
Special Issue Paper

The Exascale Framework for High Fidelity
coupled Simulations (EFFIS): Enabling
whole device modeling in fusion science

Eric Suchyta1 , Scott Klasky1, Norbert Podhorszki1,
Matthew Wolf1, Abolaji Adesoji2, CS Chang3, Jong Choi1,
Philip E Davis4, Julien Dominski3, Stéphane Ethier3,
Ian Foster5 , Kai Germaschewski6, Berk Geveci7,
Chris Harris7, Kevin A Huck8, Qing Liu9, Jeremy Logan1,
Kshitij Mehta1, Gabriele Merlo10, Shirley V Moore11,
Todd Munson5, Manish Parashar12, David Pugmire1,
Mark S Shephard2, Cameron W Smith2 , Pradeep Subedi4,
Lipeng Wan1, Ruonan Wang1 and Shuangxi Zhang2

Abstract
We present the Exascale Framework for High Fidelity coupled Simulations (EFFIS), a workflow and code coupling
framework developed as part of the Whole Device Modeling Application (WDMApp) in the Exascale Computing Project.
EFFIS consists of a library, command line utilities, and a collection of run-time daemons. Together, these software
products enable users to easily compose and execute workflows that include: strong or weak coupling, in situ (or offline)
analysis/visualization/monitoring, command-and-control actions, remote dashboard integration, and more. We describe
WDMApp physics coupling cases and computer science requirements that motivate the design of the EFFIS framework.
Furthermore, we explain the essential enabling technology that EFFIS leverages: ADIOS for performant data movement,
PerfStubs/TAU for performance monitoring, and an advanced COUPLER for transforming coupling data from its native
format to the representation needed by another application. Finally, we demonstrate EFFIS using coupled multi-simulation
WDMApp workflows and exemplify how the framework supports the project’s needs. We show that EFFIS and its
associated services for data movement, visualization, and performance collection does not introduce appreciable over-
head to the WDMApp workflow and that the resource-dominant application’s idle time while waiting for data is minimal.

Keywords
Workflows, code coupling, ECP, in situ, whole device modeling

1 Oak Ridge National Laboratory, Oak Ridge, TN, USA
2 Rensselaer Polytechnic Institute, Troy, NY, USA
3 Princeton Plasma Physics Laboratory, Princeton, NJ, USA
4 Department of Computer Science, The Rutgers Discovery Informatics Institute, Rutgers University, New Brunswick, NJ, USA
5 Argonne National Laboratory, Lemont, IL, USA
6 Department of Physics and Astronomy, University of New Hampshire, Durham, NH, USA
7 Kitware, Inc., Clifton Park, NY, USA
8 Oregon Advanced Computing Institute for Science and Society, University of Oregon, Eugene, OR, USA
9 New Jersey Institute of Technology, Newark, NJ, USA
10 Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
11 University of Texas, El Paso, TX, USA
12 Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA

Corresponding author:

Eric Suchyta, Oak Ridge National Laboratory, Oak Ridge, TN 37831-2008, USA.

Email: suchytaed@ornl.gov

The International Journal of High
Performance Computing Applications
1–23
ª The Author(s) 2021
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420211019119
journals.sagepub.com/home/hpc

https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0001-9258-5226
https://orcid.org/0000-0001-9258-5226
mailto:suchytaed@ornl.gov
https://sagepub.com/journals-permissions
https://doi.org/10.1177/10943420211019119
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420211019119&domain=pdf&date_stamp=2021-05-24

1. Introduction

The development of a whole device model (WDM) for a

fusion reactor is critical for the science of magnetically

confined fusion plasmas. In the next decade, ITER will

realize plasmas that are well beyond the physics regimes

accessible in any previous experiments (Aymar et al.,

2002), and as summarized in the Report of the Workshop

on Integrated Simulations for Magnetic Energy Fusion

Sciences, a WDM is a high-priority need for “assessments

of reactor performance in order to minimize risk and qua-

lify operating scenarios for next-step burning plasma

experiments” (Bonoli et al., 2015). For example, the range

of dimensionless physical parameters (determining the rich

spectrum of kinetic micro-instabilities) that impose power-

ful constraints on the quality of energy confinement in a

tokamak, and the avalanche of runaway electrons that could

be generated in the event of a major disruption in ITER

plasmas, will both be in a plasma physics regime inacces-

sible to all extant experiments. Yet these phenomena are

critical to understand, as experiments performed based on

erroneous understanding may result in catastrophic failure.

