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Abstract—The current diversity in nodal parallel computer
architectures is seen in machines based upon multicore CPUs,
GPUs and the Intel Xeon Phi’s. A class of approaches for
enabling scalability of complex applications on such architectures
is based upon Asynchronous Many Task software architectures
such as that in the Uintah framework used for the parallel
solution of solid and fluid mechanics problems. Uintah has both
an applications layer with its own programming model and a
separate runtime system. While Uintah scales well today, it is
necessary to address nodal performance portability in order
for it to continue to do. Incrementally modifying Uintah to use
the Kokkos performance portability library through prototyping
experiments results in improved kernel performance by more
than a factor of two.

Index Terms—Uintah, Kokkos, hybrid parallelism, perfor-
mance portability

I. INTRODUCTION

A current trend in large scale computing is towards larger

core counts per compute node. Whether this is through the use

of GPUs, Xeon Phis or through standard/lightweight cores.

One software approach that helps in the scaling of complex

applications codes on such diverse architectures is based upon

an Asynchronous Many Task (AMT) approach in which tasks

are dynamically executed as soon as their dependencies are

met, as in Charm++, Legion and Uintah, see [1], and many

other codes under development.

The Uintah software (http://www.uintah.utah.edu) [4] en-

forces separation between the applications’ tasks and the

runtime system which executes them. This allows applications

developers to focus on writing tasks for discretizing the

partial differential equations of solid and fluid mechanics

on a local set of block-structured, adaptive mesh patches.

When the runtime system executes the applications’ task it

resolves details such as automatic MPI message generation,

management of halo information (ghost cells) and the life

cycle of data variables, and other details. Uintah currently

scales complex applications on a variety of CPU core based

architectures up to about 700K cores. However a challenge of

porting over 1M lines of highly templated C++ to either GPU

or Xeon Phi architectures means that Uintah needs to use is

to use a performance portability layer based upon a many-

core parallel programming model (see [3]), such as OpenMP,

OpenACC, RAJA, Kokkos or OpenCL. In this work we have

chosen to use Kokkos [2] as it fits most easily with the

underlying code philosophy of Uintah. In using Kokkos it is

necessary to rewrite tasks into a form that allows Kokkos to

map the computation and data in the most appropriate way to

achieve performance on the target architecture. Kokkos does

this mapping at compile time through use of C++ template

meta programming. The challenge in using Kokkos in Uintah

is that both the user code through modified loop structures and

the data warehouse through changed data structures must be

refactored. The aim of this paper is to show how the Uintah’s

application programming model and its runtime system may

be modified to use the Kokkos performance portability layer.

Results from experiments demonstrate that Uintah applications

kernels rewritten to conform to the Kokkos programming

model improves in performance, with result seen up to a factor

of at least two. This paper is a shortened form of a more

detailed technical report [6].

II. UINTAH AND ARCHES OVERVIEW

Uintah is used to solve problems involving fluids, solids,

combined fluid-structure interaction problems, and turbulent

combustion on multi-core and accelerator based supercom-

puter architectures. As described in [4] and the references

therein, problems are either initially laid out on a structured

grid as shown in with the multi-material ICE code for both

low and high-speed compressible flows, or by using particles

on that grid with the multi-material, particle-based code MPM

for structural mechanics or by combining the two in the fluid-

structure interaction (FSI) algorithm MPM-ICE. The ARCHES

turbulent reacting CFD component [5] is designed for simulat-

ing turbulent reacting flows with participating media radiation.

Simulation data is managed by a distributed data store

known as a Data Warehouse, an object containing metadata

for simulation variables. The metadata indicates the patches

on which specific variable data resides, halo depth or number

of ghost cell layers, a pointer to the actual data, and the data

type (node-centered, face-centered, etc.). Access to simulation

data in the Data Warehouse is through a simple get and

put interface. During a given time step, there are two Data

Warehouses available to the simulation, 1.) the Old Data
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Warehouse contains all data from the previous time step, and

2.) the New Data Warehouse maintains variables to be initially

computed or subsequently modified. At the end of a time step,

the New Data Warehouse is moved to the Old Data Warehouse,

and another New Data Warehouse is created. In the case of

on-node GPUs, Data Warehouses specific to GPUs are used.

