
1

Towards Paint and Click: Unified Interactions for

Image Boundaries

Brian Summa, Amy A. Gooch, Giogio Scorzelli, and Valerio Pascucci

UUSCI-2014-004

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

December 15, 2014

Abstract:
Image boundaries are a fundamental component of many interactive digital photography tech-
niques, enabling applications such as segmentation, panoramas, and seamless image composition.
Interactions for image boundaries often rely on two complimentary but separate approaches:
editing via painting or clicking constraints. In this work, we provide a novel, unified approach
for interactive editing of pairwise image boundaries that combines the ease of painting with the
direct control of constraints. Rather than a sequential coupling, this new formulation allows full
use of both interactions simultaneously, giving users unprecedented flexibility for fast boundary
editing. To enable this new approach, we provide technical advancements. In particular, we detail
a reformulation of image boundaries as a problem of finding cycles, expanding and correcting
limitations of the previous work. Our new formulation provides boundary solutions for painted
regions with performance on par with state-of-the-art specialized, paint-only techniques. In addi-
tion, we provide instantaneous exploration of the boundary solution space with user constraints.
Furthermore, we show how to increase performance and decrease memory consumption through
novel strategies and/or optional approximations. Finally, we provide examples of common graphics
applications impacted by our new approach.

EUROGRAPHICS ’0x / N.N. and N.N.
(Editors)

Volume 0 (1981), Number 0

Towards Paint and Click:
Unified Interactions for Image Boundaries

B. Summar and A. A. Gooch and G. Scorzelli and V. Pascucci

Scientific Computing and Imaging Institute & University of Utah

(b)(a) (c) (d) (e)

Figure 1: We provide a novel unified interaction for pairwise image boundaries that combines both paint and constraint-based
user edits. (a) Input image. (b) Desired segmentation. (c) Using only painting edits, a user can use include (green striped) and
exclude (red) annotations to select the object. These annotations can be numerous and tedious for fine features such as the legs
and antennae. (d) Using only constraints (or anchors), a user can click (red) control points to form the object’s boundary. Even
with automatic constraints (yellow), many clicks are required. (e) Our unified approach allows users to mix the complimentary
editing metaphors leading to a more flexible and faster experience.

Abstract
Image boundaries are a fundamental component of many interactive digital photography techniques, enabling
applications such as segmentation, panoramas, and seamless image composition. Interactions for image bound-
aries often rely on two complimentary but separate approaches: editing via painting or clicking constraints. In
this work, we provide a novel, unified approach for interactive editing of pairwise image boundaries that combines
the ease of painting with the direct control of constraints. Rather than a sequential coupling, this new formulation
allows full use of both interactions simultaneously, giving users unprecedented flexibility for fast boundary edit-
ing. To enable this new approach, we provide technical advancements. In particular, we detail a reformulation of
image boundaries as a problem of finding cycles, expanding and correcting limitations of the previous work. Our
new formulation provides boundary solutions for painted regions with performance on par with state-of-the-art
specialized, paint-only techniques. In addition, we provide instantaneous exploration of the boundary solution
space with user constraints. Furthermore, we show how to increase performance and decrease memory consump-
tion through novel strategies and/or optional approximations. Finally, we provide examples of common graphics
applications impacted by our new approach.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

We provide a novel, unified approach for interactively edit-
ing pairwise image boundaries, combining the ease of paint-
ing interactions with the direct control of constraints. Bound-
aries that define where one image region ends and an-

other begins are crucial in image composition and edit-
ing applications. These boundaries are often automatically
or semi-automatically computed to minimize or maximize
the transition between regions, removing the need to metic-
ulously edit boundaries pixel by pixel. In particular, our

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

B. Summa & A. A. Gooch & G. Scorzelli & V. Pascucci / Towards Paint and Click:Unified Interactions for Image Boundaries

work targets user interaction for the automatic and semi-
automatic construction of pairwise boundaries (boundaries
between two images or an image with itself), which have
been used with great success for a variety of research areas
such as texture synthesis [EF01, CSHD03], digital panora-
mas [Dav98, LZPW04, STP12], seamless pasting [JSTS06],
and image segmentation [MB95, MB98, LSTS04].

User interaction for image boundaries often takes one of
two forms, defined by the underlying core algorithm. First,
minimum cut approaches allow users to edit boundaries by
painting and, second, minimum path approaches allow users
to edit boundaries by the creation and manipulation of con-
straints. Figure 1c illustrates Adobe Photoshop’s quick se-
lection painting interactions being used to select the beetle of
Figure 1a; similar interactions are often used for minimum
cut implementations. Selecting the beetle requires over 30
interactions, which are most challenging in areas with fine
features, such as the antennae and legs. These features re-
quire a user to carefully trace their interior and/or exterior,
which can be tedious and error-prone. Figure 1d illustrates
adding constraints via Photoshop’s magnetic lasso tool, an
approach similar to most minimum path implementations.
Red constraints are user clicks and yellow constraints are
automatically added by the software. For areas such as the
beetle’s body in Figure 1d, the amount of points needed to be
added by the user can be excessive and the interaction pro-
cess slow. As the example in Figure 1 illustrates, the benefits
and drawbacks of the two approaches are often complemen-
tary. For example, the antennae that need tedious painting
require only a small number of user constraints and the la-
borious constraints on the beetle’s body are easily avoided
with a simple painting annotation.

The complementary nature of painting and constraints
speaks to the need for a unified approach to image bound-
aries. For ease of implementation, most methods support
painting and constraint schemes independently. After com-
puting a boundary for a given interaction scheme (painting
or constraints), the boundary is finalized and the paintings
or constraints are discarded. Such a step-by-step pipeline
leads to new edits overruling previous edits. As shown in our
companion video, successive painting may remove a well-
placed boundary formed by constraints or a previous paint-
ing. Painting and constraints, working together in a single
approach, lead to fewer interactions overall. For example, an
initial coarse painting of the beetle’s body reduces the con-
straints needed to select its legs to just a few clicks, since the
operation only moves an already semi-optimal boundary.

Our unified technique provides users with the ability to
mix interactions and choose the interaction that best fits their
current task without loss of previous edits. As supplemental
material, we provide video captures of our new approach,
which reduces the time to select the beetle in Figure 1 by
almost half when comparing our unoptimized research code
to pure constraints and painting with Photoshop. Even when

compared to combining both interactions independently, our
new approach improves editing time significantly.

In this paper, we will detail our new, unified approach for
image boundaries, describe how to compute boundaries effi-
ciently, and provide example image processing applications.
Several technical innovations were necessary to achieve our
approach. In particular, the contributions of this paper are:

• A robust formulation of the optimal boundary problem
guaranteed to find the minimum boundary;

• A fast and parallel algorithm to find the minimum bound-
ary;

• A novel extension of our boundary mechanics allowing
users to add constraints to the minimum boundary with
instant feedback;

• A strategy to combine independent minimum boundaries
that allows users intuitive editing with multiple painting
annotations;

• Novel acceleration and memory reduction strategies;
• Practical applications for our new unified approach.

2. Related Work

Given its fundamental use in image processing, the auto-
matic computation of image boundaries has an extensive
body of work. Below, we concentrate on how interaction has
been used to aid automatic solutions or provide boundary
solutions semi-automatically.