Theory and computer simulations must be reliably

predictive.

Whole device modeling entails many-physics simula-

tion and coupling. Different models and approximations

are appropriate for the edge and core of the plasma. Energy

transport occurs on time scales orders of magnitude longer

than those needed to simulate micro-turbulence. Boundary

and material interactions with the plasma must also be

taken into account. A complete WDM must couple all

components needed to reliably study ITER or other next-

generation devices. Building a WDM is thus an example

par excellence of system-level science (Foster and Kessel-

man, 2006).

The Whole Device Model Application1 (WDMApp) in

the U.S. Department of Energy’s (DOE) Exascale Comput-

ing Project2 (ECP) is developing a high-fidelity model of

magnetically confined fusion plasmas, by means visually

summarized in Figure 1. The initial-phase objective (in

black/yellow text) is first-principles strong coupling of core

and edge physics. The 10 year goal then includes (in navy

text) the coupling of plasma-material interaction (PMI),

radio frequency (RF), neutral beam heating, extended mag-

neto hydrodynamics (MHD), and energetic particles, as

well as telescoping to transport time scales. The full under-

taking requires a collaboration of application physicists,

applied mathematicians, and computer scientists to solve

an array of scientific, computational, and technical chal-

lenges. Successful achievement of the project’s 10-year

target will enable the development of scenarios for success-

ful and stable operation of ITER and other future fusion

reactors.

There are three major software activities in the

WDMApp project: the development of the physics codes

to simulate the core and edge of a fusion reactor, the devel-

opment of a coupling workflow framework to launch and

couple the codes, and the optimization of the coupled code

on the next generation exascale platforms. Altogether, the

project is creating a community framework which will be

used to couple together many state-of-the-art fusion codes

and allow scientists to run these simulations together to

solve the complex physics occurring on all different spa-

tial/temporal scales during a fusion experiment. In this

paper, our discussions focus on the software infrastructure

related to coupling framework.

We describe the Exascale Framework For Integrated

Simulations (EFFIS), as well as the associated enabling

technologies and services used by the framework to facil-

itate WDMApp’s simulations; Figure 2 is a visual sum-

mary. The purpose of EFFIS is to allow users to easily

compose their coupled applications, including analysis,

visualization, and command-and-control, then execute the

enhanced workflows on HPC or smaller machines. The

project requires solutions to numerous co-design questions,

relating in particular to application coupling and online

data analysis and reduction (Foster et al., 2020).

EFFIS also contains useful capabilities for non-coupled

simulations, such as generating/monitoring results that are

delivered to a collaborative web dashboard. The essential

enabling technologies for the framework include: ADIOS

(Godoy et al., 2020; Liu et al., 2014), a high performance

publish/subscribe data mover; PerfStubs,3 a performance

Figure 1. Cross section of an ITER plasma. WDMApp initially
integrates models of the Core and Edge regions, in black with
overlap region in yellow; it will later integrate plasma-material
interactions, energetic particles, and RF heating.

2 The International Journal of High Performance Computing Applications XX(X)

monitoring system based on TAU (Shende and Malony,

2006); and an advanced “coupler” that receives geometry

and data from the codes to interpolate/convert data from

one code’s representation to another.

