
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Decentralized Federated Averaging
Tao Sun, Dongsheng Li, and Bao Wang

F

Abstract—Federated averaging (FedAvg) is a communication efficient
algorithm for the distributed training with an enormous number of clients.
In FedAvg, clients keep their data locally for privacy protection; a central
parameter server is used to communicate between clients. This central
server distributes the parameters to each client and collects the up-
dated parameters from clients. FedAvg is mostly studied in centralized
fashions, which requires massive communication between server and
clients in each communication. Moreover, attacking the central server
can break the whole system’s privacy. In this paper, we study the de-
centralized FedAvg with momentum (DFedAvgM), which is implemented
on clients that are connected by an undirected graph. In DFedAvgM,
all clients perform stochastic gradient descent with momentum and
communicate with their neighbors only. To further reduce the commu-
nication cost, we also consider the quantized DFedAvgM. We prove
convergence of the (quantized) DFedAvgM under trivial assumptions;
the convergence rate can be improved when the loss function satisfies
the PŁ property. Finally, we numerically verify the efficacy of DFedAvgM.

Index Terms—Decentralized Optimization, Federated Averaging, Mo-
mentum, Stochastic Gradient Descent

1 INTRODUCTION

Federated learning (FL) is a privacy-preserving distributed
machine learning (ML) paradigm [1]. In FL, a central server
connects with enormous clients (e.g., mobile phones, pad,
etc.); the clients keep their data without sharing it with the
server. In each communication round, clients receive the
current global model from the server, and a small portion of
clients are selected to update the global model by running
stochastic gradient descent (SGD) [2] for multiple iterations
using local data. The central server then aggregates these
updated parameters to obtain the updated global model.
The above learning algorithm is known as federated average
(FedAvg) [1]. In particular, if the clients are homogeneous,
FedAvg is equivalent to the local SGD [3]. FedAvg involves
multiple local SGD updates and one aggregation by the
server in each communication round, which significantly
reduces the communication cost between sever and clients
compared to the conventional distributed training with one
local SGD update and one communication.

In FL applications, large companies and government
organizations usually play the role of the central server. On

This work is sponsored in part by the National Key R&D Program of
China under Grant (2018YFB0204300) and the National Natural Science
Foundation of China under Grants (61932001 and 61906200).

Tao Sun and Dongsheng Li are with the College of Computer, National
University of Defense Technology, Changsha, 410073, Hunan, China. (e-mails:
nudtsuntao@163.com, dsli@nudt.edu.cn)

Bao Wang is with the Scientific Computing & Imaging Institute, University
of Utah, USA. (e-mail: wangbaonj@gmail.com)

Dongsheng Li and Bao Wang the co-corresponding authors.

the one hand, since the number of clients in FL is massive,
the communication cost between the server and clients can
be a bottleneck [4]. On the other hand, the updated models
collected from clients encode the private information of the
local data; hackers can attack the central server to break the
privacy of the whole system, which remains the privacy
issue as a serious concern. To this end, decentralized fed-
erated learning has been proposed [5], [6], where all clients
are connected with an undirected graph. Decentralized FL
replaces the server-clients communication in FL with clients-
clients communication.

In this paper, we consider two issues about decentral-
ized FL: 1) Although there is no expensive communication
between server and clients in decentralized FL, the commu-
nication between local clients is costly when the ML model
itself is large. Therefore, it is crucial to ask can we reduce the
communication cost between clients? 2) Momentum is a well-
known acceleration technique for SGD [7]. It is natural to
ask can we use SGD with momentum to improve the training
of ML models in decentralized FL with theoretical convergence
guarantees?

1.1 Our Contributions

We answer the above questions affirmatively by proposing
the decentralized FedAvg with momentum (DFedAvgM). To
further reduce the communication cost between clients, we
also integrate quantization with DFedAvgM. Our contribu-
tions in this paper are elaborated below in threefold.
• Algorithmically, we extend FedAvg to the decentralized

setting, where all clients are connected by an undirected
graph. We motivate DFedAvgM from the decentralized
SGD (DSGD) algorithm. In particular, we use SGD with
momentum to train ML models on each client. To reduce
the communication cost between each client, we further
introduce a quantized version of DFedAvgM, in which
each client will send and receive a quantized model.

• Theoretically, we prove the convergence of (quantized)
DFedAvgM. Our theoretical results show that the
convergence rate of (quantized) DFedAvgM is not
inferior to that of SGD or DSGD. More specifically, we
show that the convergence rates of both DFedAvgM
and quantized DFedAvgM depend on the local training
and the graph that connects all clients. Besides the
convergence results under nonconvex assumptions,
we also establish their convergence guarantee under
the Polyak-Łojasiewicz (PŁ) condition, which has been
widely studied in nonconvex optimization. Under the

ar
X

iv
:2

10
4.

11
37

5v
1

 [
cs

.D
C

]
 2

3
A

pr
 2

02
1

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

PŁ condition, we establish a faster convergence rate
for (quantized) DFedAvgM. Furthermore, we present a
sufficient condition to guarantee reducing communication
costs.

• Empirically, we perform extensive numerical experiments
on training deep neural networks (DNNs) on various
datasets in both IID and Non-IID settings. Our results
show the effectiveness of (quantized) DFedAvgM for
training ML models, saving communication costs, and
protecting training data’s membership privacy.

1.2 More Related Works
We briefly review three lines of work that are most related
to this paper, i.e., federated learning, decentralized training,
and decentralized federated learning.

Federated Learning. Many variants of FedAvg have
been developed with theoretical guarantees. [8] uses the mo-
mentum method for local clients in FedAvg. [9] proposes the
adaptive FedAvg, whose central parameter server uses the
adaptive learning rate ti aggregate local models. Lazy and
quantizatized gradients are used to reduce communications
[10], [11]. [12] proposes a Newton-type scheme for FL. The
convergence analysis of FedAvg on heterogeneous data is
discussed by [13], [14]. The advances and open problems in
FL is available in two survey papers [15], [16].

Decentralized Training. Decentralized algorithms are
originally developed to calculate the mean of data that
are distributed over multiple sensors [17], [18], [19], [20].
Decentralized (sub)gradient descents (DGD), one of the
simplest and efficient decentralized algorithms, have been
studied in [21], [22], [23], [24], [25]. In DGD, the convexity
assumption is unnecessary [26], which makes DGD useful
for nonconvex optimization. A provably convergent DSGD
is proposed in [27], [28], [4]. [27] provides the complexity
result of a stochastic decentralized algorithm. [28] designs
a stochastic decentralized algorithm with the dual infor-
mation and provide the theoretical convergence guarantee.
[4] proves that DSGD outperforms SGD in communication
efficiency. Asynchronous DSGD is analyzed in [29]. DGD
with momentum is proposed in [30], [31]. Quantized DSGD
has been proposed in [32].

Decentralized Federated Learning. Decentralized FL is
a learning paradigm of choice when the edge devices do
not trust the central server in protecting their privacy [33].
The authors in [34] propose a novel FL framework without a
central server for medical applications, and the new method
offers a highly dynamic peer-to-peer environment. [6] con-
siders training an ML model with a connected network
whose nodes take a Bayesian-like approach by introducing
a belief of the parameter space.

1.3 Organizations
We organize this paper as follows: in section 2, we present
a mathematical formulation of our problem and some nec-
essary assumption. In section 3, we present the DFedAvgM
and its quantized algorithms. We present the convergence of
the proposed algorithm in section 4. We provide extensive
numerical verification of DFedAvgM in section 6. This paper
ends up with concluding remarks. Technical proofs and
more experimental details are provided in the appendix.

1.4 Notation

We denote scalars and vectors by lower case and lower case
boldface letters, respectively, and matrices by upper case
boldface letters. For a vector x = (x1, · · · , xd) ∈ Rd, we
denote its `p norm (p ≥ 1) by ‖x‖p = (

∑d
i=1 |xi|p)1/p, and

denote the `∞ norm of x by ‖x‖∞ = maxdi=1 |xi| and denote
`2 norm as ‖x‖. For a matrix A, we denote its transpose
as A>. Given two sequences {an} and {bn}, we write
an = O(bn) if there exists a positive constant 0 < C < +∞
such that an ≤ Cbn, and we write an = Θ(bn) if there
exist two positive constants C1 and C2 such that an ≤ C1bn
and bn ≤ C2an. Õ(an) hides the logarithmic factor of an.
For a function f(x) : Rd → R, we denote its gradient as
∇f(x) and its Hessian as ∇2f(x), and denote its minimum
as min f . We use E[·] to denote the expectation with respect
to the underlying probability space.

2 PROBLEM FORMULATION AND ASSUMPTIONS

We consider the following optimization task

min
x∈Rd

f(x) :=
1

m

m∑
i=1

fi(x), fi(x) = Eξ∼DiFi(x; ξ), (1)

whereDi denotes the data distribution in the i-th client and
Fi(x; ξ) is the loss function associated with the training data
ξ. Problem (1) models many applications in ML, which is
known as empirical risk minimization (ERM). We list several
assumptions for the subsequent analysis.
Assumption 1. The function fi is differentiable and∇fi is L-

Lipschitz continuous, ∀i ∈ {1, 2, . . . ,m}, i.e., ‖∇fi(x)−
∇fi(y)‖ ≤ L‖x− y‖, for all x,y ∈ Rd.

The first-order Lipschitz assumption is commonly used in
the ML community. Here, for simplicity, we suppose all
functions enjoy the same Lipschitz constant L. We can also
assume that these functions have non-uniform Lipschitz
constants, which does not affect our convergent analysis.
Assumption 2. The gradient of the function fi have σl-

bounded variance, i.e., E[‖∇Fi(x; ξ) − ∇fi(x)‖2] ≤
σ2
l for all x ∈ Rd ∀i ∈ {1, 2, . . . ,m}. This paper

also assumes the (global) variance is bounded, i.e.,
1
m

∑m
i=1 ‖∇fi(x)−∇f(x)‖2 ≤ σ2

g for all x ∈ Rd.