Parallelism within Uintah is achieved in three ways by

using: domain decomposition to assign each MPI rank its

own region of the computational domain; task level parallelism

within an MPI rank to allow each task to run independently

on node or thread level parallelism within a node. Uintah

maintains a clear separation between applications code and its

runtime system, and hence the details of the runtime system

are hidden from the application developer. The task developer

must supply entry functions to the task code, and write serial

C++ code for CPU and Xeon Phi tasks and CUDA parallel

code for GPU tasks. This model for CPU, GPU or Xeon Phi

tasks currently requires that three versions of the task code

be maintained. The use of Kokkos enables a move to a single

code and allows users to exploit data parallelism within all

Uintah tasks.

The primary motivation is to extend Uintah to emerging

exascale problems with important commercial ramifications

and benefits for improving coal combustion efficiency. For

example the Arches component is being used to predict

capabilities for a commercial, 1000 MW coal fired boiler.

Given this challenging application, the Kokkos performance

and portability improvements will be illustrated through the

Arches component.

Arches is a finite volume combustion code that has been

developed over a number of years [5]. The use of the Large

Eddy Simulation (LES) approach of Arches has potential to be

an important design and prediction tool. The approach used in

Arches is that of a structured, high order finite-volume mass,

momentum, energy conservation discretization method for the

gas and solid phase with combustion.

III. KOKKOS

Kokkos is a C++11 library for implementing portable

thread-parallel codes on various HPC architectures [2]. Kokkos

is used to optimize single-node performance, since most HPC

codes already have strategies to optimize their intra-node

performance. It currently supports CPU, GPU, Intel Xeon Phi

and IBM Power 8 architectures. The (open) source code is

available at https://github.com/kokkos/kokkos.

Kokkos allows users’ to encapsulate their code into com-

putational kernels, and uses template meta-programming to

optimize their kernels at compile time for the given device.

Kokkos is able to optimize users kernels because it requires

them to conform to abstractions provided by the Kokkos API.

The main abstractions within Kokkos are Parallel Patterns,

Execution Space, Execution Policy, Views, Memory Space,

Memory Layout and Memory Traits.

The user can specify a kernel which only uses a subset of

these abstractions, and the others will default to optimal values

for the current device. The Parallel Pattern describe what type

Fig. 1. Modified Uintah Programming Model

of kernel the user wishes to execute be it a parallel for, par-
allel reduce or parallel scan. The Execution Space informs

the compiler about where the kernel is to be run, i.e., GPU

or CPU cores, and the Execution Policy dictates how a kernel

should be executed in the given Execution Space.

Since most scientific codes store data in multi-dimensional

arrays, Kokkos provides Views, which are light-weight, ref-

erence counted multi-dimensional arrays. Emerging HPC ar-

chitecture have deep memory hierarchies so Kokkos Views

allow the user to specify in which Memory Space the array

exists. Memory Layout dictates how the array is mapped to

memory (row-major, column-major, tiled, etc), and it is critical

for performance that the memory layout is suitable for the

given CPU. GPU or Xeon Phi device as using the wrong

layout can have significant performance penalties. Memory
Traits provides additional information about how the views

are allocated or used and can enable other compile-time

optimizations. By using views, Kokkos is able to separate the

data locality and layout from the computational code. Kokkos

is then able to select the best memory layout and execution

policy at compile time for the given architecture.

To use Kokkos a user identifies a parallelizable kernel of

computation and data. A user can used C++11 lambdas or cre-

ate function objects (functors) to encapsulate a kernel. Kokkos

then maps the computations onto cores and the data onto

memory using the execution and memory spaces. The user

is responsible for writing thread-scalable, high-performance

kernels. Carefully written kernels can obtain portable SIMD

auto vectorization, as is shown in Section V.