Painting Interaction. Minimum cut algorithms, such as
Graph Cuts [BVZ01,BK04,KZ04], compute boundaries via
an optimization often with a user’s initial painted anno-
tations as input. A painting interaction [RKB04, LSTS04,
LSGX05, JSTS06, NFK07, VN08, LSS09, LS10, TGVB13]
has the benefit of a metaphor (include and exclude painting)
that is easily understood by most users. Paint-based interac-
tions provide a user with quick manipulations, but are of-
ten only a front-end to an expensive, iterative optimization.
Additional annotations and edits result in a full recompu-
tation of the solution, which can be time consuming over
many edits. Even if a solution can be produced quickly,
more annotations may be required to resolve ambiguous
boundaries [LSTS04], an ill-defined energy specification, or
places where multiple aesthetically valid solutions are pos-
sible [STP12]. The previous work of Li et al. [LSTS04] has
shown the need for constraints in painting-based approaches
for resolving boundary ambiguities. If the desired features
are fine, the additional careful annotation can be tedious and
require almost the same effort as the manual editing of the
image masks. Our work provides a fast and robust algorithm
for painting interactions with constraints.

Constraint Interaction. Interaction using minimum paths
and constraints, first seen in Mortensen and Barrett [MB95,
MB98], involves the computation of minimum path trees
from user-defined points (constraints). Adding new con-
straints simply requires a traversal of the precomputed

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.

B. Summa & A. A. Gooch & G. Scorzelli & V. Pascucci / Towards Paint and Click:Unified Interactions for Image Boundaries

(a) (b) (c)

C

C

Figure 2: (a) Input image. (b) Drag-and-Drop Pasting [JSTS06] provides a boundary solution that fails to properly find the
dancer’s left leg (inset), due to Jia et al.’s minimum distance separating cut of the domain (red). (c) Our new formulation using
a minimum energy separating path (red) is guaranteed to find the minimum boundary.

trees. Accordingly, the minimum boundary with the given
constraints can be provided instantly and the constraints
can be manipulated interactively. Recent work on panora-
mas [STP12] uses a variation on this approach to combine
the ease of an automatic solution along with the direct, semi-
automatic editing of the boundary. The previous work is lim-
ited to panoramas, since it assumes that the overlaps are
small and that each image has unique areas outside the over-
lap. Therefore the technique of Summa et al. [STP12] is
incapable of handling inset images. Our constraint interac-
tion approach achieves the Summa et al. ease of use with-
out limitations and their supported cases are simply a sub-
set of the cases handled by our work. Li et al.’s Lazy Snap-
ping [LSTS04] provides a polyline approximation of an au-
tomatically computed boundary for a user to adjust and con-
strain. After edits, additional automatic solutions are pro-
duced using the edited polyline as a guide. In contrast, a user
can interactively explore the boundary solution space with
our approach without the need for additional optimizations
or approximations.

3. Paint and Click

The core of our algorithm consists of the following: painting
annotations, finding the minimum cycle, and the addition of
constraints.

Painting Annotation: To compute boundaries for an im-
age, the user begins by labeling the pixels to include and/or
exclude from the selection via a painting metaphor. Multi-
ple, coincident, “like” painting strokes are computed as a
single annotation. Similar to other boundary techniques, at
least one annotation must be defined; otherwise the bound-
ary problem is ill posed. Our base algorithm assumes that
each annotation is independent and therefore, for the remain-
der of this section, we discuss solutions for a single annota-
tion. In Section 3.4, we show how to intuitively combine the
independent solutions.

Minimum Cycle: Our algorithm finds the minimum closed
path that optimally separates the annotated pixels from the

rest of the input. We refer to this path as our minimum cy-
cle. Our technique differs in two ways from the previous
work [JSTS06]. (1) We provide a new solution to the mini-
mum cycle calculation that is robust and guaranteed to find
the minimum cycle. Figure 2 demonstrates where the previ-
ous work fails to properly segment the dancer. (2) Our al-
gorithm has significantly less complexity than that of Jia et
al. [JSTS06]. Our complexity provides a practical improve-
ment of up to a 48 times speedup in our test data and allows
our unified approach to be on par with the fastest paint-only
boundary technique [STC09].

Adding Constraints: Our approach for calculating the min-
imum cycle enables the user to quickly and interactively add
multiple constraints in order to refine the boundary while
keeping it minimal. We perpetually stay one step ahead of
the user with quick precalculations, thereby keeping all in-
teractions fluid and instantaneous.

The next three sections will provide details on our algo-
rithm and describe how our implementation enables a unified
formulation. Section 3.1 will define the parameters of our in-
put and basic definitions for the exposition of our technique.
We will detail how to compute the minimum cycle in Sec-
tion 3.2 and how to easily and efficiently add interactive user
constraints in Section 3.3.

3.1. Pairwise Boundaries

For ease of explanation, we will assume that two overlapping
images, A and B, serve as the input to our technique. In the
case of object selection or foreground/background segmen-
tation, A and B are the same image and the following for-
mulation still applies. Given the two input images, we want
to compute the pairwise boundary, boundaries between two
images or an image with itself, such that there is a discrete
labeling L for all pixels in their overlap. The labeling deter-
mines the image that contributes a pixel to the final compos-
ite or the pixel that is selected. The labeling is defined as
L(p) = {A,B} for location p in the overlap. Input for this
procedure is typically an initial labeling provided by user

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.

B. Summa & A. A. Gooch & G. Scorzelli & V. Pascucci / Towards Paint and Click:Unified Interactions for Image Boundaries

A
(c)(a) (b)

B

Overlapping Images Overlap with Energy Annulus

Annotation

O

Minimal Boundary

Figure 3: (a) Given a user annotation (green striped), a min-
imum boundary between images with complete overlap can
be found by computing a minimum cycle. (b) and (c) illus-
trate O as the solution space given by the overlap of A and
B, the boundary of overlap (blue) and the region annotated
by the user (green), and the minimum cycle (black).

annotations, another algorithm, or a partial overlap. For pur-
poses of illustrating such labeling in this paper’s figures, all
include annotations are shown in striped green and exclude
annotations are shown in red. Each annotation can have a
single or multiple connected component(s).

The labeling can be computed by minimizing the transi-
tion [ADA∗04], Et , between images based on a piecewise
smoothness Es(p,q), where (p,q) ∈ N and N is the set of
all neighboring pixels in the overlap.

Et(L) = ∑
(p,q)∈N

Es(p,q).

The smoothness energy can vary based on the type of tran-
sition required. For example, equations can minimize:

Es(p,q) = ‖IL(p)(p)− IL(q)(p)‖+‖IL(p)(q)− IL(q)(q)‖.

or maximize the transition in pixel values:

Es(p,q) = e−‖I(p)−I(q)‖ (1)

when L(p) �= L(q) and Es(p,q) = 0 otherwise.

Given an initial labeling of the pixels, the problem is to
find a new labeling that minimizes the transition between la-
bels. Towards enabling the minimization, we represent the
pixels as a planar, 4-neighborhood, energy-weighted pixel
graph G = (V,E), where V are pixel locations in the over-
lap and E are edges that connect pixel neighbors. Edges are
weighted by the energy function Es.