The uniform local variance assumption is also used for
the ease of presentation, which is straightforward to gener-
alize to non-uniform cases. The global variance assumption
is used in [9], [35]. The constant σg reflects the heterogeneity
of the data sets (Di)1≤i≤m, and when (Di)1≤i≤m follow the
same distribution, σg = 0.
Assumption 3. [36], [4] For any i ∈ {1, 2, . . . ,m} and x ∈

Rd, we have ‖∇fi(x)‖ ≤ B for some B > 0.

An important notion in decentralized optimization is the
mixing matrix, which is usually associated with a connected
graph G = (V, E) with the vertex set V = {1, ...,m} and
the edge set E ⊆ V × V . Any edge (i, l) ∈ E represents a
communication link between nodes i and l. We recall the
definition of the mixing matrix associated with the graph G.
Definition 1 (Mixing matrix). The mixing matrix W =

[wi,j] ∈ Rm×m is assumed to have the following prop-
erties: 1. (Graph) If i 6= j and (i, j) /∈ E , then wi,j = 0,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

otherwise, wi,j > 0; 2. (Symmetry) W = W>; 3. (Null
space property) null{I −W} = span{1}; 4. (Spectral
property) I �W � −I.
For a graph, the corresponding mixing matrix is

not unique; given the adjacency matrix of a graph,
its maximum-degree matrix and metropolis-hastings [37]
are both mixing matrices. The symmetric property of
W indicates that its eigenvalues are real and can
be sorted in the non-increasing order. Let λi(W)
denote the i-th largest eigenvalue of W, that is,
λ1(W) = 1 > λ2(W) ≥ · · · ≥ λm(W) > −1.1 The mixing
matrix also serves as a probability transition matrix
of a Markov chain. A quite important constant of W
is λ = λ(W) := max{|λ2(W)|, |λm(W)|}, which describes
the speed of the Markov chain introduced by the mixing
matrix converges to the stable state.

3 DECENTRALIZED FEDERATED AVERAGING

3.1 Decentralized FedAvg with Momentum
We first briefly review the previous work on decentralized
training, which carries out in the following fashion:
1) client i holds an approximate copy of the parameters

x(i) ∈ Rd and calculate an unbiased estimate of ∇fi :=
g(i) at x(i). (x(i))1≤i≤m can be non-consensus;

2) (communication) client i updates its local parameters
x(i) as the weighted average of its neighbors: x̃(i) =∑
l∈N (i) wi,lx(l);

3) (training) client i updates its parameters as x(i)← x̃(i)−
ηg(i) with a learning rate η > 0.

Algorithm 1 DFedAvgM
1: Parameters: η > 0,K ∈ Z+, 0 ≤ θ < 1.
2: Initialization: x0 = 0
3: for t = 1, 2, . . . do
4: for i = {1, 2, . . . ,m} do
5: node i performs local training (4) K times and sends

zt(i) = yt,K(i) to N (i)
6: node i updates as (5)
7: end for
8: end for

The traditional decentralization can be described in Fig-
ure 1 (a), in which, a communication step is needed after
each training iteration. This indicate that the above vanilla
decentralized algorithm is different from FedAvg, and the
later performs multiple local training step before communi-
cation. To this end, we have to slightly modify the scheme
of the decentralized algorithm. For simplicity, we consider
modifying DSGD to motivate our decentralized FedAvg
algorithm. Note that when the original DGD is applied to
solve (1), we end up with the following iteration

xt+1(i) =
∑

l∈N (i)

wi,lx
t(l)− γgt(i)

=
∑

l∈N (i)

wi,l[x
t(l)− γgt(i)],

(2)

where we used the fact that
∑
l∈N (i) wi,l = 1. In (2), if we

replace xt(l) by xt(i), the algorithm then iterates as
xt+1(i) =

∑
l∈N (i)

wi,l[x
t(i)− γgt(i)]. (3)

1. This is based on the spectral property of mixing matrix.

In (3), clients communicate with their neighbors after one
training iteration, which is then possible to generalize to
the federated optimization setting. We replace the single
SGD iteration in (3) with multiple SGD with heavy-ball [38]
iterations. Therefore, the DFedAvgM can be presented as
follows: In each t ∈ Z+, for each client i ∈ {1, 2, . . . ,m}, let
yt,−1(i) = yt,0(i) = xt(i). The inner iteration in each node
then performs as
yt,k+1(i) = yt,k(i)− ηg̃t,k(i) + θ(yt,k(i)− yt,k−1(i)), (4)

where Eg̃t,k(i) = ∇fi(yt,k(i)). After K inner iterations in
each local client, the resulting parameters zt(i) ← yt,K(i)
is sent to its neighbors (N (i)). Every client then updates its
parameters by taking the local averaging as follows

xt+1(i) =
∑

l∈N (i)

wi,lz
t(l). (5)

The procedure of DFedAvgM can be illustrated as Figure
1 (b). It is seen that DFedAvgM plays the tradeoff between
local computing and communications. It is well-known that
the communication costs are usually much more expensive
than the computation costs [39], which indicates DFedAvgM
can be more efficient than DSGD.
Algorithm 2 Quantized DFedAvgM
1: parameters: η > 0, K ∈ Z+, 0 ≤ θ < 1, s, b.
2: initialization: x0 = 0
3: for t = 1, 2, . . . do
4: for i = {1, 2, . . . ,m} do
5: node i performs local training (4) K times and sends qt(i) =
Q[yt,K(i)− xt(i)] to N (i)

6: node i updates as (7)
7: end for
8: end for

3.2 Efficient Communication via Quantization
In DFedAvgM, client i needs to send xt(i) to its neigh-
bours N (i). Thus, when the number of neighbours N (i)
grows, client-client communications become the major bot-
tleneck on algorithms’ efficiency. We leverage the quantiza-
tion trick to reduce the communication cost [40], [41]. In
particular, we consider the following quantization proce-
dure: Given a constant s > 0 and the limited bit number
b ∈ Z+, the representable range is then {−2b−1s,−(2b−1 −
1)s, . . . , 0, s, 2s, . . . , (2b−1 − 1)s}. For any a ∈ R with
−2b−1s ≤ a < (2b−1−1)s, we can find an integer k ∈ Z such
that ks ≤ a < (k+ 1)s and we then use ks to replace a. The
above quantization scheme is deterministic, which can be
written as q(a) := bas cs for a ∈ R; Besides the deterministic
rule, the stochastic quantization uses the following scheme

q(a) :=

{
ks, w.p. 1− a−ks

s ,
(k + 1)s, w.p. a−kss .

It is easy to see that the stochastic quantization is unbiased,
i.e., E[q(a)] = a for any a ∈ R. When s is small, deter-
ministic and stochastic quantization schemes perform very
similarly. For a vector x ∈ Rd whose coordinates are all
stored with 32 bits, we consider quantizing all coordinates
of x = [x1, x2, . . . , xd] ∈ Rd. The multi-dimension quanti-
zation operator is then defined as

Q(x) := [q(x1), q(x2), . . . , q(xd)]. (6)

For both deterministic and stochastic quantization schemes,
we have E‖Q(x)− x‖2 ≤ d

4s
2 if xi ∈ [−2b−1s, (2b−1 − 1)s]

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Comm. Train Comm. Train . . .

(a) Traditional Decentralization (DSGD)

Comm. Train . . . Train Comm. Train . . . Train . . .

(b) DFedAvgM

Fig. 1. Comparison of communication and training styles of traditional decentralized stochastic gradient descent (DSGD) and the proposed
decentralized federated average with momentum (DFedAvgM). In DSGD, each client will communicate with its neighbors after one single training
step. In DFedAvgM, however, each client will communicate with its neighbors after multiple training iterations.

for i ∈ {1, 2, . . . , d}. In this paper, we consider a quantiza-
tion operator with the following assumption, which hold for
the two quantization schemes mentioned above.

Assumption 4. The quantization operator Q : Rd → Rd
satisfies E‖Q(x)−x‖2 ≤ d

4s
2 with s > 0 for any x ∈ Rd.

Directly quantize the parameters is feasible for suffi-
ciently smooth loss functions, but may be impossible for
DNNs. To this end, we consider quantizing the difference
the difference of parameters. Quantized DFedAvgM can
be summarized as: After running (4) K times, client i
quantizes qt(i)← Q(yt,K(i)− xt(i)) and send it to N (i).
After receiving [qt(j)]j∈N (i), every client updates its local
parameters as

xt+1(i) = xt(i) +
∑

l∈N (i)

wi,lq
t(l). (7)

In each communication, client i just needs to send the
pair (s,qt(i)) to N (i), whose representation requires (32 +
db)deg(N (i)) bits rather than 32ddeg(N (i)) bits for sending
the unquantized version. If d is large and b < 32, the
communications can be significantly reduced.

4 CONVERGENCE ANALYSIS

In this section, we analyze the convergence of the proposed
(quantized) DFedAvgM. The convergence analysis of DFe-
dAvgM is much more complicated than SGD, SGD with
momentum, and DSGD; the technical difficulty is because
zt(i)− xt(i) fails to be an unbiased estimate of the gradient
∇fi(xt(i)) after multiple iterations of SGD or SGD with
momentum in each client. In the following, we consider
the convergence of the average point, which is defined as
xt :=

∑m
i=1 x

t(i)/m. We first present the convergence of
DFedAvgM for general nonconvex objective function in the
following Theorem.