These design features and technology choices have been

informed by three metrics of success defined for the frame-

work: (1) assist the project to achieve its performance target

of 50 times faster than the original XGC code running on

the Titan supercomputer,4 (2) allow codes to be coupled

easily, and (3) allow new analysis and visualization ser-

vices to be seamlessly integrated for in situ processing.

The remainder of this paper is as follows. The next

section details the physics application codes to be coupled,

and the coupling methods that the WDMApp project will

use to achieve its physics and performance goals. Then, we

review the computer science background to provide context

for the different types of workflow systems that have been

used by the community, in addition to the requirements that

need to be satisfied to meet this project’s physics and per-

formance challenges. Next, we give an overview of EFFIS,

describing its composition and execution engine, its

command-and-control and automated visualization

mechanisms, its enabling technologies, and the support ser-

vices that it provides for user-defined analysis and dash-

board integration. Evaluating our aforementioned success

metrics, we demonstrate results for WDMApp workloads

using the EFFIS framework, then offer concluding remarks

in the final section.

2. WDM background

The two major whole device modeling initiatives in the

DOE’s scientific computing portfolio are ECP’s WDMApp

and The Advanced Tokamak Modeling Environment5

(AToM), part of the Scientific Discovery through

Advanced Computing6 (SciDAC) program. While both

model tokamak physics, there are different methods

between the two. To date, WDMApp has emphasized a

first-principles-based approach, with strong coupling play-

ing a significant role, while AToM is mostly focused on

weak coupling and employs mainly reduced models (Dorf

et al., 2016; Meneghini et al., 2015, 2016, 2017; Park et al.,

2018); reduced meaning that the gyrokinetic equations (or

other essential physics) are approximated or modeled in

some way to solve a simpler set of equation.

While first-principles reduce the risk of modeling error,

they come at the expense of computational cost. In partic-

ular, WDMApp includes X-point-capable edge physics (cf.

Figure 1), which is especially demanding computationally.

Edge simulation is expected to dominate the project’s com-

puting budget. Indeed, the fact that core simulations are less

computationally expensive is a primary motivating reason

for using different models in the two regions.

Strong coupling has tight constraints on exchange to

yield a convergent solution, while weak coupling has only

loose, if any such constraints. Strong coupling takes place

relatively more frequently than weak coupling. For

instance, the first-phase WDMApp target includes core-

edge strong coupling, which requires that time steps be

matched to precisely the same physical time in the core

and edge, with data exchange at every Runge-Kutta stage

(Dominski et al., 2018). (In this case, there are four Runge-

Kutta stages per time step.) One might add a weak coupling

for boundary interactions in the tokamak with a period of

every hundred or so time steps, which serves as a better

boundary condition that is occasionally updated when/if

available. Weak coupling can also be a one-directional

exchange, e.g. offloading data for visualization.

The next subsection further describes the strong and

weak couplings needed by WDMApp. To follow, we pro-

vide additional details regarding WDMApp’s suite of

strongly coupled core and edge physics codes: XGC (Ku

et al., 2009, 2016), GENE (Germaschewski et al., 2020;

Görler et al., 2011; Jenko et al., 2000), and GEM (Chen

and Parker, 2007). These descriptions help set the compu-

tational context for the project.

2.1. Types of code coupling necessary for WDMApp

WDMApp requires several types of code coupling for the

project to achieve both its short-term (ECP) and future

goals. In the first stage of the project, requirements include

coupling both fluid (3D) and kinetic (5D) data from the

edge code (XGC) to the core code (GENE and/or GEM).

The fluid-based coupling, highlighted in Dominski et al.

(2018), Merlo et al. (2020), and Cheng et al. (2020) syn-

chronously exchanges the 3D charge density (r) and poten-

tial fluctuations (�) between the codes, which also need to

be transformed (rt, �t) before use in the other code; this is

shown in Figure 3a. The coupling occurs at each Runge-

Kutta step, along the overlap region of the codes. The

kinetic coupling, highlighted in Dominski et al. (2020) and

necessary for first-principles coupling, requires a buffer

region whose size dictates the frequency of coupling; the

larger the buffer region, the less frequently it needs to be

exchanged. This is a favorable condition, because the data-

set is much larger than that of the fluid coupling.