Most previous techniques would produce a new mini-
mal labeling via minimum cut of the graph, such as in Li
et al. [LSTS04]. As this previous work has shown, mini-
mum cuts are insufficient for a fully unified technique since
boundary edits require approximations and repetitive op-
timizations. In contrast, minimum paths have been shown
to provide user control of the boundary without approx-
imations [MB95, MB98, STP12], resulting in a what you
see is what you get (WYSWIG) interaction. In addition,
Summa et al. [STP12] showed that a dual graph between
pixels can be formed, on which the minimum path can pro-
duce the same solution as a minimum cut. We overcome
the deficiencies of minimum cut boundary interactions and

(a) (b) (c) (d)

C

Figure 4: (a) Computation of a minimum cycle illustrated
via a planar annulus. (b) A separating path is computed as
the minimum path from interior (green) to exterior (blue)
boundary nodes. The domain is split into a disk by repli-
cating this path on either side of the domain. (c) If a set
of minimum paths from the separating path nodes to their
replicated selves is computed, the minimum cycle (d) is the
minimum path in this set.

the limitations of the open paths of previous minimum path
work [MB95, MB98, STP12] by providing a unified ap-
proach based on closed minimum paths.

As an added benefit, using minimum paths provides the
option to operate and minimize on the boundary pixels them-
selves; an operation that is extremely useful for color cor-
rection applications. In particular, for seamless composition
it is desirable to minimize the pixel color difference on the
boundary:

Et(L) = ∑
p∈∂Li

‖IA(p)− IB(p)‖, (2)

where ∂Li is a set of points such that if p ∈ ∂Li then L(p) =
i and L(q) �= i for some q such that (p,q) ∈ N and i would
correspond to the image that is to be seamlessly composed.

We assume in our exposition that the minimum bound-
aries occur on the pixels themselves. In other words, each
boundary is a sequence of pixels (p1, ..., pn) and the nodes
of our graph are the pixel locations with edges connecting
nodes corresponding to adjacent pixels.

3.2. Computing the Minimum Cycle

For clarity in the illustrations in the paper, we will describe
the computation of the minimum cycle via the planar annu-
lus, shown in Figure 3. A planar annulus represents the solu-
tion domain for a single annotation and is defined as the area
between two concentric boundaries. As shown in Figure 3c,
the interior boundary (green) of the annulus represents the
annotation boundary and the exterior boundary (blue) repre-
sents the solution domain boundary. We will also describe a
separating path, consisting of the pixels or nodes in the pixel
graph that joins the interior and exterior boundaries.

Our approach for computing the minimum cycle makes
two major improvements to the work of Jia et al. [JSTS06],
including a robust separating path for splitting the planar
annulus defined by the boundaries and a lower complexity
divide-and-conquer approach for generating an optimal min-
imal cycle between the interior and exterior boundaries. Our

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.

B. Summa & A. A. Gooch & G. Scorzelli & V. Pascucci / Towards Paint and Click:Unified Interactions for Image Boundaries

method results in a fast computation and the correct minimal
cycle, as we will describe in this subsection.

3.2.1. Robust Separation of the Domain

In order to compute a minimum cycle between these bound-
ary paths, we first create a separating path, C, that trav-
els from the nodes of the exterior boundary to the interior
boundary (Figure 4b). We then replicate the nodes of the
separating path to split our solution domain. The minimum
cycle is found via a search through the collection of all mini-
mum paths from the separating path nodes, ni, to their repli-
cated selves, n′i [IS79, Rei],

MinCycle = min
ni

(MinPath(ni,n
′
i)).

Figures 4c and 4d illustrate the search for minimum cycle.

In our work, we make a critical adjustment to the mini-
mum distance cut technique used by Jia et al. [JSTS06]. In
the previous work, the separating cut was based upon the
minimum distance from the interior to the exterior of the an-
nulus, which does not account for the underlying energy. Jia
et al. assumed that a minimum boundary would not cross the
separating cut more than once, a safe assumption for simple
color correction boundaries. However, when this assump-
tion does not hold, such as in the case of a more general
image segmentation or object selection, their technique will
not find the minimum boundary. As shown in Figure 2b, a
minimum distance cut bisects one of the legs of the dancer.
Therefore, any boundary produced using such a separating
cut cannot trace the inside this leg completely.

As shown in Figure 4, we compute our separating path as
the minimum path on the underlying energy, not distance,
between all nodes on the exterior boundary to the nodes on
the interior boundary. The separating path can be computed
by connecting the nodes of the exterior boundary with zero-
weighted edges to a source dummy node and connecting all
interior boundary nodes to a destination dummy node. The
separating path is then computed as the minimum path be-
tween the source and destination nodes [IS79,Rei]. Since the
separating path connects interior and exterior boundaries,
the minimum cycle must cross it once and only once. Ap-
pendix A explains this property in detail.

3.2.2. Zero Constraints – Divide and Conquer

Additionally, our method improves upon the performance of
the Jia et al. [JSTS06] boundary solution by introducing a
new divide and conquer algorithm. Our algorithm reduces
the runtime of our zero constraints solve from O(MN) to O(N
log M) for integer energy [MB95, MB98] and O(MN log N)
to O(N log N log M) for floating point energy [Dij59], where
M is the length of the separating path and N is the number of
pixels in the annulus. The complexity improvement provides
as high as a 48 times speedup in our test data. The complex-
ity of Jia et al.’s algorithm fits their desired offline boundary
solution, but our goal is to produce image boundaries with

Level 0

Level 1

Figure 5: Our divide and conquer strategy for finding the
minimum cycle first computes the cycle associated with the
separating path’s midpoint, the separating path is split about
this midpoint, and then the algorithm recurses on the two
subpaths. The solution domain in the recursion is partitioned
by the midpoint’s cycle with each partition including the cy-
cle itself. Levels are dependent on previous levels, but oper-
ations of the same level are independent and parallel. Grey
areas denote areas that are excluded from the computation.

interactive feedback. Moreover, the previous work assumed
the separating path length, M, is small, an assumption that
does not hold for our robust separating path in applications
such as object selection.

Our recursive binary divide and conquer strategy, moti-
vated by the work of Reif [Rei], exploits the fact that the
minimum paths computed in finding the minimum cycle can
be coincident but cannot cross (Appendix A). Figure 5 illus-
trates a step of our recursive algorithm. First, the minimum
path from middle node of the current separating path is com-
puted to its replicated self. The separating path then is split
about the midpoint and the algorithm recurses on the two
subpaths. The solution domain in the binary recursion can
be partitioned by the midpoint’s minimum path with each
partition including the path itself.

3.3. Adding Interactive User Constraints

Our unified approach provides the ability to easily add user
constraints since adding a single constraint is equivalent to
finding the minimum cycle between the interior and exterior
boundaries that must pass through a specific node. Adding
additional constraints simply requires the examination of
current constraints and their minimum path trees, as we will
explain in the following subsections.

3.3.1. Single Constraints

Adding a single constraint includes building clockwise
(CW) and counterclockwise (CCW) minimum path trees
for all separating path nodes, finding the minimum cy-
cle through the constraint, and creating a separating path
through the constraint as a preprocess for additional con-
straints.

For every node of the separating path, we compute the
minimum path tree in both clockwise and counterclockwise

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.

B. Summa & A. A. Gooch & G. Scorzelli & V. Pascucci / Towards Paint and Click:Unified Interactions for Image Boundaries

...