Theorem 1 (General nonconvexity). Let the sequence
{xt(i)}t≥0 be generated by DFedAvgM for i ∈
{1, 2 . . . ,m} and suppose Assumptions 1, 2 and 3 hold.
Moreover, assume the stepsize η for SGD with momen-
tum that used for training client models satisfies

0 < η ≤ 1
8LK and 64L2K2η2 + 64LKη < 1,

where L is the Lipschitz constant of ∇f and K is the
number of client iterations before each communication.
Then

min
1≤t≤T

E‖∇f(xt)‖2 ≤ 2f(x1)− 2 min f

γ(K, η)T

+ α(K, η) + β(K, η),

where T is the total number of communication rounds
and the constants are given as

γ(K, η) :=
η(K − θ)
(1− θ)

− 64(1− θ)L2K4η3

K − θ
− 64LK2η2,

α(K, η) :=

((1−θ)L2K2η3

(K−θ) + Lη2)(8Kσ2
l + 32K2σ2

g +
64K2θ2(σ2

l+B
2)

(1−θ)2)

η(K−θ)
(1−θ) −

64(1−θ)L2K4η3

K−θ − 64LK2η2
,

and

β(K, η, λ) := (
64(1− θ)L4K4η5

(K − θ)
+ 64L3K2η4)×

(8Kσ2
l + 32K2σ2

g + 32K2B2 + 64K2θ2

(1−θ)2 (σ2
l +B2))

[(1− λ)(η(K−θ)(1−θ) −
64(1−θ)L2K4η3

K−θ − 64LK2η2)]
.

To get an explicit rate on T from Theorem 1, we choose
η = Θ(1/LK

√
T). As T is large enough and 64L2K2η2 +

64LKη < 1. Then, γ(K, η) = Θ(1/((1− θ)
√
T)),

and α(K, η) = Θ(
(1−θ)σ2

l+(1−θ)Kσ2
g+

θ2

(1−θ)K(σ2
l+B

2)

K
√
T

), and

β(K, η, λ) = Θ(
(1−θ)(σ2

l+Kσ
2
g+KB

2)+ θ2

(1−θ)K(σ2
l+B

2)

(1−λ)KT 3/2). Based
on this choice of η and the Theorem 1, we have the following
convergence rate for DFedAvgM.
Proposition 1. As the communication round number T is

large enough, it holds that

min
1≤t≤T

E‖∇f(xt)‖2 = O
((1− θ)(f(x1)−min f)√

T

+
(1− θ)σ2

l + (1− θ)Kσ2
g + θ2

(1−θ)K(σ2
l +B2)

K
√
T

+
(1− θ)(σ2

l +Kσ2
g +KB2) + θ2

(1−θ)K(σ2
l +B2)

(1− λ)KT 3/2

)
.

From Proposition 1, we can see that the speed of DFe-
dAvgM can be improved when the number of local it-
eration, K , increases. Also, when the momentum θ is 0
and K is large enough, the bound will be dominated by

O
(

1√
T

+
σ2
g√
T

+
σ2
g+B

2

(1−λ)2T 3/2

)
, in which the local variance

bound diminishes. This phenomenon coincides with our
intuitive understanding: in local client, the use of large

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

K can result in a local minimizer; then the local variance
bound will hurt nothing. To reach any given ε > 0 error,
DFedAvgM needs O(1

ε2) communication rounds, which is
the same as SGD and DSGD. It is worth mentioning that
the above theoretical results show that whether the mo-
mentum θ can accelerate the algorithm depends on the
relation between f(x1) − min f + σ2

g and σ2
l + B2, i.e., if

f(x1) −min f + σ2
g � σ2

l + B2, as θ ∈ [0, 1) increases, the
rate improves; if f(x1)−min f+σ2

g � σ2
l +B2, large θ may

degrade the performance of DFedAvgM.
The convergence results established above, which simply

require smooth assumption on the objective functions, are
quite general and somehow not sharp due to extra prop-
erties are missing. For example, recent (non)convex studies
[42], [43], [44] have exploited the algorithmic performance
under the PŁ property, which is named after Polyak and
Łojasiewicz [45], [46]. For a smooth function f , we say it
satisfies PŁ-ν property provided

‖∇f(x)‖2 ≥ 2ν(f(x)−min f), ∀x ∈ dom(f). (8)

The well-known strong convexity implies PŁ condition, but
not vice verse. In the following, we present the convergence
of DFedAvgM under the PŁ condition.

Theorem 2 (PŁ condition). Assume function f satisfies the
PŁ-ν condition, the following convergence rate holds

Ef(xT)−min f ≤ [1− νγ(K, η)]T (f(x0)−min f)

+
α(K, η)

2ν
+
β(K, η, λ)

2ν
.

Due to the fact that f(x0) − min f ≥ 0, the right side
is larger than α(K,η)

2ν + β(K,η,λ)
2ν = O(η). If we still let η =

Θ(1
LK
√
T

), the convergence rate is at leastO(1/
√
T). But we

cannot choose a very small η; otherwise, the dominated term
[1 − νγ(K, η)]T (f(x0) − min f) will decay very slowly. If
the learning rate enjoys the form as η = c1 lnc3 T/(LKT c2)
with c1, c2 > 0 2, we can prove the following results on the
optimal choices for c1, c2, c3.

Proposition 2. Let η = c1 lnc3 T/(LKT c2) with c1, c2 > 0,
the optimal rate of DFedAvgM is Õ(1/T), in which
case c1 = L/ν, c2 = 1, and c3 = −1, that is,
η = 1/(νKT lnT).

This finding coincides with existing results of the optimal
rate for SGD with strong convexity [47], [48]. Under the PŁ
condition, the convergence rate of DFedAvgM is improved.

Next, we provide the convergence guarantee for the
quantized DFedAvgM, which is stated in the following
theorem.

Theorem 3. Let the sequence {xt(i)}t≥0 be generated by the
quantized DFedAvgM for all i ∈ {1, 2 . . . ,m}, and all
the assumptions in Theorem 1 and Assumption 4 hold.
Let η = Θ(1

LK
√
T

), as T is sufficiently large, it holds that

2. This learning rate is commonly used in the ML community.

min
1≤t≤T

E‖∇f(xt)‖2 = O
((1− θ)(f(x1)−min f)√

T

+
(1− θ)(σ2

l +Kσ2
g) + θ2

(1−θ)K(σ2
l +B2)

K
√
T

+

(1− θ)(σ2
l +Kσ2

g +KB2) + θ2

(1−θ)K(σ2
l +B2)

(1− λ)KT 3/2
+
√
Ts
)
.

If the function f further satisfies the PŁ condition and
η = 1

νTK lnT , it follows that

E(f(xT)−min f) = Õ(
1

T
+ Ts).

According to Theorem 3, to reach any given ε > 0 error
in general case, we need to set s = O(ε2) and set the the
number of communication round as T = Θ(1

ε2). While
with PŁ condition, we set T = Θ(1

ε) and s = O(ε2). It
follows E(f(xT) −min f) = Õ(ε). Therefore, under the PŁ
condition, the number of communication round is reduced.

In the following, we provide a sufficient condition for
communications-saving of the two quantization rules men-
tioned in Sec. 3.2 used in quantized DFedAvgM.
Proposition 3. Assume we use the stochastic or deter-

ministic quantization rule with b bits using stepsize
η = 1

LK
√
T

. Assume that the parameters trained in
all clients do not overflow, that is, all coordinates are
contained in [−2b−1s, (2b−1− 1)s]. Let Assumptions 1, 2
and 3 hold. If the desired error

ε > (1− θ)
√
3LBsd

1
4×√

2(f(x0)−min f) +
8σ2

l

K
+ 32σ2

g +
64θ2(σ2

l +B2)

(1− θ)2

and b < 128
9 + 32

d , the quantized DFedAvgM can
beat DFedAvgM with 32 bits in term of the required
communications to reach ε.

Proposition 3 indicates that the superiority of the quan-
tized DFedAvgM retains when the desired error ε is not
smaller than O((1 − θ)

√
s). We can also see that as K

increases, the guaranteed lower bound of ε decreases, which
demonstrates the necessity of multiple local iterations.
Moreover, a larger θ can also reduce the lower bound.

5 PROOFS

5.1 Technical Lemmas

We define 1 := [1, 1, . . . , 1]> ∈ Rm and

P :=
11>

m
∈ Rm×m.

For a matrix A, we denote its spectral norm as ‖A‖op. We
also define X :=

[
x(1),x(2), . . . ,x(m)

]> ∈ Rm×d.

Lemma 1. [Lemma 4 , [4]] For any k ∈ Z+, the mixing matrix
W ∈ Rm satisfies

‖Wk −P‖op ≤ λk,

where λ := max{|λ2|, |λm(W)|}.

In [Proposition 1, [21]], the author also proved that ‖W k −
P‖op ≤ Cλk for some C > 0 that depends on the matrix.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Lemma 2. Assume that Assumptions 2 and 3 hold, and 0 ≤
θ < 1. Let (yt,k(i))t≥0 be generated by the (quantized)
DFedAvgM. It then follows

E‖yt,k+1(i)− yt,k(i)‖2 ≤ 1

(1− θ)2
(2η2σ2

l + 2η2B2)

when 0 ≤ k ≤ K − 1.

Lemma 3. Given the stepsize 0 < η ≤ 1
8LK and i ∈

{1, 2, . . . ,m} and assume (yt,k(i))t≥0, (xt(i))t≥0 are
generated by the (quantized) DFedAvgM for all i ∈
{1, 2 . . . ,m}. If Assumption 3 holds, it then follows

1

m

m∑
i=1

E‖yt,k(i)− xt(i)‖2

≤ C1η
2 + 32K2η2

∑m
i=1 E‖∇f(xt(i))‖2

m
,

where C1 := 8Kσ2
l + 32K2σ2

g + 64K2θ2

(1−θ)2 (σ2
l +B2) when

0 ≤ k ≤ K .