C
ou

pl
er

Edge Core

Performance Performance

User-defined Analysis

EFFIS Visualization,
Monitor/Controller

D
ashboard

D
at

a D
ata

Figure 2. Schematic summarizing EFFIS usage in WDMApp
workflows. EFFIS services are shown in pink, EFFIS technology
in orange, and enabling technology in blue.

Suchyta et al. 3

Returning to Figure 3, Figure 3b illustrates the fluid

coupling steps in a simple timeline. GENE is displayed

as the core application, but the comments to follow apply

analogously with GEM. Since the edge calculation will

require many more particles per cell, it requires signifi-

cantly more work (CPU-s) per time step than the core code

(i.e. NX > NG in Figure 3a). Given that the two codes will

never require precisely the same amount of time (TX vs.

TG in Figure 3a) to complete a computational time step,

(in our case, XGC takes longer than GENE/GEM for each

step), a goal is to minimize the resources (CPU-s) spent

waiting. Thus, we engineer the workflow to minimize the

wait time in XGC. In Figure 3b, this means that the COU-

PLER has (asynchronously) delivered �t soon enough

such that XGC does not need to wait when it is ready to

read it. The COUPLER can run in three modes: as a

library compiled into one of the codes, as a separate code

run on the same nodes as one of the codes, or as a separate

code run on a different set of nodes than the two codes.

Performance-wise, it is essential that the time spent mov-

ing data to the COUPLER is insignificant compared to the

time spent in computation.

In the future, and currently under research and devel-

oped in the HBPS7 SciDAC project, we will weakly

couple magnetohydrodynamic (MHD) codes, such as

M3D-C1 (Jardin, 2004), and boundary physics codes,

such as HPIC (Khaziev and Curreli, 2018), to WDMApp.

M3D-C1 coupling will enable the study of low-frequency,

long-wavelength instabilities using transport coefficients

that are determined from first principles rather than those

determined from empirical models. Such coupling can

enable predictive modeling of transient events such as

tokamak disruptions or edge-localized modes or runaway

electron avalanches in ITER that can be harmful for ITER

operation. In HBPS, M3D-C1 is being coupled in a weak

fashion where data from each code is passed after each

simulation run. In the boundary physics coupling, XGC

derives background plasma parameters, then HPIC pro-

vides as feedback the appropriate sheath boundary layer,

impurity source terms arising from the material interac-

tion, and modifications to the edge plasma driven by the

radio frequency heating. To date, one-way exchange from

XGC to HPIC has been begun. Eventually, time-domain

coupling will also be included, evolving the system out to

transport time scales.

Finally, coupling diagnostics (from performance moni-

tors or analysis and visualization) is essential to allow

scientists to monitor and eventually control the simulations.

This is reflected in Figure 2. The data requirements can be

large in certain cases, but the coupling can be asynchronous

relative to the simulation. Of course, users need the capa-

bility to add their own analysis codes. Ideally a framework

assists in automating these couplings, both during the simu-

lation or directly following the simulation in post-

processing.

In all cases, it is important to be able to switch transpar-

ently from writing files (which persist and can be debugged

post-run) to high performance coupling methods (e.g.

RDMA). These needs to switch easily between strong and

weak coupling, using either synchronous or asynchronous

techniques, and with either file-based or memory-based

data movement, motivated our creation of the EFFIS

framework. As we will describe, EFFIS provides this flex-

ibility and allows scientists to compose, execute, monitor,

and control complex workflows on exascale resources,

HPC clusters, clouds, and laptops.