(a) (b) (c) (d) (e) (f) (g) (h)(h) (i)

CC
W Tree CW Tree

Figure 6: User constraints. (a) For every node in the separating path, a clockwise and counterclockwise minimum path tree is
computed with the node and its replicated self as their roots. (b and c) To find a minimum cycle that passes through a constraint,
one must simply find oriented paths associated with a node on the separating path which provides the minimum cost (d). (e)
After the first constraint is added, the domain can be separated via the minimum path that passes through the constraint. (f)
Two clockwise and counterclockwise oriented minimum path trees are computed with the constraint and its replicated self as
their roots. (g) An additional constraint is simply a lookup on the two trees. (h) Each constraint has its own separated domain
for computation. (i) New constraints are simple lookups on the constraint minimum path trees. The ordering of the constraints
can be evaluated during any user interaction to allow for fluid movement of the constraints.

orientations with the node (or its replicated self) as the root.
See Figure 6a. Each tree can be encoded as a step-direction
and cost buffer. The step-direction buffer encodes the direc-
tion of a node’s parent in one byte whereas the cost buffer
stores the minimum path cost for each node at a desired pre-
cision. This preprocess has complexity a of O(2NM).

We define the constraint-minimum cycle as the minimum
cycle that must pass through the constraint(s). To find the
constraint-minimum cycle, we find the oriented paths from
a separating path node, ni, and its replicated self, n′i , to the
constraint whose sum gives the minimum cost:

MinCycle(c) = min
ni

(MinPath(ni,c)+MinPath(n′i ,c)),

where c is the constraint location (Figures 6b, 6c, and 6d).
The cost buffer can be dropped after computation by keeping
track of the minimum cycle cost along with the index of the
separating path node whose trees provide the cycle.

After the initial constraint is positioned (Figure 6e), a min-
imum path between the exterior and interior boundaries con-
taining the constraint can be used to separate the annulus
into a disk. We call this the constraint-separating path. As
a preprocess to enable the addition of more constraints, two
oriented minimum path trees (CW and CCW) with roots be-
ing the first constraint node and its replicated self (Figure 6f)
are computed with a cost of O(2N).

3.3.2. Two or More Constraints

Given the two oriented precomputed minimum path trees,
finding the boundary with a second constraint is simply
a tree traversal (Figure 6g). Additional constraints operate
similarly, as illustrated in Figures 6h and 6i; after each con-
straint is set, a similar preprocess of generating oriented trees
occurs for the next constraint.

Constraints are stored in a circular array and are inserted
as follows. Let us assume we have three constraints, c1, c2,
and c3, and wish to insert c4. The first three constraints
are stored in a circular array as c1, c2, c3, c1. When the
user adds c4, the algorithm evaluates the best place for
c4 by adding it between each pair of current constraints

((c1,c2),(c2,c3),(c3,c1)) and examining whether the result
is the smallest cost boundary that encloses the annotation
label. To find this, we simply compute the total cost for a
boundary in all possible orientations. Multiple combinations
of oriented paths are possible (4 in the standard case and up
to 16 due to node replication if the new constraint is on the
constraint-separating path of both constraints in the pair).
The cost calculations are a simple lookup and the search
rarely needs to test more than a few boundaries. The per-
formance cost of this calculation is nominal in our testing.

Our scheme evaluates the constraint array position on both
addition and movement allowing a user to add and move
constraints instantly and fluidly without restriction. Because
the minimum path can cross the constraint-separating path
once and only once on a subpath containing the constraint
(Appendix A), the boundary is guaranteed to be minimal un-
der the constraints.

3.4. Multiple Annotations

Users often make multiple annotations in order to interac-
tively add and carve pieces of an image until the desired
boundary is found (see the supplemental video captures).
The discussion of our technique up to this point considers
only a single annotation. In this section, we detail our pro-
cess for combining multiple annotations.

Given multiple boundaries, we create the pixel labeling
for each by rasterizing the boundary geometry. We union in-
clude labels and remove exclude labels to form the selection
using a hierarchical tree structure, similar to 2D constructive
geometry, describing the nesting of labels. We will detail our
scheme using the examples of Figure 7.

During the minimal cycle calculation and constraint ma-
nipulation, discussed in Subsections 3.2 and 3.3, our ap-
proach treats each connected component of the annotations
as an independent, single annotation, but applies the other
annotations as areas of high energy. The high energy areas
guarantee a cycle does not split another annotation.

Figure 7a illustrates the case of an annotation that is not
simply connected and lacks a different label in its interior.

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.

B. Summa & A. A. Gooch & G. Scorzelli & V. Pascucci / Towards Paint and Click:Unified Interactions for Image Boundaries

(a)

(b)

(c)

User Paint Annotation Annuli/Boundaries Composited Boundaries

Figure 7: Combining minimum cycles for multiple annota-
tions; include regions indicated with green stripes and ex-
clude regions in red. (Row a) Our algorithm treats each an-
notation as independent and the solution as the union of like
annotations. Non-simply connected regions without the pres-
ence of an opposite annotation are treated as simply con-
nected. (Row b) Opposite annotations are treated indepen-
dently and are subtracted from the boundary solution. The
solution domain is reduced if an annotation is enclosed by a
different annotation. (Row c) Combining annotations allows
users to intuitively add/remove image regions.

In this case, the annotation is treated as simply connected
and provides the proper solution. As in Figure 7b, if an an-
notation is enclosed by another we can restrict the solution
domain to be only inside the enclosure. The combination of
the different labels provides the final solution.

If a boundary is not nested, then it can be simply applied
to the composite image because the boundary is a distinct
partition of space, shown in Figure 7a. To combine nested
boundaries, as seen in Figures 7b and 7c, we traverse the hi-
erarchy bottom up and remove the each boundary’s labeling
from the labeling of the hierarchically lowest parent of the
opposite label.

The boundary computation for applications with on-
boundary optimizations have a subtle, yet important, distinc-
tion. In the final labeling, we retain the minimum bound-
aries when removing a labeling. For instance, the image to
be color corrected in seamless composition should retain the
minimum boundaries. Therefore, when removing the bound-
aries of the opposite label, the technique must not remove
the labeling of the boundary itself in order to maintain the
proper boundary.

Nested initial boundaries, shown in Figures 7b, cannot
cross (Appendix A). However, for cases such as Figure 7c,
the addition of user constraints may break this rule. To keep
our scheme simple, we consider the crossing an unsupported
state since it implies an ambiguous labeling and present the
problem to a user. In practice, the unsupported state does not
commonly occur.

To ensure proper computation of minimum cycle bound-
aries, we require at least one pixel space between opposite

annotations when optimizing on the boundary. When opti-
mizing between pixels, we require a two pixel space.

Our new combination scheme provides good, intuitive re-
sults for a user by mimicking the natural adding and remov-
ing of image pieces with its one-to-one correspondence be-
tween annotations and the components/holes of the final se-
lection.

4. Computation and Memory Improvements

In this section, we provide details on how to reduce the
(C)omputational and/or (M)emory complexity with novel
strategies or approximations. Our optimization methods in-
clude the use of hierarchical boundaries and improved initial
constraint initialization, including discussions on automati-
cally setting the initial constraint(s), tree computation halt-
ing, cycle compression to reduce storage, and a subsampled
separating path approximation.

4.1. Hierarchical Boundaries - (C, M)

We provide a hierarchical version of our algorithm to help
both computational performance and memory overhead. Our
unified approach is easily adapted to a hierarchical solution
with the following steps: find the minimum boundary, up-
sample and dilate the minimum boundary, and use the dila-
tion as the new domain for the next level of the hierarchy. A
dilation of a minimum boundary is typically another annu-
lus. The exception is when the dilated domain causes a pinch
or connection between pieces of the boundary that are close
in distance but not close on the boundary itself. This excep-
tion can be avoided by thresholding the dilation based upon
an on-boundary distance to allow close boundary regions to
connect and far regions to remain disconnected. In practice,
we used dilations in the range of 5 to 30 pixels.