With the fact that yt,K(i) = zt(i), Lemma 3 also holds for
zt(i).

Lemma 4. Given the stepsize η > 0 and let {xt(i)}t≥0 be
generated by DFedAvgM for all i ∈ {1, 2 . . . ,m}. If
Assumption 3 holds, we have the following bound

1

m

m∑
i=1

E‖xt(i)− xt‖2 ≤ C2
η2

1− λ
, (9)

where C2 := 8Kσ2
l + 32K2σ2

g + 64K2θ2

(1−θ)2 (σ2
l + B2) +

32K2B2.

Lemma 5. Given the stepsize η > 0 and assume {xt(i)}t≥0
are generated by the quantized DFedAvgM for all i ∈
{1, 2 . . . ,m}. If Assumption 3 holds, it follows that

1

m

m∑
i=1

E‖xt(i)− xt‖2 ≤ 2C2
η2

1− λ
+

2ds2

1− λ
. (10)

5.2 Proof of Technical Lemmas

5.2.1 Proof of Lemma 2

Given any ψ > 0, the Cauchy inequality gives us

E‖yt,k+1(i)− yt,k(i)‖2

= E‖ − ηg̃k(i) + θ(yt,k(i)− yt,k−1(i))‖2
a)

≤ (1 + ψ)θ2E‖yt,k(i)− yt,k−1(i)‖2

+ (1 +
1

ψ
)η2E‖g̃k(i)−∇fi(yt,k(i)) +∇fi(yt,k(i))‖2

≤ (1 + ψ)θ2E‖yt,k(i)− yt,k−1(i)‖2

+ (2 +
2

ψ
)η2‖∇fi(yt,k(i))‖2

+ 2(1 +
1

ψ
)η2E‖g̃k(i)−∇fi(yt,k(i))‖2,

where a) uses the Cauchy’s inequality E‖a + b‖2 ≤
(1 + 1

ψ)E‖a‖2 + (1 + ψ)E‖b‖2 with a = −ηg̃k(i) and

b = θ(yt,k(i) − yt,k−1(i)). Without loss of generality, we
assume θ 6= 0. Let ψ = 1

θ − 1, we get

E‖yt,k+1(i)− yt,k(i)‖2

≤ θE‖yt,k(i)− yt,k−1(i)‖+
2η2σ2

l

1− θ
+

2η2B2

1− θ
.

Using the mathematical induction, for any integer 0 ≤ k ≤
K , we have

E‖yt,k+1(i)− yt,k(i)‖2

≤ 2η2σ2
l + 2η2B2

1− θ
(
k−1∑
i=0

θi) ≤ 2η2σ2
l + 2η2B2

(1− θ)2
.

5.2.2 Proof of Lemma 3

Note that for any k ∈ {0, 1, . . . ,K − 1}, in node i it holds

E‖yt,k+1(i)− xt(i)‖2

= E‖yt,k(i)− ηg̃k(i)− xt(i) + θ(yt,k(i)− yt,k−1(i))‖2

≤ E‖yt,k(i)− xt(i)− η
(
g̃k(i)−∇fi(yt,k(i)) +∇fi(yt,k(i))

−∇fi(xt(i)) +∇fi(xt(i))−∇f(xt(i)) +∇f(xt(i))
)

+ θ(yt,k(i)− yt,k−1(i))‖2 ≤ I + II,

where I = (1 + 1
2K−1)E‖yt,k(i) − xt(i) − η(g̃k(i) −

∇fi(yt,k(i))‖2 and II = 2Kη2E‖∇fi(yt,k(i))−∇fi(xt(i))+
∇fi(xt(i))−∇f(xt(i))+∇f(xt(i))+θ(yt,k(i)−yt,k−1(i))‖2.
The unbiased expectation property of g̃k(i) gives us

I = (1 +
1

2K − 1
)
(
E‖yt,k(i)− xt(i)‖2

+ η2E‖g̃k(i)−∇fi(yt,k(i))‖2
)
.

On the other hand, with Lemma 2, we have the following
bound

II ≤ 8Kη2E‖∇fi(yt,k(i))−∇fi(xt(i))‖
+ 8Kη2E‖∇fi(xt(i))−∇f(xt(i))‖
+ 8Kη2E‖∇f(xt(i))‖2 + 8Kθ2E‖yt,k(i)− yt,k−1(i)‖2

≤ 8L2Kη2‖yt,k(i)− xt(i)‖2 + 8Kη2σ2
g

+ 8Kη2E‖∇f(xt(i))‖2 +
16Kθ2

(1− θ)2
(η2σ2

l + η2B2).

Thus, we can obtain

E‖yt,k+1(i)− xt(i)‖2

≤ (1 +
1

2K − 1
+ 8L2Kη2)E‖yt,k(i)− xt(i)‖2 + 2η2σ2

l

+ 8Kη2σ2
g + 8Kη2E‖∇f(xt(i))‖2 +

16Kθ2

(1− θ)2
(η2σ2

l + η2B2)

≤ (1 +
1

K − 1
)E‖yt,k(i)− xt(i)‖2 + 2η2σ2

l + 8Kη2σ2
g

+
16Kθ2

(1− θ)2
(η2σ2

l + η2B2) + 8Kη2E‖∇f(xt(i))‖2,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

where the last inequality depends on the selection of the
stepsize. The recursion from j = 0 to k yeilds

E‖yt,k(i)− xt(i)‖2

≤
K−1∑
j=0

(1 +
1

K − 1
)j
[
2η2σ2

l + 8Kη2σ2
g

+
16Kθ2

(1− θ)2
(η2σ2

l + η2B2) + 8Kη2E‖∇f(xt(i))‖2
]

≤ (K − 1)
[
(1 +

1

K − 1
)K − 1

]
×
[
2η2σ2

l + 8Kη2σ2
g

+
16Kθ2

(1− θ)2
(η2σ2

l + η2B2) + 8Kη2E‖∇f(xt(i))‖2
]

≤ 8Kη2σ2
l + 32K2η2σ2

g +
64K2θ2

(1− θ)2
(η2σ2

l + η2B2)

+ 32K2η2E‖∇f(xt(i))‖2,

where we used the inequality (1+ 1
K−1)K ≤ 5 holds for any

K ≥ 1.

5.2.3 Proof of Lemma 4
We denote Zt :=

[
zt(1), zt(2), . . . , zt(m)

]> ∈ Rm×d. With
these notation, we have

Xt+1 = WZt = WXt − ζt, (11)

where ζt := WXt−WZt. The iteration (11) can be rewritten
as the following expression

Xt = W tX0 −
t−1∑
j=0

Wt−1−jζj . (12)

Obviously, it follows

WP = PW = P. (13)

According to Lemma 1, it holds

‖Wt −P‖ ≤ λt.

Multiplying both sides of (12) with P and using (13), we
then get

PXt = PX0 −
t−1∑
j=0

Pζj = −
t−1∑
j=0

Pζj , (14)

where we used initialization X0 = 0. Then, we are led to

‖Xt −PXt‖ = ‖
t−1∑
j=0

(P−Wt−1−j)ζj‖

≤
t−1∑
j=0

‖P−Wt−1−j‖op‖ζj‖ ≤
t−1∑
j=0

λt−1−j‖ζj‖.
(15)

With Cauchy inequality,

E‖Xt −PXt‖2 ≤ E(
t−1∑
j=0

λ
t−1−j

2 · λ
t−1−j

2 ‖ζj‖)2

≤ (
t−1∑
j=0

λt−1−j)(
t−1∑
j=0

λt−1−jE‖ζj‖2)

Direct calculation gives us

E‖ζj‖2 ≤ ‖W‖2 · E‖Xj − Zj‖2 ≤ E‖Xj − Zj‖2.

With Lemma 3 and Assumption 3, for any j,

E‖Xj − Zj‖2

≤ m(8Kσ2
l + 32K2σ2

g +
64Kθ2

(1− θ)2
(σ2
l +B2) + 32K2B2)η2.

Thus, we get

E‖Xt −PXt‖2

≤
m(8Kσ2

l + 32K2σ2
g + 64Kθ2

(1−θ)2 (σ2
l +B2) + 32K2B2)η2

1− λ
.

The fact that Xt−PXt =

xt(1)− xt

xt(2)− xt

...
xt(m)− xt

 then proves the

result.

5.2.4 Proof of Lemma 5
Let Z̃t := Yt,K . Obviously, it holds

Xt+1 = WXt − ζ̃t, (16)

where ζ̃t = WXt −W(Q(Z̃t −Xt) + Xt). We just need to
bound E‖ζ̃t‖2,

E‖ζ̃t‖2 ≤ 2E‖WXt −WZ̃t‖2

+ 2E‖WZ̃t −W(Q(Z̃t −Xt) + Xt)‖2

≤ 2E‖Xt − Z̃t‖2 + 2E‖W(Z̃t −Xt)−W(Q(Z̃t −Xt))‖2

≤ 2E‖Xt − Z̃t‖2 + 2mds2

≤ 2mη2(8Kσ2
l + 32K2σ2

g +
64Kθ2

(1− θ)2
(σ2
l +B2) + 32K2B2)

+ 2mds2,

the last inequality uses Lemma 3.

