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Abstract. Accurate assessment of left atrial fibrosis in patients with
atrial fibrillation relies on high-quality 3D late gadolinium enhancement
(LGE) MRI images. However, obtaining such images is challenging due
to patient motion, changing breathing patterns, or sub-optimal choice of
pulse sequence parameters. Automated assessment of LGE-MRI image
diagnostic quality is clinically significant as it would enhance diagnostic
accuracy, improve efficiency, ensure standardization, and contributes to
better patient outcomes by providing reliable and high-quality LGE-MRI
scans for fibrosis quantification and treatment planning. To address this,
we propose a two-stage deep-learning approach for automated LGE-MRI
image diagnostic quality assessment. The method includes a left atrium
detector to focus on relevant regions and a deep network to evaluate di-
agnostic quality. We explore two training strategies, multi-task learning,
and pretraining using contrastive learning, to overcome limited anno-
tated data in medical imaging. Contrastive Learning result shows about
4%, and 9% improvement in F1-Score and Specificity compared to Multi-
Task learning when there’s limited data.

Keywords: Self-supervision · Multi-task learning · Image Quality As-
sessment

1 Introduction

Atrial fibrillation (AF) is currently the most common cardiac arrhythmia in the
United States, with 3 to 5 million people affected, and is expected to affect more
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than 12 million by 2030 [1]. It has been shown that atrial fibrosis is closely linked
to the development and recurrence of AF disease after treatment [2,3]. Currently,
catheter ablation is a popular treatment for AF, targeting and eliminating the
areas of the heart (i.e., fibrotic tissues) responsible for irregular electrical signals
by creating targeted lesions or scars in these regions. Hence, fibrosis quantifica-
tion plays a crucial role in guiding catheter ablation procedures. However, the
rate of success of catheter ablation is relatively low, with over 40% of patients
returning to AF within 1.5 years of ablation [4]. Therefore, it is imperative to
understand and address the shortcomings of the treatment of AF.

Late Gadolinium Enhancement (LGE) MRI is a widespread technology used
to image and quantify myocardial fibrosis and scarring. LGE-MRI can be per-
formed in atrial fibrillation subjects prior to a catheter ablation treatment to
provide the patient’s atrial geometry and fibrosis pattern [5,6]. The specific ge-
ometry and fibrosis patterns of patients are derived from the LGE-MRI images,
which can be used for pre-ablation planning or for creating patient-specific sim-
ulations [7,8]. However, LGE-MRI images exhibit variability in quality, with
diagnostic accuracy affected by factors such as noise, resolution, intensity level,
and patient-related characteristics [9,10,11].

The clinical significance of quality assessment in LGE-MRI scans for fibrosis
quantification is important as it enhances diagnostic accuracy, ablation planning,
and treatment guidance. By discarding poor-quality images, clinicians can base
their decisions on more reliable results. However, manual quality assessment is
laborious and prone to errors making it non-scalable. Automating this process
can optimize workflows and can save resources. This automation necessitates
the identification of image features predictive of diagnostic quality, a task where
deep learning can be instrumental. However, the effectiveness of deep learning
depends on the availability of a substantial amount of annotated images, as it
has a significant appetite for labeled data. Manual annotation of LGE datasets
is a laborious and time-consuming expert-driven task, leading to a scarcity of
labeled data. In this paper, we propose a two-stage deep-learning approach that is
inspired by the mental process of a radiologist manually evaluating the diagnostic
quality of an LGE MRI image for fibrosis quantification. The proposed method
is specially designed to mitigate the limited training data scenario in LGE-MRI
quality assessment, leveraging contrastive learning for pretraining and multi-task
learning for regularization. The contributions of this paper are summarized as
follows.

– Introducing a segmentation network to identify relevant left atrium slices in
the LGE-MRI scan instead of relying on manual selection of the slices.

– Leveraging a multi-task learning framework to learn quality assessment of
atrial fibrosis for the LGE datasets jointly with identification of the atrial
blood pool.

– Showcasing the impact of label supervision in contrastive learning to promote
learning a discriminative representation in the embedding space.