IV. MODIFYING UINTAH TO USE KOKKOS

Uintah, like many HPC codes, has a large legacy code base

with limited support and development resources. To refactor

Uintah to fully utilize Kokkos kernels is a substantial effort.

Most of the work involves refactoring loops into parallel

kernels and converting existing array data types into Kokkos

views. Figure 1 shows how Uintah is modified overall to

use Kokkos at both the data warehouse and user task level.

It is desirable to do this refactor incrementally. Also, when

refactoring Uintah component codes we have been able to

take advantage of new and experimental, but planned future
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Kokkos features. For example we have used an experimental

planned Kokkos parallel three-level loop for the final example

in Section V.

When replacing the array data used by Uintah with Kokkos

views. the runtime system needs to be extended to return

Kokkos views in place of the current Uintah array data

structures. Using the Unmanaged memory trait, the runtime

system can wrap the existing data structures with Kokkos

unmanaged views. Unmanaged views do not include refer-

ence counting, and must be supplied a layout and memory

space. Unmanaged views allow codes to incrementally adopt

Kokkos APIs without requiring a massive upfront rewrite. The

runtime system and component codes can then incrementally

track down instances where non-view APIs are being used

to refactor them individually to remove the assumptions that

make them incompatible with pure Kokkos views. After these

incompatibilities are removed the code should then be portable

to other architectures.

However, codes which use unmanaged views are not

portable to different devices, so the user must incrementally

verify the portability of kernels to other devices without wait-

ing for the entire code base to be refactored. This is achieved

here by extracting kernels into stand-alone executables with

mock inputs. The kernels can then be compiled for various

devices and optimized to run better on those devices. When

doing this for a diffusion kernel within ARCHES, we were

able to obtain good SIMD vectorization on CPUs and better

caching effects on GPUs.

Uintah tasks declare and initialize mesh patch array vari-

ables which are then used within one or more loops throughout

the execution of the task. Using C++11 the loop bodies of the

tasks are encapsulated in lambdas, which are then invoked with

the appropriate parallel pattern. The loop bodies could also

be extracted into a function object, and then invoked by the

parallel pattern. This entire process is incremental, but allows

for performance and portability verification at each step.

V. RESULTS

Two examples are used to test the performance of the

runtime system using Kokkos on key Uintah algorithms. The

first example is is that of a nonlinear advection scheme and

the second is a 3D loop in the Arches code [5]. In Arches 30-

40% of the code is spent on model evaluation, discretization of

transport and other flow components. Kokkos is a natural fit for

Arches because it is possible to achieve lamda/functorization

of existing code with relatively little work. Fast initial adoption

is very helpful for our engineering developers. This process

is illustrated by the discretization of the simple advection

component using many different, but standard, approaches

such as upwinding and flux limiting. In this case speed-up

measured for a standard upwinding discretization from exist-

ing baseline code against the Kokkos code, using unmanaged

views. The speedup for different patch sizes are shown in Table

I. The upwind and the van Leer flux limiter show significant

speedups over the original Uintah implementation. The van

Leer result speedup is not as large as the upwind result due

to the number of branches (1 versus 5) in the computational

kernel. The significant speedups that are shown are a result of

two complementary changes. These are the use of the Kokkos

parallel for and the improved way in which Kokkos iterates

through the memory space as compared to the original Uintah

implementation and the reimplementation of the computational

kernel to perform better. This example suggests that careful

rewrites of key computational kernels in conjunction with

Kokkos can offer significant performance improvements. In

Patch size 83 163 323 643 1283

Upwind Kokkos Speedup 4.6 10.0 10.7 12.9 12.7
van Leer Kokkos Speedup 2.76 4.05 4.04 5.01 6.37

TABLE I
KOKKOS SPEEDUP ON ARCHES ADVECTION

porting the Arches 3D stencil example we needed a way

to avoid porting the whole of Arches. Using the technique

of creating a simple mock runtime system, we were able to

verify that the diffusion kernel in Arches is portable between

GPU, CPU, and Xeon Phi devices and were able to optimize

to ensure that it used SIMD vectorization. The loop used is

a simple diffusion kernel which amounts to the convolution

of 1D stencils for 3 face centered variables X, Y, Z with

3D stencils of 2 cell centered variables D, phi. The initial

Uintah code for this loop uses Uintah arrays and iterators.