5.3 Proof of Theorem 1
Noting that PXt+1 = PWZt = PZt, that is also

xt+1 = zt,

we have

xt+1 − xt = xt+1 − zt + zt − xt = zt − xt, (17)

where zt :=
∑m
i=1 zt(i)
m . With the local scheme in each node,

zt − xt =

∑m
i=1(zt(i)− xt(i))

m

=

∑m
i=1(

∑K−1
k=0 yt,k+1(i)− yt,k(i))

m

= −η
∑m
i=1

∑K−1
k=0 ∇fi(yt,k(i))

m
+ θ(zt − xt)

+ θη

∑m
i=1∇fi(yt,K−1(i))

m
.

Thus, we get

zt − xt =
1

1− θ
(−η

∑m
i=1

∑K−2
k=0 ∇fi(yt,k(i))

m
)

=
1

1− θ
(−η

∑m
i=1(1− θ)∇fi(yt,K−1(i))

m
).

(18)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

The Lipschitz continuity of ∇f gives us

Ef(xt+1) ≤ Ef(xt) + E〈∇f(xt), zt − xt〉

+
L

2
E‖xt+1 − xt‖2, (19)

where we used (17). Let

K̃ =
K − θ
1− θ

,

we can derive

E〈K̃∇f(xt), (zt − xt)/K̃〉
= E〈K̃∇f(xt),−η∇f(xt) + η∇f(xt) + (zt − xt)/K̃〉
= −ηK̃E‖∇f(xt)‖2 + E〈∇f(xt), η∇f(xt) + (zt − xt)/K̃〉
a)

≤ −ηK̃E‖∇f(xt)‖2

+ ηE‖∇f(xt)‖ ·
∥∥∥∑m

i=1

∑K−2
k=0 [∇fi(xt)−∇fi(yt,k(i))]

m

+

∑m
i=1(1− θ)[∇fi(xt)−∇fi(yt,K−1(i))]

m
)
∥∥∥

≤ −ηK̃E‖∇f(xt)‖2 +
ηL

m

m∑
i=1

K−1∑
k=0

E‖∇f(xt)‖ · ‖xt − yt,k(i)‖

≤ −ηK̃E‖∇f(xt)‖2 +
ηK̃

2
E‖∇f(xt)‖2

+
ηL2K2

2K̃
(C1η

2 + 32K2η2
∑m
i=1 E‖∇f(xt(i))‖2

m
),

where a) uses (18). Similarly, we can get

L

2
E(‖xt+1 − xt‖2) =

L

2
E(‖zt − xt‖2)

≤ L

2

1

m

m∑
i=1

‖zt(i)− xt(i)‖2

≤ L

2
C1η

2 + 16LK2η2
∑m
i=1 E‖∇f(xt(i))‖2

m
.

Thus, (19) can be represented as

Ef(xt+1) ≤ Ef(xt)− ηK̃

2
E‖∇f(xt)‖2 +

L2K2

2K̃
C1η

3

+
L

2
C1η

2 + (
16L2K4η3

K̃
+ 16LK2η2)

∑m
i=1 E‖∇f(xt(i))‖2

m
.

Direct computation together with Lemma 4 gives us∑m
i=1 E‖∇f(xt(i))‖2

m

=

∑m
i=1 E‖∇f(xt(i))−∇f(xt) +∇f(xt)‖2

m

≤
∑m
i=1 2E‖∇f(xt(i))−∇f(xt)‖2 + 2E‖∇f(xt)‖2

m

≤ 2L2

∑m
i=1 ‖xt(i)− xt‖2

m
+ 2E‖∇f(xt)‖2

≤ 2L2C2η
2

1− λ
+ 2E‖∇f(xt)‖2.

Therefore, we have

Ef(xt+1) ≤ Ef(xt)

− (
η(K − θ)
2(1− θ)

− 32(1− θ)L2K4η3

K − θ
− 32LK2η2)

× E‖∇f(xt)‖2 + (
(1− θ)L2K2

2(K − θ)
η3 +

L

2
η2)

× (8Kσ2
l + 32K2σ2

g +
64K2θ2

(1− θ)2
(σ2
l +B2))

+ (32(1− θ)L4K4η5/(K − θ) + 32L3K2η4)/(1− λ)

× (8Kσ2
l + 32K2σ2

g + 32K2B2 +
64K2θ2

(1− θ)2
(σ2
l +B2)).

(20)
Summing the inequality (20) from t = 1 to T , we then
proved the result.

5.4 Proof of Theorem 2
With the PŁ condition,

E‖∇f(xt)‖2 ≥ 2νE(f(xt)−min f).

We start from (20),

Ef(xt+1) ≤ Ef(xt)− νγ(K, η)E(f(xt)−min f)

+
γ(K, η)α(K, η)

2
+
γ(K, η)β(K, η, λ)

2
.

(21)

By defining ξt := E(f(xt)−min f), it then follows

ξt+1 ≤ [1− νγ(K, η)]ξt

+
γ(K, η)α(K, η)

2
+
γ(K, η)β(K, η, λ)

2
.

(22)

Thus, we are then led to

ξT ≤ [1− νγ(K, η)]T ξ0

+
(γ(K, η)α(K, η)

2
+
γ(K, η)β(K, η, λ)

2

)
× (

T−1∑
t=0

[1− νγ(K, η)]t)

≤ [1− νγ(K, η)]T ξ0

+
(γ(K, η)α(K, η)

2
+
γ(K, η)β(K, η, λ)

2

) 1

νγ(K, η)

= [1− νγ(K, η)]T ξ0 +
α(K, η)

2ν
+
β(K, η, λ)

2ν
.

The result is then proved.

5.5 Proof of Proposition 2
A quick calculation gives us{

γ(K, η) = Θ(1
T c2),

α(K,η)
2ν + β(K,η,λ)

2ν = O(1
T c2).

Thus, we just need to bound the first term in Theorem 2. As
T is large, γ(K, η)→ 0. Its logarithm is then

T log[1− νγ(K, η)] = T log[1− νγ(K, η)] = Θ(−Tνγ(K, η)).

With our setting, it follows

Tνγ(K, η) ≈ νc1 lnc3 T

LT c2−1
.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Then we have

Ef(xT)−min f = O(exp(−νc1 lnc3 T

LKT c2−1
) +

1

T c2
).

We first consider how to choose c2. From the L’Hospital’s
rule, for any δ > 0, as T → +∞

exp(− 1

T δ
)→ 1.

Thus, we need to set c2 ≤ 1 and the fast rate is slower than
O(1

T). To this end, we choose c1 = L
ν , c2 = 1, and c3 = −1.

5.6 Proof of Theorem 3

Let ỹt :=
∑m
i=1 yt,K(i)

m , in the quantized DFedAvgM, it fol-
lows xt+1 − xt = Q(ỹt − xt). With the Lipschitz continuity
of ∇f ,

Ef(xt+1) ≤ Ef(xt)

+ E〈∇f(xt), Q(ỹt − xt)〉+
L

2
E‖xt+1 − xt‖2,

We have

E〈∇f(xt), Q(ỹt − xt)〉
= E〈∇f(xt), ỹt − xt〉+ E〈∇f(xt), ỹt − xt −Q(ỹt − xt)〉
≤ E〈∇f(xt), ỹt − xt〉+B

√
ds

and

L

2
E‖xt+1 − xt‖2 =

L

2
E‖Q(ỹt − xt)‖2

≤ LE‖ỹt − xt‖2 + LE‖Q(ỹt − xt)− (ỹt − xt)‖2

≤ LE‖ỹt − xt‖2 +
Lds2

m
.

Note that both E〈∇f(xt), ỹt − xt〉 and E‖ỹt − xt‖2 can
inherit the bounds of E〈∇f(xt), zt−xt〉 and E‖xt+1−xt‖2
in the proof of Theorem 1. Thus, we obtain

Ef(xt+1) ≤ Ef(xt)− ηK̃

2
E‖∇f(xt)‖2

+
L2K2

2K̃
C1η

3 + LC1η
2 +

Lds2

m
+B
√
ds

+ (
32L2K4η3

K̃
+ 32LK2η2)

∑m
i=1 E‖∇f(xt(i))‖2

m
.

With Lemma 5, we can get∑m
i=1 E‖∇f(xt(i))‖2

m

≤
∑m
i=1 2E‖∇f(xt(i))−∇f(xt)‖2 + 2E‖∇f(xt)‖2

m

≤ 2L2

∑m
i=1 ‖xt(i)− xt‖2

m
+ 2E‖∇f(xt)‖2

≤ 2L2C3η
2

1− λ
+

4L2ds2

1− λ
+ 2E‖∇f(xt)‖2.

Combining the inequalities together,

Ef(xt+1) ≤ Ef(xt) + ζ(K, η, λ, s)

− (
ηK̃

2
− 64L2K4η3

K̃
− 64LK2η2)E‖∇f(xt)‖2,

where ζ(K, η, λ, s) := L2K2

2K̃
C1η

3 + LC1η
2 + (32L2K4η3

K̃
+

32LK2η2)(2L2C3η
2

1−λ + 4L2ds2

1−λ) + Lds2

m + B
√
ds. Given the

stepsize η = Θ(1
LK
√
T

), we can see that ηK̃
2 −

64L2K4η3

K̃
−

64LK2η2 > 0 as T is large. When s > 0 is small, s2 =

O(s). And it then follows ηK̃
2 −

64L2K4η3

K̃
− 64LK2η2 =

Θ(1
(1−θ)

√
T

). We now consider

[
(
32L2K4η3

K̃
+ 32LK2η2)(

2L2C3η
2

1− λ
+

4L2ds

1− λ
)

+ LC1η
2 +

L2K2

2K̃
C1η

3 +
Lds2

m
+B
√
ds
]/[ηK̃

2

− 64L2K4η3

K̃
− 64LK2η2

]
,

(23)

which is at the order as O
(

1√
T

+
σ2
l+Kσ

2
g+

θ2

(1−θ)2
K(σ2

l+B
2)

K
√
T

+

σ2
l+Kσ

2
g+KB

2+ θ2

(1−θ)2
K(σ2

l+B
2)

(1−λ)KT 3/2 +
√
Ts
)

. If the function f

satisfies the PŁ-ν, we have

E(f(xt)−min f)

≤ [1− νγ(K, η)]T (f(x0)−min f) +
ζ(K, η, λ, s)

νγ(K, η)
.