– Benchmarking the effectiveness of the two approaches using a limited labeled
dataset.
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2 Related Works

Several automatic methods have been proposed to assess MRI image quality
in various anatomical sites. Xu et al.[12] proposed a mean teacher model with
ROI consistency to assess the image quality of fetal brain MRI. Liao et al. [13]
used a 2D U-Net to jointly assess image quality and segment fetal brain MRIs.
Although they labeled the slices as only good/bad, the assessment of image
quality encompasses several interconnected factors. This method also required
manual labeling of each training MRI slice, which is tedious and time-consuming.

To address the limitation of extensive labeling image datasets, various self-
supervised learning methods have been introduced. Chen et al. [14] proposed
using contrastive loss by maximizing the agreement between augmented views of
the same image and minimizing the agreement between different images. These
learned representations are then applied to downstream tasks, such as image
classification and object detection. While this method leverages a vast number
of negative samples to learn useful representations, it still relies on a considerable
amount of unlabeled data. Khosla et al. [15] proposed label supervision within
contrastive loss allowing for more efficient representation learning within limited
labeled data.

3 Methods

We introduce a two-stage deep-learning approach that emulates the cognitive
process of a radiologist manually assessing the diagnostic quality of LGE MRI
images for fibrosis quantification. The method consists of two stages: (1) left
atrium detection stage and (2) quality assessment stage. Fig. 1 depicts the pro-
posed two-stage approach.

3.1 Left Atrium Detection Stage

The primary objective of the LA detection stage is to identify the specific slices
within the LGE MRI scan that contain the left atrium. This information is then
utilized in the second stage to focus on the relevant region of interest, disregard-
ing any background artifacts that might otherwise interfere with the quality
assessment task. Here, we employ a UNet model [16] to generate segmentation
masks for the left atrial blood pool in the MRI scan. The predicted masks un-
dergo a sigmoid function to transform pixel values within the range of 0 to 1.
Subsequently, we apply a threshold parameter, t, to determine the minimum
probability required for a pixel to be considered as part of the left atria. If any
pixel value is larger than the threshold, we classify the corresponding slices as
containing the left atrium, which is then utilized in the next stage. We exclude
the slices where there is no left atrium detected.
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3.2 Quality Assessment Stage

This stage incorporates a deep network that effectively maps the image slices
to a diagnostic quality score. Here, we assess the effectiveness of two training
strategies in addressing the challenge of limited annotated data for the quality as-
sessment task: multi-task learning and pretraining using contrastive learning. We
extract the features from a pre-trained network, specifically ResNet34 [17]. The
pre-trained weights are based on the Imagenet dataset. After that, we project
the embedding space to a latent space using three attribute classifier modules.
Each attribute classifier focuses on a fine-grained attribute that is relevant to
the quality assessment task.

Image Quality Attributes: We propose the myocardium nulling, sharp-
ness, and enhancement of aorta and valve attributes that are clinically relevant to
the diagnostic quality of fibrosis assessment of LGE-MRIs. Myocardium nulling
compares the intensity of the left ventricular (LV) myocardium to the left ven-
tricular blood pool. A score of 1 means the intensity of the LV myocardium is
higher than that of the blood pool, while a score of 5 means the intensity of the
LV myocardium is well-nulled and similar to that of the signal-free background.
Sharpness reflects the amount of blurring in the borders of the LA and other
anatomical structures. A score of 1 means there is a severe blurring of the car-
diac chambers, while a score of 5 means the edges of the cardiac chambers are
well-defined. The third attribute is the enhancement of fibrous tissue - aorta and
valve. When the wall of the aorta and the cardiac valves show enhancement, this
implies the scan also has good quality for detection of fibrosis in the left atrium.

For fibrosis quality assessment, experts also score quality of fibrous tissues.
A score of 5 defines a high contrast between enhanced fibrous structures and
blood pool, whereas 1 defines the absence of enhanced fibrous structures.

Myocardium nulling Sharpness Enhancement of aorta and valve

Quality of fibrosis assessment 0.74 0.79 0.76

Table 1. Pearson coefficient.

These three attributes, along with fibrosis assessment in the left atrium,
were all given scores from 1-5 by trained observers and were transformed to
binary scores: non-diagnostic and diagnostic (see Section 4.1). Next, we discuss
the training strategies into 3 subsections, Baseline QA, Multi-Task QA, and
pretraining using supervised contrastive learning.