Uintah arrays are indexed with an IntVector representing an

(i, j, k) tuple. Uintah Iterators are initialized with low and

high IntVectors and will iterate over the indicated range in a

column-major order. The initial Uintah code is show in Code

Listing 1. The Uintah framework used the concept of a single

loop iteration with IntVectors as an aid to the development of

the computational algorithms for the application developers.

These techniques were optimized to assist in the development

and debugging of application algorithms. The indirection and

pointer hops that occur in the IntVector and loop traversal are

non-ideal from a performance standpoint, but offer significant

benefits to initial algorithm development. While the benefits of

the Uintah constructs are numerous from an algorithm devel-

opment point of view, the drawbacks to raw performance are

reflected in Table II and show that rewriting the kernels with

the Kokkos constructs and using techniques to promote SIMD

vectorization can offer significant performance improvements.

t y p e d e f I n t V e c t o r IV ;
f o r ( I t e r a t o r i t r ( low , h i gh ) ; ! i t r . done ( ) ;++ i t r ){

IV c=∗ i t r ;
IV xp=c+IV ( 1 , 0 , 0 ) , xm=c+IV ( −1 ,0 ,0) ;
IV yp=c+IV ( 0 , 1 , 0 ) , ym=c+IV (0 , −1 ,0) ;
IV zp=c+IV ( 0 , 0 , 1 ) , zm=c+IV (0 ,0 , −1) ;

r h s [ c ]+= ax ∗ (X[ xp ]∗ (D[ xp ]+D[ c ] ) ∗ ( p h i [ xp]−p h i [ c ] )
−X[ c ] ∗ (D[ c ] +D[xm ] ) ∗ ( p h i [ c ] −p h i [xm ] ) )

+ay ∗ (Y[ yp ]∗ (D[ yp ]+D[ c ] ) ∗ ( p h i [ yp]−p h i [ c ] )
−Y[ c ] ∗ (D[ c ] +D[ym ] ) ∗ ( p h i [ c ] −p h i [ym ] ) )

+az ∗ (Z [ zp ]∗ (D[ zp ]+D[ c ] ) ∗ ( p h i [ zp]−p h i [ c ] )
−Z [ c ] ∗ (D[ c ] +D[ zm ] ) ∗ ( p h i [ c]−p h i [ zm ] ) ) ;}

Code Listing 1. Uintah 3D Stencil Kernel

There are three step to naively convert a Uintah kernel to

Kokkos. First, the iterators loops are replaced with a parallel

algorithms over the same range. Second, IntVector indexing
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is replaced with direct i, j, k lookups. Lastly, Uintah arrays

are wrapped and replaced with unmanaged Kokkos views.

Using unmanaged views allow for an incremental transition to

Kokkos, though to achieve performance portability these views

will need to become managed Kokkos views in the future. The

naive Kokkos loop is shown in Code Listing 2 in [6].

p a r a l l e l f o r ( range , [ = ] ( i n t i , i n t j , r a n g e k range ) {
auto r = subview ( rhs , i , j , ALL ( ) ) ;
auto x0= subview (X, i , j , ALL ( ) ) ;
/ / Other s u b v i e w s f o l l o w s i m i l a r l y

. . . .
p a r a l l e l f o r ( krange , [&] ( i n t k ) {

r ( k ) += ax ∗ ( xp ( k ) ∗ ( dp0 ( k ) +d00 ( k ) ) ∗ ( pp0 ( k )−p00 ( k ) )
− x0 ( k ) ∗ ( d00 ( k ) +dm0 ( k ) ) ∗ ( p00 ( k )−pm0 ( k ) ) )

+ay ∗ ( yp ( k ) ∗ ( d0p ( k ) +d00 ( k ) ) ∗ ( p0p ( k )−p00 ( k ) )
− y0 ( k ) ∗ ( d00 ( k ) +d0m ( k ) ) ∗ ( p00 ( k )−p0m ( k ) ) )