When η = 1
νTK lnT , [1− νγ(K, η)]T = Õ(1

T) and

ζ(K, η, λ, s)

νγ(K, η)
= Õ(

1

T
+ Ts).

5.7 Proof of Proposition 3

We calculate to reach the same error, the communication
costs by both algorithms. Omitting the order larger than 1
for η, from (20), we have

min
1≤t≤T

E‖∇f(xt)‖2 ≈ 2(f(x0)−min f)

ηKT

+ Lη(8σ2
l + 32Kσ2

g +
64Kθ2

(1− θ)2
(σ2
l +B2))

=
2(1− θ)(f(x0)−min f)√

T

+
8(1− θ)σ2

l + 32(1− θ)Kσ2
g + 64Kθ2

(1−θ) (σ2
l +B2)

K
√
T

.

for DFedAvgM. From (23),

min
1≤t≤T

E‖∇f(xt)‖2 ≈ 2(1− θ)(f(x0)−min f)√
T

+
8(1− θ)σ2

l + 32(1− θ)Kσ2
g + 64Kθ2

(1−θ) (σ2
l +B2)

K
√
T

+ 2(1− θ)LB
√
d
√
Ts.

Given the ε > 0, assume Tε obeys

8(1− θ)σ2
l + 32(1− θ)Kσ2

g + 64Kθ2

(1−θ) (σ2
l +B2)

K
√
Tε

+
2(1− θ)(f(x0)−min f)√

Tε
= ε.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

That means DFedAvgM can output an ε error in Tε itera-
tions. However, due to the error caused by the quantiza-
tion, we have to increase the iteration number for quan-
tized DFedAvgM. We set the iteration number as 9

4Tε. To
get the ε error for quantized DFedAvgM, we also need
3(1− θ)LB

√
d
√
Tεs ≤ ε, which yields

3(1− θ)2LB
√
ds
[
2(f(x0)−min f) +

8σ2
l

K

+ 32σ2
g +

64θ2

(1− θ)2
(σ2
l +B2)

]
≤ ε2.

The total communication cost of DFedAvgM to reach ε is

32dTε

m∑
i=1

[deg(N (i))].

While for quantized version, the total communication cost
is

(32 + db)
9

4
Tε

m∑
i=1

[deg(N (i))].

Thus, the communications can be reduced if

(32 + db)
9

4
< 32d.

6 NUMERICAL RESULTS

We apply the proposed DFedAvgM with communication
quantization to train DNNs for both image classification
and language modeling, where we consider a simple ring
structured communication network. We aim to verify that
DFedAvgM can train DNNs effectively, especially in com-
munication efficiency. Moreover, we consider the mem-
bership privacy protection when DFedAvgM is used for
training DNNs. We apply the membership inference attack
(MIA) [49] to test the efficiency of (quantized) DFedAvgM in
protecting the training data’s MP. In MIA, the attack model
is a binary classifier 3, which is to decide if a data point is in
the training set of the target model. For each of the following
dataset, to perform MIA we first split its training set into
Dshadow and Dtarget with the same size. Furthermore, we
split Dshadow into two halves with the same size and denote
them as Dtrain

shadow and Dout
shadow, and we split Dtarget by half

into Dtrain
target and Dout

target. MIA proceeds as follows: 1) train
the shadow model by using Dtrain

shadow; 2) apply the trained
shadow model to predict all data points inDshadow and train
the corresponding classification probabilities of belonging to
each class. Then we take the top three classification proba-
bilities (or two in the case of binary classification) to form
the feature vector for each data point.A feature vector is
tagged as1if the corresponding data point is in Dtrain

shadow, and
0 otherwise. Then we train the attack model by leveraging
all the labeled feature vectors; 3) train the target model by
using Dtrain

target and obtain feature vector for each point in
Dtarget. Finally, we leverage the attack model to decide if a
data point is in Dtrain

target. Note the attack model we build is a
binary classifier, which is to decide if a data point is in the
training set of the target model. For any data ξ ∈ Dtarget,

3. We use a multilayer perceptron with a hidden layer of 64 nodes,
followed by a softmax output function as the attack model, which is
adapted from [49].

we apply the attack model to predict its probability (p) of
belonging to the training set of the target model. Given any
fixed threshold t if p ≥ t, we classify ξ as a member of the
training set (positive sample), and if p < t, we conclude
that ξ is not in the training set (negative sample); so we can
obtain different attack results with different thresholds. We
can plot the ROC curve for different threshold, and regard
the area under the ROC curve (AUC) as an evaluation of
the membership inference attack.The target model protects
perfect membership privacy if the AUC is 0.5 (attack model
performs random guess), and the higher AUC is, the less
private the target model is.

6.1 MNIST Classification
6.1.0.1 The efficiency of DFedAvgM.: We train two

DNNs for MNIST classification using 100 clients: 1) A
simple multilayer-perceptron with 2-hidden layers with 200
units each using ReLU activation (199,210 total parameters),
which we refer to as 2NN. 2) A CNN with two 5 × 5
convolution layers (the first with 32 channels, the second
with 64, each followed with 2 × 2 max pooling), a fully
connected layer with 512 units and ReLU activation, and
the final output layer (1,663,370 total parameters). We study
two partitioning of the MNIST data over clients, i.e., IID
and Non-IID. In IID setting, the data is shuffled, and then
partitioned into 20 clients each receiving 3000 examples. In
Non-IID, we first sort the data by digit label, divide it into 40
shards of size 1500, and assign each of 20 clients 2 shards.
In training, we set the local batch size (batch size of the
training data on clients) to be 50, learning rate 0.01, and
momentum 0.9. Figures 2 and 3 show the results of training
CNN for MNIST classification (Fig. 2: IID and Fig. 3 Non-
IID) by DFedAvgM using different communication bits and
different local epochs. These results confirm the efficiency
of DFedAvgM for training DNNs; in particular, when the
clients’ data are IID. For both IID and Non-IID settings,
the communication bits do not affect the performance of
DFedAvgM; as we see that the training loss, test accuracy,
and AUC under the membership inference attack are almost
identical. Increasing local training epochs can accelerate
training for IID setting at the cost of faster privacy leakage.
However, for Non-IID, increasing local training epochs does
not help DFedAvgM in either training or privacy protection.
Training 2NN by DFedAvgM behaves similarly, see Figs. 4
and 5.

6.1.0.2 Comparison between DFedAvgM, FedAvg,
and DSGD.: Now, we compare the DFedAvgM, FedAvg,
and DSGD in training 2NNs for MNIST classification. We
use the same local batch size 50 for both FedAvg and DSGD,
and the learning rates are both set to 0.14. For FedAvg, we
select all clients to get involved in training and communi-
cation in each round. Figure 6 compares three algorithms
in terms of test loss and test accuracy for IID MNIST over
communication round and communication cost. In terms
of communication rounds, DFedAvgM converges as fast as
FedAvg, and both are much faster than DSGD. DFedAvgM
has a significant advantage over FedAvg and DSGD in
communication costs. For Non-IID MNIST, training 2NN by

4. We note that DFedAvg requires smaller learning rates than FedAvg
and DSGD for numerical convergence.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

0 20 40 60 80 100
Communication round

10-1

100

Lo
ss

1 bit

2 bits

4 bits

8 bits

16 bits

0 20 40 60 80 100
Communication round

88

90

92

94

96

98

T
e
st

 a
cc

u
ra

cy
 (

%
)

1 bit

2 bits

4 bits

8 bits

16 bits

0 20 40 60 80 100
Communication round

0.5

0.6

0.7

0.8

0.9

A
U

C

1 bit

2 bits

4 bits

8 bits

16 bits

CR vs. Training loss CR vs. Test acc CR vs. AUC

0 20 40 60 80 100
Communication round

10-2

10-1

100

Lo
ss

1 epoch

2 epochs

5 epochs

0 20 40 60 80 100
Communication round

90

92

94

96

98

T
e
st

 a
cc

u
ra

cy
 (

%
)

1 epoch

2 epochs

5 epochs

0 20 40 60 80 100
Communication round

0.5

0.6

0.7

0.8

0.9

A
U

C

1 epoch

2 epochs

5 epochs

CR vs. Training loss CR vs. Test acc CR vs. AUC
Fig. 2. Training CNN for IID MNIST classification with DFedAvgM using:
different communication bits but fix local epoch to one (first row) and
different local epochs but fix the communication bits to 16 (second row).
Different quantized DFedAvgM performs almost similar, and more local
epoch can accelerate training at the cost of faster privacy leakage. CR:
communication round.