3.2.1 Baseline QA

Attribute Classifier Module: The objective of the attribute classifier sub-
module is to use image features extracted from the image encoder to classify
the three attributes, myocardium nulling, sharpness, and enhancement of aorta
and valve, into non-diagnostic and diagnostic. Let these attributes be denoted
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as a vector a = [amn, as, aeat] where amn, as, and aeat denote the score of my-
ocardium nulling, sharpness, and enhancement of aorta and valve, and the score
a∗ ∈ {0, 1}. These 3 attribute classifiers are trained using BCE loss, described
in equation 1.
QA module: The purpose of this module is to predict the quality of fibrosis
assessment. Since the 3 attributes correlate highly with fibrosis assessment as
shown in Table 1, the module for Quality Assessment (QA), shown in Figure
1, concatenates the output of these 3 attribute classifiers discussed above and
then predicts ˆyqa. The network is trained by minimizing a binary cross-entropy
(BCE) loss, Lqa, which combines the attribute loss and QA loss.
Then the supervised loss of Baseline QA is defined by

Lqa = BCE([amn, as, aeft, yqa], [ ˆamn, âs, ˆaeft, ˆyqa]) (1)

where â∗, and ˆyqa are the prediction of the network.

3.2.2 Multi-Task QA

Decoder Module: The Decoder module is responsible for transforming the
embedding space of the encoder into a segmentation mask. The goal of this mod-
ule is to segment the blood pool, which helps to provide discriminative features
for the scoring task. With the segmentation of the blood pool and the QA net-
work, the overall architecture focuses on the area of the left atrium, shown in
Figure 2, where the scoring plays an important role. The segmentation loss is
defined by

Lseg = DICE(M, M̂) (2)

where M is the groundtruth LA segmentation mask, and M̂ is the network-
generated mask.
Overall, the loss for training the Multi-Task QA network is defined by

L = Lqa + Lseg (3)

3.2.3 Pre-training using supervised contrastive learning

Since we have limited labeled data, we run another experiment of pretraining
the encoder by utilizing supervised contrastive learning [15]. The motivation be-
hind this approach is to enhance our model’s representation learning capabilities
so that the same class representation comes closer and pushes the representations
of different classes apart. The loss is defined by:

Lsup =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑2N

a=1 1[a̸=i] exp(zi · za/τ)
(4)

Here, P (i) is the set of all positives in the augmented view batch corresponding
to the anchor (i). For each anchor i, there is 1 positive pair and 2(N − 1)
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Fig. 1. Architecture of our model.

negative pairs. z∗ denotes the projected embedding space of the encoder. For
our objective, we optimize the loss function below

L∗
s = Lsupmn

+ Lsups
+ Lsupeat

+ Lsupqa
(5)

where Lsupmn , Lsups , Lsupeat , and Lsupqa denotes the supervised contrastive loss
of myocardium nulling, sharpness, enhancement of aorta and valve, and quality
for fibrosis assessment. After that, we freeze the encoder weights and perform
downstream task of supervised learning using the QA module.

4 Results

4.1 Dataset

Our dataset includes 196 scans of labeled data for the QA task and 900 scans
that have the blood pool segmentations. All of the scans were acquired as in
[3], with a resolution of 1.25 × 1.25 × 2.5mm3, approximately 15 minutes after
gadolinium administration, with a 3D ECG-gated, respiratory navigated gra-
dient echo inversion recovery pulse sequence. The 196 scans were divided and
scored by experts. These 196 scans have a class imbalance problem because most
scans are in the 2 to 4 range. To address this problem, we have transformed the
scores of all attributes, including the fibrosis assessment score, into two different
labels: diagnostic and non-diagnostic. Scans with a score of ≥ 3 are designated
as diagnostic, denoted 1, while less than 3 is non-diagnostic and denoted as 0.

4.2 Data Preprocessing & Augmentation

The dataset was split into train, test, and validation sets. The test set contained
20 patient scans. The remaining scans were divided into training and validation
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sets in a 90:10 training-to-validation ratio. Each scan was a stack of 2D slices
of axial view that was selected by the first stage in Fig. 1 to contain the left
atrium. Images were resized to 128×128 using linear interpolation. Since we are
assessing image quality, we went for geometric transformations such as Random
flip, perspective transform, shift, scale, and rotate, which were applied with a
probability of 0.5 each during training. All data were normalized before being
passed through the network.