4.2. Improved Initial Constraint Preprocess

The O(2NM) step in Figure 6a and discussed in Section 3.3.1
can quickly become a performance and/or memory bottle-
neck. The initial constraint step can be accelerated, the trees
can be compressed, and approximate solutions can be pro-
duced that are still of high quality.

Tree Computation Halting - (C) We have observed that
for each oriented tree in Figure 6a, there is little difference
in structure between the trees of the same orientation as they
get further away from the root. Therefore, we have devised
a strategy that has given us a 30% to 60% reduction in com-
putation in our test data. First, an oriented, base tree from
a node in our separating path is computed along with a col-
lection of rastered lines from the interior to exterior bound-
aries that partition the annulus into regions. We refer to each
raster line as a set of test nodes. During the computation of
a new tree, for each set of test nodes if each node in the

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.

B. Summa & A. A. Gooch & G. Scorzelli & V. Pascucci / Towards Paint and Click:Unified Interactions for Image Boundaries

set has a cost that differs from the cost in the base tree by
a common ∆, then we can treat the paths for all nodes be-
yond the test nodes as equivalent and the computation can
halt. Appendix B provides an informal proof. In our work,
we found that 32 raster lines provides the best performance
in the trade-off between amount of testing and halt locations.

Cycle Compression - (M) Two properties of the minimum
cycle lead to a simple storage reduction for a large number
of trees and follow directly from the property discussed in
Appendix A. First, a constraint-minimum cycle that touches
the minimum cycle cannot cross the minimum cycle and the
only subpath that is not coincident is the subpath that con-
tains the constraint itself. Therefore, to encode a constraint-
minimum cycle that touches the minimum cycle, all we need
to save is the minimum cycle and this connecting subpath.
Second, if we consider this subpath connecting a constraint
to the minimum cycle as having two components defined by
its orientation, all like-oriented subpaths from constraints to
the global minimum cycle cannot cross or separate when co-
incidence occurs.

Given both properties, all that is needed to encode the
constraint-minimum cycles that touch the minimum cycle
are two buffers to store the clockwise and counterclockwise
paths. For all constraints that define these cycles, only the
first step in either orientation is needed to encode its path.
Minimum cycles for each constraint can be built by walk-
ing each buffer from the starting constraint and terminat-
ing upon finding a common node. Adversarial cases can
be constructed with poor compression, but we have found
these are rare in practice. In fact, practically all constraint-
minimum cycles in our test data touch the minimum bound-
ary, thereby leading to very high compression for the ori-
ented tree buffers.

Automatic Initial Constraint - (C, M) We can bypass the
computation of Section 3.3.1 (Figure 6a), skipping directly
to Section 3.3.2 (Figure 6e), by automatically inserting con-
straints on the minimum cycle in one of two ways. The
first option picks a point on the minimum cycle to add to
the boundary as a constraint. The constraint-minimum cycle
for points on the minimum cycle is the minimum cycle it-
self. The two oriented trees for the constraint are computed,
O(2N), instead of the O(2MN) constraint preprocess. A user
can then add and move a second constraint per the usual al-
gorithm. The first constraint cannot be moved until the sec-
ond constraint is added and positioned. To avoid this lock-
ing, the second option adds two points on the minimum cy-
cle as constraints. In this approach, four trees are computed,
O(4N), but both constraints are editable from the start.

Subsampled Separating Path Approximation - (C, M)
The computation of trees in Figure 6a does not necessar-
ily need to be a full sampling of the separating path to pro-
duce results of high quality. In practice, we have noted that

(b)

(a)

Original Unified Final Selection

(c)

Include Exclude

Figure 8: (a) The coarse painting of the eagle selects the
eagle’s body. The fine features of the talons and feathers
are selected with simple clicks, which avoids tedious pixel-
wide painting (inset purple). (b) The coarse annotation of
the snowboarder selects his body and board. The user-added
constraints refine fine features such as his hand and fix other
ambiguous regions on his body, avoiding pixel-wide paint-
ing (inset purple). (c) A coarse painting selects the statue
and the boundary is fixed with constraints.

subsampling the path with every other or every third node
produces approximate constraint-minimum cycle results im-
perceptible to the user from the actual minimum.

5. Results

In this section and the accompanying video, we show our
new unified interaction for examples in object selection and
seamless composition. All timings were performed on an i7
3.5 GHz desktop using wall clock time. For illustration, con-
straints and boundaries have been coarsely outlined.

Object Segmentation/Selection. Figures 1 and 8, along
with the companion video, provide examples of our tech-
nique being used for interactive object selection. Specifi-
cally, the energy from Equation 1 is minimized on the dual
of the 4-neighbor pixel graph. For this application, we have
found no hierarchy was necessary for good performance
and approximating by subsampling the separating path ev-
ery third node reduced the preprocessing time for the initial
constraint sufficiently while maintaining quality results.

Figure 1 illustrates the benefits of our algorithm in select-

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.

B. Summa & A. A. Gooch & G. Scorzelli & V. Pascucci / Towards Paint and Click:Unified Interactions for Image Boundaries

ing a beetle on a leaf. Figure 1c shows the strokes required
to select the beetle using Adobe Photoshop CS5’s quick se-
lection tool, which was recorded via macro. The quick selec-
tion tool is an example of a purely painting approach. Fig-
ure 1d demonstrates the clicks required (red) and automatic
anchors (yellow) set with Photoshop’s magnetic lasso tool;
a pure constraints approach. As the figure and the supple-
mental video show, there can be many tedious interactions
necessary to get the desired result in these non-unified set-
tings. Using our unified environment (Figure 1e), a user can
avoid the careful painting of the antennae and legs and the
many clicks required for constraints on the beetle’s body.
In addition, the figure also shows how few constraints are
needed since they are only refining an already well-placed
initial boundary provided by the painting. In our supplemen-
tal videos, we provide an example of the significant time sav-
ings granted by our new approach when compared to pure
painting and pure constraints. We have tested our prototype
with several experienced photo editors and have received
unanimously positive feedback on the quickness and intu-
itiveness of our unified approach. All users would like to use
this tool in an interactive photo editing suite.

Like the previous example, often the fastest selection is
the result of an initial, quick coarse painting that is refined
with constraints. In Figure 8a, a user selects an eagle with
easy broad painting strokes. The feathers and talons would
be tedious to paint; therefore, a user clicks and adds a few
constraints to adjust the boundary for the talons and the
wings. As the purple inset images show, these constraints
avoid careful pixel-wide paintings. In Figure 8b, a user se-
lects a snowboarder with a quick include (green striped) and
exclude (red) stroke. Like the eagle, the athlete’s right fingers
would be difficult to paint. They can be selected with a few
clicks. In addition, there are areas the initial painting missed
such as his foot and left hand. Either additional painting an-
notations could be added, or as this example shows, a few
clicks can fix the selection. In Figure 8c, multiple paintings
are applied to the image of the statue. The initial result pro-
duces a boundary that includes the background building and
sky, while excluding pieces of the statue. These problems
can be fixed with just a handful of constraints.