0 20 40 60 80 100
Communication round

100

Lo
ss

1 bit

2 bits

4 bits

8 bits

16 bits

0 20 40 60 80 100
Communication round

20

30

40

50

60

70

80

T
e
st

 a
cc

u
ra

cy
 (

%
)

1 bit

2 bits

4 bits

8 bits

16 bits

0 20 40 60 80 100
Communication round

0.50

0.55

0.60

0.65

A
U

C

1 bit

2 bits

4 bits

8 bits

16 bits

CR vs. Training loss CR vs. Test acc CR vs. AUC

0 20 40 60 80 100
Communication round

100

Lo
ss

1 epoch

2 epochs

5 epochs

0 20 40 60 80 100
Communication round

20

30

40

50

60

70

80

T
e
st

 a
cc

u
ra

cy
 (

%
)

1 epoch

2 epochs

5 epochs

0 20 40 60 80 100
Communication round

0.50

0.55

0.60

0.65

A
U

C

1 epoch

2 epochs

5 epochs

CR vs. Training loss CR vs. Test acc CR vs. AUC
Fig. 3. Training CNN for Non-IID MNIST classification with DFedAvgM
using: different communication bits but fix local epoch to one (first row)
and different local epochs but fix the communication bits to 16 (second
row). Different quantized DFedAvgM does not lead to much difference
in performance. More local epoch does not help in accelerating training
or protect data privacy.

0 20 40 60 80 100
Communication round

10-1Lo
ss

1 bit

2 bits

4 bits

8 bits

16 bits

0 20 40 60 80 100
Communication round

88

90

92

94

96

98

T
e
st

 a
cc

u
ra

cy
 (

%
)

1 bit

2 bits

4 bits

8 bits

16 bits

0 20 40 60 80 100
Communication round

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
U

C

1 bit

2 bits

4 bits

8 bits

16 bits

CR vs. Training loss CR vs. Test acc CR vs. AUC

0 20 40 60 80 100
Communication round

10-2

10-1

Lo
ss

1 epoch

2 epochs

5 epochs

0 20 40 60 80 100
Communication round

90
91
92
93
94
95
96
97
98
99

T
e
st

 a
cc

u
ra

cy
 (

%
)

1 epoch

2 epochs

5 epochs

0 20 40 60 80 100
Communication round

0.5

0.6

0.7

0.8

0.9

A
U

C

1 epoch

2 epochs

5 epochs

CR vs. Training loss CR vs. Test acc CR vs. AUC
Fig. 4. Training 2NN for IID MNIST classification with DFedAvgM using:
different communication bits but fix local epoch to one (first row) and
different local epochs but fix the communication bits to 16 (second row).
Different quantized DFedAvgM performs almost similar, and more local
epoch can accelerate training at the cost of faster privacy leakage.

FedAvg can achieve 96.81% test accuracy, but both DFedAvg
and DSGD cannot bypass 85%. This disadvantage is because
both DSGD and DFedAvgM only communicate with their
neighbors, while the neighbors and itself may not contain
enough training data to cover all possible classes. One
feasible solution to resolve the issues of DFedAvgM for the
Non-IID setting is by designing a new graph structure for
more efficient global communication.

0 20 40 60 80 100
Communication round

100Lo
ss

1 bit

2 bits

4 bits

8 bits

16 bits

0 20 40 60 80 100
Communication round

20

30

40

50

60

70

80

T
e
st

 a
cc

u
ra

cy
 (

%
)

1 bit

2 bits

4 bits

8 bits

16 bits

0 20 40 60 80 100
Communication round

0.48

0.50

0.52

0.54

0.56

0.58

A
U

C

1 bit

2 bits

4 bits

8 bits

16 bits

CR vs. Training loss CR vs. Test acc CR vs. AUC

0 20 40 60 80 100
Communication round

100

Lo
ss

1 epoch

2 epochs

5 epochs

0 20 40 60 80 100
Communication round

20

30

40

50

60

70

80

T
e
st

 a
cc

u
ra

cy
 (

%
)

1 epoch

2 epochs

5 epochs

0 20 40 60 80 100
Communication round

0.50

0.55

0.60

0.65

A
U

C

1 epoch

2 epochs

5 epochs

CR vs. Training loss CR vs. Test acc CR vs. AUC
Fig. 5. Training 2NN for Non-IID MNIST classification with DFedAvgM
using: different communication bits but fix local epoch to one (first row)
and different local epochs but fix the communication bits to 16 (second
row). Different quantized DFedAvgM does not lead to much difference
in performance. More local epoch does not help in accelerating training
or protect data privacy.

0 20 40 60 80 100
Communication round

0.5

1.0

1.5

2.0

2.5

Lo
ss

DSGD

FedAvg

DFedAvgM

0 2000 4000 6000 8000 1000012000
Communication bits (MB)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Lo
ss

DSGD

FedAvg

DFedAvgM

CR vs. Test loss CB vs. Test loss

0 20 40 60 80 100
Communication round

10
20
30
40
50
60
70
80
90

A
cc

u
ra

cy
 (

%
)

DSGD

FedAvg

DFedAvgM

0 2000 4000 6000 8000 1000012000
Communication bits (MB)

65

70

75

80

85

90

95

A
cc

u
ra

cy
 (

%
)

DSGD

FedAvg

DFedAvgM

CR vs. Test acc CB vs. Test acc
Fig. 6. The efficiency comparison between DSGD, FedAvg, and DFe-
dAvgM in training 2NN for MNIST classification. (a) and (c): test loss and
test accuracy vs. communication round. (b) and (d): test loss and test
accuracy vs. communication bits. DFedAvgM performs on par with Fe-
dAvg in terms of communication rounds, but DFedAvgM is significantly
more efficient than FedAvg from the communication cost viewpoint. CR:
communication round; CB: communication bits.

6.2 LSTM for Language Modeling

We consider the SHAKESPEARE dataset and we follow
the processing as that used in [1], resulting in a dataset
distributed over 1146 clients in the Non-IID fashion. On this
data, we use DFedAvgM to train a stacked character-level
LSTM language model, which predicts the next character
after reading each character in a line. The model takes a
series of characters as input and embeds each of these into
a learned 8-dimensional space. The embedded characters
are then processed through 2 LSTM layers, each with 256
nodes. Finally, the output of the second LSTM layer is sent
to a softmax output layer with one node per character. The
full model has 866,578 parameters, and we trained using
an unroll length of 80 characters. We set the local batch
size to 10, and we use a learning rate of 1.47, which is the
same as [1]. The momentum is selected to be 0.9. Figure 7
plots the communication round vs. test accuracy and AUC
under MIA for different quantization and different local
epochs. These results show that 1) both the accuracy and
MIA increase as training goes; 2) higher communication
cost can lead to faster convergence; 3) increase local epochs
deteriorate the performance of DFedAvgM.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

0 10 20 30 40 50
Communication round

10
15
20
25
30
35
40
45
50

A
cc

u
ra

cy
 (

%
)

1 bit

4 bits

16 bits

0 10 20 30 40 50
Communication round

0.490

0.495

0.500

0.505

0.510

0.515

0.520

A
U

C

1 bit

4 bit

16 bit

CR vs. Test accuracy CR vs. AUC

0 10 20 30 40 50
Communication round

10
15
20
25
30
35
40
45
50

A
cc

u
ra

cy
 (

%
)

1 epoch

2 epochs

0 10 20 30 40 50
Communication round

0.490

0.495

0.500

0.505

0.510

0.515

0.520

A
U

C

1 epoch

2 epochs

CR vs. Test accuracy CR vs. AUC
Fig. 7. Training LSTM for SHAKESPEARE classification with DFe-
dAvgM using: different communication bits but fix local epoch to one
(first row) and different local epochs but fix the communication bits to
16 (second row). Using higher precision communication can slightly im-
prove the performance. More local epoch does not help in accelerating
training or protect data privacy.

0 20 40 60 80 100
Communication round

100

Lo
ss

1 bit

2 bits

4 bits

8 bits

16 bits

0 20 40 60 80 100
Communication round

10

20

30

40

50

60

A
cc

u
ra

cy
 (

%
)

1 bit

2 bits

4 bits

8 bits

16 bits

0 20 40 60 80 100
Communication round

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

A
U

C

1 bit

2 bits

4 bits

8 bits

16 bits

CR vs. Training loss CR vs. Test acc CR vs. AUC

0 20 40 60 80 100
Communication round

100

Lo
ss

1 epoch

2 epochs

5 epochs

0 20 40 60 80 100
Communication round

10

20

30

40

50

60

A
cc

u
ra

cy
 (

%
)

1 epoch

2 epochs

5 epochs

0 20 40 60 80 100
Communication round

0.50

0.55

0.60

0.65

0.70

0.75

A
U

C

1 epoch

2 epochs

5 epochs

CR vs. Training loss CR vs. Test acc CR vs. AUC
Fig. 8. Training CNN for IID CIFAR10 classification with DFedAvgM
using: different communication bits but fix local epoch to one (first row)
and different local epochs but fix the communication bits to 16 (second
row). Different quantized DFedAvgM performs almost similar and more
local epochs can accelerate training at the beginning but does not
perform very well as training continues.

6.3 CIFAR10 Classification
Finally, we use DFedAvgM to train ResNet20 for CIFAR10
classification, which consists of 10 classes of 32× 32 images
with three channels. There are 50,000 training and 10,000
testing examples, which we partitioned into 20 clients uni-
formly, and we only consider the IID setting following [1].
We use the same data augmentation and DNN as that used
in [1]. The local batch size is set to 50, the learning rate is
set to 0.01, and the momentum is set to 0.9. Figure 8 shows
the communication round vs. test accuracy and AUC under
MIA for different quantization and different local epochs.
If the local epoch is set to 1, different communication bits
does not lead to a significant difference in training loss,
test accuracy, and AUC under MIA. However, for the fixed
communication bits 16, increase the local epochs from 1 to 2
or to 5 will make training not even converge.

