E
(
〈θk − θ∗, βmk−1 + (1− β)gk〉/(vk−1)

1
2

)
= (1− β) · Λ + β〈θk − θ∗,mk−1〉/(vk−1)

1
2

= (1− β) · Λ + β〈θk−1 − θ∗,mk−1〉/(vk−1)
1
2 + β〈θk − θk−1,mk−1〉/(vk−1)

1
2

a)

≤ (1− β) · Λ + β〈θk−1 − θ∗,mk−1〉/(vk−1)
1
2 + β‖θk−1 − θk‖ · ‖mk−1‖/(vk−1)

1
2

b)

≤ (1− β) · Λ + β〈θk−1 − θ∗,mk−1/(vk−1)
1
2 〉+ ηβ‖mk−1‖2/(vk−1)

≤ (1− β) · Λ + β〈θk−1 − θ∗,mk−1/(vk−1)
1
2 〉+ ηβ‖mk−1‖2/(vk−1),

where a) uses the Cauchy’s inequality, and b) depends on the scheme of the algorithm. Taking
expectations on both sides of I, we are then led to

I ≤ (1− β)E
(
〈θk − θ∗,gk〉/(vk−1)

1
2

)
+ βΥk−1 + ηβE

(
‖mk−1‖2/(vk−1)

)
.

Combination of the inequalities I, II and Lemma 5 gives the final result.
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