+az ∗ ( z ( k +1) ∗ ( d00 ( k +1)+d00 ( k ) ) ∗ ( p00 ( k +1)−p00 ( k ) )
− z ( k ) ∗ ( d00 ( k ) +d00 ( k−1) ) ∗ ( p00 ( k )−p00 ( k−1) ) ) ;

} ) ; } ) ;

Code Listing 2. SIMD Kokkos 3D Stencil Kernel

Optimizing this kernel as in Codelisting 2 to allow SIMD

auto vectorization requires extracting 1D subviews from the

3D arrays views. The Kokkos subview function creates a new

view from an existing view given ranges of indices, similar

to subview operations on Matlab arrays. Using C++11 auto
we are able to represent these subviews without needing to

know the exact type of view that Kokkos returns, this allows

Kokkos to optimize the resulting view for the given context. It

is important to extract these 1D subviews so that the compiler

knows that we are using a stride-one memory access pattern on

the CPU in the inner loop so that it can correctly identify the

loop as a candidate for vectorization (assuming that the arrays

are laid out in row-major order on the CPU). The inner array is

then implemented with another parallel for loop which only

depends on the kth index. The user is responsible for verifying

that there are no loop carry dependencies in the inner loop. The

speedups of the SIMD kernel over the initial Uintah kernel can

be seen in Table II. These experiments were run on an 16 core

Intel Xeon with a SIMD vector length of 2 yielding an ideal

speedup of 2X of the Kokkos SIMD kernel over the Kokkos

standard kernel. The results in Table II demonstrate that

with careful rewrites of computational kernels with techniques

that promote vectorization, it is possible to achieve the ideal

speedup of 2X (1.8X- 2.3X) for sufficient workloads. We

believe that the caching effects contributed to the speedup

of 2.3X. The speedups over standard Uintah code reflect the

relative inefficiency of that user-friendly code. The CUDA

results shown in the table are present to show that the changes

required to the diffusion kernel to get SIMD vectorization do

not affect the vectorization that CUDA already achieves.

VI. CONCLUSIONS

We have shown how it is possible to introduce the Kokkos

performance portability layer into a sophisticated AMT run-

time in the Uintah software. This involved rethinking the

design of the Uintah nodal data warehouse and changing loops

in the applications model. The initial experiments conducted

show the promise of Kokkos as a means of providing present

323 643 1283

ms x ms x ms x
Serial Uintah 1.06 1.0 8.04 1.0 64.9 1.0

Kokkos 1 core 0.65 1.6 4.30 1.9 36.1 1.8
Serial SIMD 0.31 3.4 2.47 3.3 20.2 3.2

Kokkos 2 cores 0.17 6.4 1.16 6.9 8.94 7.3
4 Threads SIMD 0.08 13 0.58 14 5.27 12
Kokkos 8 cores 0.07 16 0.54 15 4.51 14

16 Threads SIMD 0.04 24 0.31 26 2.54 25
Kokkos 16 cores 0.04 29 0.28 29 3.52 18

32 Threads SIMD 0.02 43 0.16 49 3.42 19

Kokkos GPU 0.09 12 0.21 38 0.61 105
CUDA SIMD 0.09 12 0.21 38 0.63 103

TABLE II
RESULTS ON 3D STENCIL EXAMPLE. 2 SOCKETS/16 CORES/32 THREADS,
AVX, INTEL XEON CPU E5-2660 0 @ 2.20GHZ 32 GB GEFORCE GTX

TITAN X CAPABILITY 5.2, 12 GB

and future performance portability for the Uintah software.

The incorporation of Kokkos on a standard cpu core offers

anywhere from 2X speedups, to upwards to 12X speedups.

The portability features of Kokos enable speedups of up 30x to

50x using multiple cores and threads or GPUs. The process of

adopting Kokkos into the Uintah framework offers an iterative

path forward for improved performance and portability.
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