7 CONCLUDING REMARKS

In this paper, we proposed a DFedAvgM and its quantized
version. There two major benefits of the DFedAvgM over
the existing FedAvg: 1) In FedAvg, communication between
the central parameter server and local clients is required
in each communication round, and this communication
will be very expensive as the number of clients is very
large. On the contrary, in DFedAvgM communications are

between clients which are significantly less than FedAvg. 2)
In FedAvg, the central server collects the updated models
from clients, and attack the central server can break the
privacy of the whole system. In contrast, conceptually, it
is harder to break the privacy in DFedAvgM than FedAvg.
Furthermore, we established the theoretical convergence
for DFedAvgM and its quantized version under general
nonconvex assumptions, and we showed that the worst-
case convergence rate of (quantized) DFedAvgM is the same
as that of DSGD. In particular, we proved a sublinear con-
vergence rate of (quantized) DFedAvgM when the objective
functions satisfy the PŁ condition. We perform extensive
numerical experiments to verify the efficacy of DFedAvgM
and its quantized version in training ML models and protect
membership privacy.

REFERENCES

[1] H. B. Mcmahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y.
Arcas, “Communication-efficient learning of deep networks from
decentralized data,” pp. 1273–1282, 2017.

[2] H. Robbins and S. Monro, “A stochastic approximation method,”
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

[3] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized
stochastic gradient descent,” in Advances in neural information
processing systems, pp. 2595–2603, 2010.

[4] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and
J. Liu, “Can decentralized algorithms outperform centralized algo-
rithms? a case study for decentralized parallel stochastic gradient
descent,” in Advances in Neural Information Processing Systems,
pp. 5330–5340, 2017.

[5] A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decen-
tralized federated learning,” in Third workshop on Bayesian Deep
Learning (NeurIPS), 2018.

[6] A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar, “Peer-to-peer
federated learning on graphs,” arXiv preprint arXiv:1901.11173,
2019.

[7] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the im-
portance of initialization and momentum in deep learning,” in
International conference on machine learning, pp. 1139–1147, 2013.

[8] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of
non-identical data distribution for federated visual classification,”
arXiv preprint arXiv:1909.06335, 2019.

[9] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný,
S. Kumar, and H. B. McMahan, “Adaptive federated optimiza-
tion,” in International Conference on Learning Representations, 2021.

[10] T. Chen, G. Giannakis, T. Sun, and W. Yin, “Lag: Lazily aggre-
gated gradient for communication-efficient distributed learning,”
in Advances in Neural Information Processing Systems, pp. 5050–5060,
2018.

[11] J. Sun, T. Chen, G. Giannakis, and Z. Yang, “Communication-
efficient distributed learning via lazily aggregated quantized
gradients,” in Advances in Neural Information Processing Systems,
pp. 3365–3375, 2019.

[12] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smithy, “Feddane: A federated newton-type method,” in
2019 53rd Asilomar Conference on Signals, Systems, and Computers,
pp. 1227–1231, IEEE, 2019.

[13] A. Khaled, K. Mishchenko, and P. Richtárik, “First analysis of local
gd on heterogeneous data,” arXiv preprint arXiv:1909.04715, 2019.

[14] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the
convergence of fedavg on non-IID data,” in International Conference
on Learning Representations, 2020.

[15] H. B. McMahan et al., “Advances and open problems in federated
learning,” Foundations and Trends® in Machine Learning, vol. 14,
no. 1, 2021.

[16] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learn-
ing: Challenges, methods, and future directions.,” arXiv: Learning,
2019.

[17] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip algorithms:
Design, analysis and applications,” in INFOCOM 2005. 24th An-
nual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, vol. 3, pp. 1653–1664, IEEE, 2005.

http://arxiv.org/abs/1901.11173
http://arxiv.org/abs/1909.06335
http://arxiv.org/abs/1909.04715

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[18] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[19] L. Schenato and G. Gamba, “A distributed consensus protocol for
clock synchronization in wireless sensor network,” in 2007 46th
ieee conference on decision and control, pp. 2289–2294, IEEE, 2007.

[20] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broad-
cast gossip algorithms for consensus,” IEEE Transactions on Signal
processing, vol. 57, no. 7, pp. 2748–2761, 2009.

[21] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for
multi-agent optimization,” IEEE Transactions on Automatic Control,
vol. 54, no. 1, pp. 48–61, 2009.

[22] A. I. Chen and A. Ozdaglar, “A fast distributed proximal-gradient
method,” in Communication, Control, and Computing (Allerton), 2012
50th Annual Allerton Conference on, pp. 601–608, IEEE, 2012.

[23] D. Jakovetić, J. Xavier, and J. M. Moura, “Fast distributed gradient
methods,” IEEE Transactions on Automatic Control, vol. 59, no. 5,
pp. 1131–1146, 2014.

[24] I. Matei and J. S. Baras, “Performance evaluation of the consensus-
based distributed subgradient method under random communica-
tion topologies,” IEEE Journal of Selected Topics in Signal Processing,
vol. 5, no. 4, pp. 754–771, 2011.

[25] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentral-
ized gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3,
pp. 1835–1854, 2016.

[26] J. Zeng and W. Yin, “On nonconvex decentralized gradient de-
scent,” IEEE Transactions on Signal Processing, vol. 66, no. 11,
pp. 2834–2848, 2018.

[27] B. Sirb and X. Ye, “Consensus optimization with delayed and
stochastic gradients on decentralized networks,” in Big Data (Big
Data), 2016 IEEE International Conference on, pp. 76–85, IEEE, 2016.

[28] G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algorithms
for decentralized and stochastic optimization,” Mathematical Pro-
gramming, vol. 180, no. 1, pp. 237–284, 2020.

[29] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentral-
ized parallel stochastic gradient descent,” in Proceedings of the 35th
International Conference on Machine Learning, pp. 3043–3052, 2018.

[30] T. Sun, P. Yin, D. Li, C. Huang, L. Guan, and H. Jiang, “Non-
ergodic convergence analysis of heavy-ball algorithms,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 5033–5040, 2019.

[31] R. Xin and U. A. Khan, “Distributed heavy-ball: A generalization
and acceleration of first-order methods with gradient tracking,”
IEEE Transactions on Automatic Control, 2019.

[32] A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani, “Quan-
tized decentralized consensus optimization,” in 2018 IEEE Confer-
ence on Decision and Control (CDC), pp. 5838–5843, IEEE, 2018.

[33] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Federated
learning. Morgan & Claypool Publishers, 2019.

[34] H. Xing, O. Simeone, and S. Bi, “Decentralized federated learn-
ing via SGD over wireless D2D networks,” in 2020 IEEE 21st
International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), pp. 1–5, IEEE, 2020.

[35] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings
of the 1 st Adaptive & Multitask Learning Workshop, Long Beach,
California, 2019.

[36] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods
for nonconvex stochastic programming,” SIAM Journal on Opti-
mization, vol. 23, no. 4, pp. 2341–2368, 2013.

[37] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain
on a graph,” SIAM review, vol. 46, no. 4, pp. 667–689, 2004.

[38] B. T. Polyak, “Some methods of speeding up the convergence of
iteration methods,” Ussr Computational Mathematics and Mathemat-
ical Physics, vol. 4, no. 5, pp. 1–17, 1964.

[39] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication
efficient distributed machine learning with the parameter server,”
in Advances in Neural Information Processing Systems, pp. 19–27,
2014.

[40] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and en-
coding,” in Advances in Neural Information Processing Systems,
pp. 1709–1720, 2017.

[41] S. Magnússon, H. Shokri-Ghadikolaei, and N. Li, “On maintaining
linear convergence of distributed learning and optimization under
limited communication,” IEEE Transactions on Signal Processing,
vol. 68, pp. 6101–6116, 2020.

[42] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence
of gradient and proximal-gradient methods under the polyak-
łojasiewicz condition,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp. 795–811,
Springer, 2016.

[43] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola, “Stochastic
variance reduction for nonconvex optimization,” in International
conference on machine learning, pp. 314–323, 2016.

[44] D. J. Foster, A. Sekhari, and K. Sridharan, “Uniform convergence of
gradients for non-convex learning and optimization,” in Advances
in Neural Information Processing Systems, pp. 8745–8756, 2018.

[45] B. T. Polyak, “Gradient methods for minimizing functionals,”
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, vol. 3,
no. 4, pp. 643–653, 1963.

[46] S. Lojasiewicz, “A topological property of real analytic subsets,”
Coll. du CNRS, Les équations aux dérivées partielles, vol. 117, pp. 87–
89, 1963.

[47] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos:
Primal estimated sub-gradient solver for svm,” Mathematical pro-
gramming, vol. 127, no. 1, pp. 3–30, 2011.

[48] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust
stochastic approximation approach to stochastic programming,”
SIAM Journal on optimization, vol. 19, no. 4, pp. 1574–1609, 2009.

[49] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and
M. Backes, “Ml-leaks: Model and data independent membership
inference attacks and defenses on machine learning models,” In
Annual Network and Distributed System Security Symposium (NDSS
2019), 2019.

	1 Introduction
	1.1 Our Contributions
	1.2 More Related Works
	1.3 Organizations
	1.4 Notation

	2 Problem Formulation and Assumptions
	3 Decentralized Federated Averaging
	3.1 Decentralized FedAvg with Momentum
	3.2 Efficient Communication via Quantization

	4 Convergence Analysis
	5 Proofs
	5.1 Technical Lemmas
	5.2 Proof of Technical Lemmas
	5.2.1 Proof of Lemma 2
	5.2.2 Proof of Lemma 3
	5.2.3 Proof of Lemma 4
	5.2.4 Proof of Lemma 5

	5.3 Proof of Theorem 1
	5.4 Proof of Theorem 2
	5.5 Proof of Proposition 2
	5.6 Proof of Theorem 3
	5.7 Proof of Proposition 3

	6 Numerical Results
	6.1 MNIST Classification
	6.2 LSTM for Language Modeling
	6.3 CIFAR10 Classification

	7 Concluding Remarks
	References