Seamless Composition. Another application of our tech-
nique is the creation of a seamless composition. In this ap-
plication, the boundaries are combined with a color correc-
tion technique such as gradient domain blending [PGB03,
LZPW04] to produce a seamless image. The foreground im-
age is seamlessly blended into the background by match-
ing the foreground boundary’s pixels to the background and
solving a Poisson system to blend the color difference into
the foreground’s interior. A logical foreground boundary
would be one that deviates from the background as little
as possible. In particular, we use the energy from Equa-
tion 2 on the 4-neighborhood pixel graph. The work of Jia
et al. [JSTS06] targets both offline boundary and color cor-

(a) (b) (c)

(d) (e)

Figure 9: (a) An image of berries where the bottom branch
will be cloned multiple times. (b) The result from Farbman
et al. [FHL∗09]. Even the most advanced color correction
techniques can be limited by the chosen boundaries. Exam-
ples of problems include disappearing branches (inset yel-
low) and color inconsistencies due to inclusion of the back-
ground in the color solution (inset purple). (c) With our uni-
fied interactions, boundaries can be guided by the user to
give the best color result. (d) The final image with two cloned
branches. (e) An image with one cloned branch.

(a) (b) (c)

Figure 10: A user manipulates the moose’s antler and eyes.
(a) The original image. (b) Eye size is increased and antler
size decreased. Problems such as the purple inset are in-
stantly detected by a user with our real-time boundaries. (c)
Eye and antler size increased. Boundaries and interactions
used to produce the seamless image are white inset.

rection, but in our work we have focused on providing inter-
active boundaries with quick color correction after manipu-
lation. The boundary interaction is important since problems
in the final composition can be easily caused by boundaries.
A minimum boundary may intersect with a very distinct part
of the scene, leading to bad color correction and a poor fi-
nal composition. Figure 9b shows a result from Farbman et
al. [FHL∗09], who provide a high quality color correction
routine. As the inset images show, the color correction can
only do so much to provide a quality image when the bound-
aries are not set realistically. Examples in our companion
video, such as the berries example, demonstrate instances of
improper boundaries and illustrate of how to correct them
with our system. Our software allows users to see and/or
edit boundaries while manipulating the foreground images.
In addition, users can edit boundaries and suppress the color
correction to preserve hard edges, for example, the top of
the fins in orca of Figure 11. Therefore, boundary editing
and color correction can work in tandem to provide the best
quality image. Finally, since our target is pairwise bound-

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.

B. Summa & A. A. Gooch & G. Scorzelli & V. Pascucci / Towards Paint and Click:Unified Interactions for Image Boundaries

(a)

(b)

(d)(c)

Figure 11: (a and b) Combining two images to blend ab-
stract and real. The areas bounded by green are seamlessly
composited into the first image. (c) Our unified interactions
are used to create a composite (d).

aries, multiple foreground images are handled by processing
each sequentially.

Figure 9a illustrates an image where the berries are
cloned to make a larger cluster. With our technique, the im-
age pieces can be manipulated and moved with boundaries
edited by our unified approach (Figure 9c). The resulting fi-
nal images, Figures 9d and 9e, provide a more realistic color
correction than the bright red berries of Figure 9b. In Fig-
ure 10, a user clones and manipulates a moose’s antlers and
eyes to make two different scenes (Figures 10b and 10c).
Figure 10b illustrates how the real-time boundaries are fun-
damental in positioning the antlers realistically while simul-
taneously getting a sense where problem areas in the bound-
ary may break realism (purple inset). Figure 11 provides a
more complicated example of seamless cloning and com-
positing to produce a meld of the orca statue, Figure 11a, and
a photograph of a real orca, Figure 11b. Composited portions
are highlighted in green. With our unified interaction, Fig-
ure 11c, we can produce a quality final image, Figure 11d.

Performance. The performance of our technique can be
evaluated in several ways. We first compare the object
selection performance for our zero constraints solution
against the fastest Graph Cuts implementation for planar
graphs [STC09]. Additionally, we provide the running times
for our techniques with the various acceleration strategies
presented in Section 4. A more complete tally of our tim-
ing results is provided in the supplemental material. Overall,
with our acceleration strategies our approach is interactive
for the initial boundary solution and provides instantaneous
feedback while a user edits constraints.

Our technique for image segmentation may have slightly
higher complexity than the previous work [STC09], but has
comparable running times on our 4-core machine. Since our
technique has parallel elements, it will improve as more

cores are added. The beetle in Figure 1 with 715x1023 pix-
els took 0.66s in the planar Graph Cuts technique and 0.67s
with our zero constraints solution. The images in Figure 8
were 0.36s, -0.08s, 0.9s faster with our technique for images
that range between 984K and 2.5M pixels. Additionally, the
average cost after addition or movement of a constraint, as
discussed in Section 3.3.2 (Figure 6f), taken from a typical
editing session ranges between 158ms for a 490K pixel im-
age to about 798ms for a 2.5M pixel image.

The previous timings do not use hierarchical acceleration.
We now discuss the effect of the hierarchy for the color
blending example for the left fin shown in Figure 11. With
no hierarchy, the zero constraints solution takes 701ms for a
full resolution solve. The single constraint preprocess takes
5.1s with subsampling the separating path every third node.
Although fast, the image processing does not yet achieve the
our desired interactivity. Using two levels of hierarchy, the
zero constraints solution takes 151ms and the single con-
straint preprocess takes 0.58s. Three levels reduce the time
further to 37ms for the zero constraints solution and 0.07s
for the single constraint preprocess. Resolving the full reso-
lution solution via three levels of the hierarchical solver re-
quires 33ms or 112ms depending upon the dilation (5 and
30 pixels, respectively). We have found, in practice, that 5
pixel-dilation allows a user to produce a full solution visu-
ally close to the coarse solution whereas 30 will produce
the same solution as no hierarchy. For two levels, the so-
lution takes 29ms for 5 pixel-dilation and 84ms for 30 pixel-
dilation. In all cases, the full solution can be quickly pro-
vided and the cost of the hierarchical solution is nominal. In
our seamless cloning examples, the hierarchy provides inter-
active rates allowing the manipulation the foreground image
and boundaries in real-time.

6. Discussion and Limitations

Although a complete overlap was the target application for
our unified approach, Figure 12a illustrates how our ap-
proach can be easily used for partial overlaps between two
images. This case is commonly seen in panoramas. If we
connect each intersection point to a dummy node with zero-
weighed edge and connect, round-robin, pairs of dummy
nodes with zero-weighed edges, we form a solution domain
that is equivalent to a collapsed annulus. In Figure 12b, the
dashed line is the collapsed region. Note that the boundaries
that contain o1 or o2 can be considered the interior and ex-
terior boundaries, or vice versa. Either choice would pro-
duce the same solution. Odd numbers of intersections and
raster artifacts can be handled as specified in the algorithm
of Summa et al. [STP12]

Our unified interaction targets pairwise image boundaries.
For more than two images, painting approaches using algo-
rithms such as Graph Cuts provide the most common solu-
tion. Interactive constraints for more than two images work
only in specialized applications [STP12]. Seamless compo-

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.