Original Image Baseline QA Multi-Task QA

Fig. 2. Result of HiResCAM [18] between our Baseline QA and Multi-Task QA model
output on 2 different test scans. We show the critical cases where our QA model fails
to focus on (blue color) the relevant areas for scoring, whereas, on the contrary, the
Multi-Task QA model is able to do so. The ”True Label” depicts the ground truth
label: diagnostic (1) and non-diagnostic (0), whereas the ”Pred Label” denotes the
model prediction. A red arrow in the original image shows the location of the left
atrium.

4.3 Summary of Experiments

During training, the model is validated using MSE error across all slices on the
validation set and later on evaluated on the test set. For the test set, we perform
score predictions across all slices and subsequently report the mode for each scan.
The performance is measured by Precision, Recall, F1-Score, and Specificity. The
details of the training are given below.

Left Atrium Detection Training: We train the U-Net network of this stage
on the 900 segmentation masks of the blood pool. The network was trained using
the Adam optimizer with a learning rate of η = 0.001. The batch size was set to
128. We then use this network to predict the relevant slices of 196 scans for the
later stage.



8 K. Sultan et al.

Baseline QA Multi-Task QAQA & 
Contrastive

UMAP1 UMAP1 UMAP1

U
M

A
P

2

Fig. 3. UMAP[19] Visualization of embedding space representation of encoder of the
three models. We report the 1st iteration’s visualization among the 5 iterations.

Baseline QA Training: For this model, we only consider the QA module. The
network was trained for 40 epochs using the Adam optimizer with a learning rate
of η = 0.001 and with an early stopping criteria of patience 7. The batch size
was set to 128. A cosine annealing learning rate scheduler was used to reduce
the learning rate throughout training, bringing stable optimization and faster
convergence.
Multi-Task QA Training: For this model, we consider both the QA and
Decoder module in our architecture. The network was trained using the same
configuration as the QA Training strategy. To interpret that the Multi-Task
QA model focuses on the relevant areas, we report the gradient-based visual
explanation from Draelos et al.[18] in Figure 2.
QA & Contrastive Training: For this model, we follow the 2-step process
discussed by Khosla et al.[15]. In the first step, we pre-train the encoder for 100
epochs with a batch size of 512, since contrastive learning benefits from more
negative samples during training. We use LARS optimizer [20] with a learning
rate of η = 0.5. In the 2nd step, we freeze the encoder and train the QA module
with the same configuration as the QA Training strategy discussed above. Since
gradient-based explanation is not suitable for contrastive learning due to the
fact that contrastive learning does not require explicit class labels during train-
ing, therefore we report the embedding representation by utilizing UMAP[19]
approach presented in Figure 3. We can see that the QA & Contrastive based
model formed more tight clusters compared to other methods, thus forming
cluster alignment. The results of the experiments are shown in Table 2.

5 Conclusion

In this study, we developed an automated two-stage deep learning model for
quality assessment scoring of LGE MRI images using limited labeled data. Our
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Method Precision Recall F1-Score Specificity

QA 0.60± 0.05 0.90± 0.15 0.710± 0.05 0.38± 0.20

Multi-Task QA 0.63± 0.07 0.90± 0.12 0.73± 0.04 0.44± 0.24

QA & Contrastive 0.65± 0.07 0.94± 0.08 0.76± 0.05 0.48± 0.17
Table 2. The test performance of the networks. We report the means and standard
deviations among runs here.

approach includes a segmentation network to identify relevant left atrium slices,
and two strategies: Multi-task learning (reconstruction and quality assessment)
and supervised contrastive learning (quality assessment). Multi-task learning
benefited from segmentation information, improving quality assessment accuracy
through knowledge transfer. Supervised contrastive learning effectively learned
informative representations from both contrastive learning and label supervi-
sion, yielded the most promising results for quality assessment among all other
methods. In conclusion, our research provides valuable insights for quality as-
sessment of the left atrium in LGE MRI images with limited labeled data. Hy-
brid approaches, combining both techniques, could lead to even more robust
and accurate quality assessment models for LGE MRI image analysis and other
medical imaging domains, addressing data scarcity challenges in medical imaging
advancements.
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