B. Summa & A. A. Gooch & G. Scorzelli & V. Pascucci / Towards Paint and Click:Unified Interactions for Image Boundaries

A S
o1

o2

(a) (b)
B

Figure 12: (a) Boundaries for partial overlaps are sup-
ported by our approach by connecting nodes of image
boundary interactions to dummy nodes. (b) Connecting,
round-robin, pairs of dummy nodes with zero-weighed
edges, we form a solution domain that is equivalent to a col-
lapsed annulus.

sitions of multiple images or photomontages [ADA∗04] can
be constructed with our technique by sequentially compos-
ing each image into the background. We believe that the new
unified interaction provides good results in these cases, but
we acknowledge this may not always be the case. If users
want a minimum boundary with more than two images with-
out any interaction beyond painting, then techniques such
as Graph Cuts are the best option. However, iterative tech-
niques such as Graph Cuts are prone to local minima and
use pairwise boundaries as the core of their optimizations.
We believe our approach can aid these techniques by allow-
ing user interaction to avoid these suboptimal states.

Minimum cut algorithms allow for a data energy term ap-
plied per pixel for a given label. Future extensions of our
technique will deal with how to integrate such data costs.
Due to our pixel 4-neighborhood, in areas of smooth energy
the path may take a "manhattan" walk rather than an equiv-
alent straight walk depending on the order neighbor pixels
are traversed in the optimization. We have found that this
effect is noticeable only in contrived examples. As outlined
in the text, after a constraint is added, movement is possible
before its oriented trees are computed, but we have found, in
practice, a user often adds several constraints at once in the
paint-and-click model. Therefore, in our prototype we have
chosen to compute a constraint’s oriented trees as soon as it
is added. Although precomputing the trees adds a delay, it
keeps the system intuitive for users.

7. Conclusion

We provide a novel, unified approach for interactive editing
of image boundaries that combines the ease of painting with
the direct control of constraints. Our zero constraints bound-
ary based on a painting annotation is faster and more robust
than the previous work and is on par with the performance
of the best paint-only solvers. A user can add multiple con-
straints and instantly edit the boundary. Our interactive user
flow allows for the full exploration of the solution space,
even at a fine level. Our unified approach leads to more flex-
ible and faster editing sessions for users. In addition, we have
shown how performance can be improved with novel strate-
gies and approximations. Finally, we have provided exam-

ples of the real and immediate impact our new strategy has
in digital photography applications.

References
[ADA∗04] AGARWALA A., DONTCHEVA M., AGRAWALA M.,

DRUCKER S. M., COLBURN A., CURLESS B., SALESIN D.,
COHEN M. F.: Interactive digital photomontage. ACM Trans.
Graph 23, 3 (2004), 294–302. 4, 11

[BK04] BOYKOV Y., KOLMOGOROV V.: An experimental com-
parison of min-cut/max-flow algorithms for energy minimization
in vision. IEEE Trans. Pattern Anal. Mach. Intell 26, 9 (2004),
1124–1137. 2

[BVZ01] BOYKOV Y. Y., VEKSLER O., ZABIH R.: Fast approx-
imate energy minimization via graph cuts. IEEE Trans. Pattern
Analysis and Machine Intelligence 23, 11 (2001), 1222–1239. 2

[CSHD03] COHEN M. F., SHADE J., HILLER S., DEUSSEN O.:
Wang tiles for image and texture generation. ACM Trans. Graph
22, 3 (2003), 287–294. 2

[Dav98] DAVIS J. E.: Mosaics of scenes with moving objects. In
CVPR (1998), pp. 354–360. 2

[Dij59] DIJKSTRA E. W.: A note on two problems in connexion
with graphs. Numerische Mathematik 1 (1959), 269–271. 5

[EF01] EFROS A., FREEMAN W.: Image quilting for texture syn-
thesis and transfer. In SIGGRAPH (2001), pp. 341–346. 2

[FHL∗09] FARBMAN Z., HOFFER G., LIPMAN Y., COHEN-OR
D., LISCHINSKI D.: Coordinates for instant image cloning. ACM
Trans. Graph 28, 3 (2009). 9

[IS79] ITAI A., SHILOACH Y.: Maximum flow in planar net-
works. SIAM Journal on Computing 8, 2 (1979), 135–150. 5

[JSTS06] JIA J., SUN J., TANG C.-K., SHUM H.-Y.: Drag-and-
drop pasting. ACM Transactions on Graphics 25, 3 (July 2006),
631–637. 2, 3, 4, 5, 9

[KZ04] KOLMOGOROV V., ZABIH R.: What energy functions
can be minimized via graph cuts? IEEE Trans. Pattern Anal.
Mach. Intell 26, 2 (2004), 147–159. 2

[LS10] LIU J., SUN J.: Parallel graph-cuts by adaptive bottom-up
merging. In CVPR (2010), IEEE, pp. 2181–2188. 2

[LSGX05] LOMBAERT H., SUN Y. Y., GRADY L., XU C. Y.: A
multilevel banded graph cuts method for fast image segmenta-
tion. In ICCV (2005), pp. I: 259–265. 2

[LSS09] LIU J., SUN J., SHUM H.-Y.: Paint selection. ACM
Transactions on Graphics 28, 3 (Aug. 2009), 69:1–69:?? 2

[LSTS04] LI Y., SUN J., TANG C.-K., SHUM H.-Y.: Lazy snap-
ping. ACM Trans. Graph 23, 3 (2004), 303–308. 2, 3, 4

[LZPW04] LEVIN A., ZOMET A., PELEG S., WEISS Y.: Seam-
less image stitching in the gradient domain. In ECCV (2004),
pp. Vol IV: 377–389. 2, 9

[MB95] MORTENSEN E. N., BARRETT W. A.: Intelligent scis-
sors for image composition. In SIGGRAPH (1995), pp. 191–198.
2, 4, 5

[MB98] MORTENSEN E. N., BARRETT W. A.: Interactive seg-
mentation with intelligent scissors. Graphical models and image
processing: GMIP 60 (1998). 2, 4, 5

[NFK07] NAGAHASHI T., FUJIYOSHI H., KANADE T.: Im-
age segmentation using iterated graph cuts based on multi-scale
smoothing. In ACCV (2007), pp. II: 806–816. 2

[PGB03] PÉREZ P., GANGNET M., BLAKE A.: Poisson image
editing. ACM Trans. Graph 22, 3 (2003), 313–318. 9

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.

B. Summa & A. A. Gooch & G. Scorzelli & V. Pascucci / Towards Paint and Click:Unified Interactions for Image Boundaries

(b)(a)

a

b

p1 p2
sb

sa

a

b
p1 p2

sb

sa

(c)

Figure 13: (a and b) Two minimum paths can be coinci-
dent only on a single connected subpath. More than one
contradicts minimality if all path distances are assumed to
be unique. (c) On a planar graph, two paths (red and blue)
must touch or cross only on a connected subpath of both
paths (green).

[Rei] REIF J. H.: Minimum s− t cut of a planar undirected net-
work in O(n log2(n)) time. SIAM J. Comput. 12, 1, 71–81. 5

[RKB04] ROTHER C., KOLMOGOROV V., BLAKE A.: Grabcut:
interactive foreground extraction using iterated graph cuts. ACM
Trans. Graph 23, 3 (2004), 309–314. 2

[STC09] SCHMIDT F. R., TOPPE E., CREMERS D.: Efficient
planar graph cuts with applications in computer vision. In CVPR
(2009), pp. 351–356. 3, 10

[STP12] SUMMA B., TIERNY J., PASCUCCI V.: Panorama weav-
ing: fast and flexible seam processing. ACM Trans. Graph. 31, 4
(July 2012), 83:1–83:11. 2, 3, 4, 10

[TGVB13] TANG M., GORELICK L., VEKSLER O., BOYKOV
Y.: Grabcut in one cut. In ICCV 2013 (2013), pp. 1769–1776. 2

[VN08] VINEET V., NARAYANAN P. J.: CUDA cuts: Fast graph
cuts on the GPU. In Computer Vision on GPU (2008), pp. 1–8. 2

Appendix A: Minimum Path Property

A detailed presentation of a property of minimum paths
(cycles), particularly important for much of our work, is
as follows. We assume all (sub)path lengths of a mini-
mum path are unique and that our pixel graph is a pla-
nar 4-neighborhood graph. The unique path property is pro-
vided by enforcing a strict ordering of pixel preferences dur-
ing minimum path calculations or geometrically collapsing
equal subpaths since equal subpaths are equivalent solutions.

Property A.1 Any combination of two minimum paths can
be coincident only on a single connected subpath. In Fig-
ures 13a and 13b, two paths (a and b) have coincidence
on more than one connected subpath (p1 and p2). For the
coincident subpaths to be disconnected, there must be dis-
tinct subpaths sa and sb connecting them from paths a and
b, respectively. Since all path distances are assumed to be
unique, the existence of sa and sb contradicts the minimality
of a and/or b.

This property implies: (1) once a path becomes coinci-
dent with another, it remains that way except for the two
subpaths that travel to its endpoints and (2) since all cross-
ings between paths must occur on a connected subpath of
both (Figure 13c), two paths or cycles cannot cross more
than once.

s
t(s,n) (n,t)

(n,t)’
(n’,t)(s,n’) n’

n
(n1, c1)

*

s

R

T(a) (b)

(c) (d)

Figure 14: (a) Our tree halting scheme: when given a base
tree T , if a tree computed differs from the base by a ∆ at
the cut nodes, computation can stop. The new tree in R is
equivalent to T and node distances are T ’s distance plus
∆. (b) A minimum path tree rooted at s and a set of nodes
that cuts the domain R from s. (c) A minimum path tree, T∗1
over R from a cut node n1 with the root having initial cost
c1. (d) The dashed counter examples to Property B.1. Their
existence contradicts the minimum tree assumption.

Appendix B: Halting of Minimum Path Trees

Consider our tree halting scheme of Section 4.2 and Fig-
ure 14a. The computation for minimum path trees can be
halted for the following reason: Given a minimum path tree
T computed from a root node s, consider a set C of nodes
(n1, ...nk) with costs (c1, ...ck) on the boundary of a region
R such that all minimum paths from nodes in R must pass
through a node in C exactly once (Figure 14b). Every node,
ni, in C has a minimum path tree Ti with the node as root. A
tree T∗i is the minimum path tree with ni as root, but where
ni is given cost ci instead of zero (Figure 14c). It is easy
to see that the two trees, Ti and T∗i , are equivalent and that
every node q in R has a cost: cost(q,T∗i) = ci + cost(q,Ti).
Given these definitions, we would like to show the following
property:

Property B.1 For every node q in R, cost(q,T) =
min(cost(q,T∗i)). There is a path in T from s to q that
goes through some node ni ∈C, which defines cost(q,T). If
cost(q,T∗i) is lower, an alternative path would exist from q
to ni, which contradicts that T is a minimum path tree. Sim-
ilarly, the cost cannot be higher. If it were higher, T∗i would
not be a minimum tree. For any other path, from q to a node
n j ∈C, i 6= j, the cost of q with respect to T∗j is greater than
the cost of q in T. Otherwise this would imply an alternative,
cheaper path through n j, which contradicts T as the mini-
mum tree. See Figure 14d.

Whereas this property deals with costs, it implies that each
subtree of T rooted in ni is a subtree of T∗i . Scaling or trans-
lation/scaling are also viable cost differences, but we have
found, in practice, that offsets provide good results and are
cheap to compute. In addition, C is actually a subset of each
of our raster lines. We overtest in order to have a simple pro-
cedure.

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.

Supplemental / Paint and Click: Unified Interactions for Image Boundaries

1. Additional Examples

(a) (b) (c) (d)

Figure A: A user manipulates the deer’s antlers. (a) The original image with the initial painting interaction to select and clone
the antlers. (b) The scaled antlers are placed in a realistic location in the scene. Minimal boundaries are provided interactively
which the user can use to detect unrealistic transitions in the composite. (c) A single constraint can fix the bad transition to give
the final seamless image (d).

(a) (b) (c)

(d) (e)

Figure B: (a and b) Combining two images of motorcyclists to create more congested traffic. (c) The user paints the foreground
motorcycle to composite into the other image. The initial solution has problems such as the passenger being excluded and
unrealistic shadow transitions. (d and e) A user can simply add a few constraints to fix these issues.

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.

Supplemental / Paint and Click: Unified Interactions for Image Boundaries

Figure C: (top left) Several snapshots of a family composited into a single montage. Starting with a user-chosen background,
pieces of three other images selected by the a painting annotation are composited into a seamless image. (top right) The initial
boundaries have inconsistent transitions or undesirable areas included from an image, such as the child turning his head. With
a few constraints (bottom left), all issues are resolved to produce a seamless image (bottom right).

(a) (b) (c)C C

Figure D: Alternative to Figure 2: (a) Input image. (b) Drag-and-Drop Pasting [JSTS06] provides a boundary solution that
fails to properly find the dancer’s left leg (inset), due to Jia et al.’s minimum distance separating cut of the domain (red). (c)
Our new formulation using a minimum energy separating path (red) is guaranteed to find the minimum boundary.

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.

Supplemental / Paint and Click: Unified Interactions for Image Boundaries

2. Performance

Figure Size (Annulus) Planar Graph Cuts Our Method Separating Path
Constraint
Preprocess

Per Constraint

Beetle (Figure 1e) 715x1013 (490K) 0.66 s 0.67 s 368 2.1 s 158 ms
Eagle (Figure 9a) 1024x1024 (984K) 1.18 s 0.82 s 59 4.2 s 370 ms
Snowboarder (Figure 9b) 1900x1452 (2.5M) 2.44 s 2.52 s 68 8.8 s 798 ms
LOVE (Figure 9c) 1623x1259 (1.6M) 2.07 s 1.17 s 60 4.3 s 697 ms

Table A: Object selection timings for Planar Graph Cuts[STC09] (P-GC) and our minimum cycle computation on a 4-core
machine. Actual annulus pixels are provided. We additionally provide the separating path size and preprocessing time for
a single constraint without subsampling approximation (Figure 6a of paper), along with average cost after movement for
constraints (Figure 6f of paper).

Hierarchy Levels
(Dilation)

Minimum Cycle
Constraint Preprocess

(with Subsampling Approx.)
Hierarchical Solution

1 701ms 14.7(5.1)s -
2(5) 151ms 1.7(0.58)s 29ms
2(30) - - 84ms
3(5) 37ms 0.19(0.07)s 33ms
3(30) - - 112ms

Table B: The first image provides an example energy labeling of the left fin of the orca from Figure 11 in its final position
(721x1234). The next image illustrates the expanded boundaries with a coarse solution for a 3-hierarchy (magenta) and a full
solution (blue). As shown in the table, the hierarchy performs at interactive rates providing a user the boundary manipulating
the image. Dilation results are provided for 5 and 30 pixels. The former provides a solution close to the coarse boundary, where
as the latter produces the exact minimum boundary. For all cases, the cost of the final hierarchical solution is nominal.

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.