2.2. WDMApp simulation codes

WDMApp’s first step is the spatial coupling of well estab-

lished extreme-scale gyrokinetic codes: the GENE conti-

nuum code (Görler et al., 2011; Jenko et al., 2000) for the

core plasma, and/or the GEM particle-in-cell (PIC) code

(Chen and Parker, 2007) as an alternative core plasma code,

with the XGC particle-in-cell (PIC) code (Ku et al., 2009,

2016) for the edge plasma. These three form the base model

for the WDMApp project, into which other (scale-separ-

able) physics modules will be integrated at a later time to

complete the whole device model.

The fundamental kinetic equations in magnetic fusion

plasma physics are derived from the fully 6D kinetic

equation in phase space (that is, coordinate and velocity

Figure 3. Summary of fluid coupling between XGC and GENE codes. The same figures also apply to XGC-GEM coupling. (a) Simplified
processing decomposition. N values are the number of MPI ranks, and T values are step times (in the absence of any waiting). Charge
density (r) and potential (f) are coupled, transformed by the COUPLER for use in the other code. In general, the COUPLER can, but
does not need to, be run as a third process. (b) Timeline for fluid coupling execution, highlighting one RK cycle.

4 The International Journal of High Performance Computing Applications XX(X)

space) with the Fokker-Planck collision operator, coupled

self-consistently to Maxwell’s equations. In order to fol-

low dynamics on time scales longer than the rapid gyro-

motion time scale (in the presence of a strong magnetic

field), the kinetic equation can be averaged over the

gyrophase to obtain 5D equations in phase space, known

as the gyrokinetic equations, which are integrated by

GENE, GEM, and XGC. That is, the three codes solve the

same underlying equations, but through different meth-

ods. We briefly describe each code in the following

paragraphs.

XGC has been developed under joint funding by the

Advanced Scientific Computing Research8 (ASCR) and

Fusion Energy Sciences9 (FES) programs through Sci-

DAC, with the mission of addressing multi-scale edge

physics on a kinetic level, including the capability to

include an X-point in the tokamak geometry. The code

achieves excellent weak and strong scaling on all super-

computing platforms that it has been tested on, and is

currently being further optimized for Frontier10 and Aur-

ora,11 the first U.S. exascale computers (Germaschewski

et al., 2019). XGC is the most computationally expensive

component of WDMApp; thus to minimize resource

wastage, it must compute efficiently, while the core appli-

cation must run quickly enough to deliver data as soon as

XGC is ready for it, to not block it during the synchronous

execution.

Normally, XGC simulates the entire plasma volume, in

order to avoid possible error propagation from the inner

boundary. However, an integrated simulation with a core-

specialized code permits a more detailed description of the

core at a lower cost. Core codes usually employ a delta-f

scheme, which is not valid at the edge, but which has been

demonstrated to provide an effective description of the core

plasma. Typically delta-f methods use only Oð100Þ parti-

cles per cell, whereas full-f methods need over Oð10; 000)

particles per cell. XGC must implement a full-f scheme,

needed to model strongly non-thermal plasmas in the edge

of tokamaks (Ku et al., 2016).

GENE is optimized for the core plasma, out to near the

last closed flux surface. It is an Eulerian gyrokinetic code

that discretizes the distribution function on a fixed grid in

the five-dimensional phase space by employing a unique,

highly optimized combination of finite-difference, finite-

volume, and spectral techniques to solve the gyrokinetic

equations in the core plasma with numerical schemes also

used in Computational Fluid Dynamics (CFD). To carry

out a fully predictive global simulation, an outer boundary

condition is needed at the edge-facing side, which can be

provided via integration with XGC.

GEM is an alternate core code, similar to GENE but

using the PIC approach to solve the gyrokinetic equations.

Because GEM uses a PIC approach, it avoids a stringent

Courant-Friedrichs-Lewy (CFL) condition in the strong

coupling, and thus may prove to be easier to couple kine-

tically to XGC.

3. Computer science background

HPC workflow management frameworks must confront

two somewhat discrepant motivations: the need for an easy

way of composing, running, modifying, and extending

workflows, simple enough for users to routinely do them-

selves, and the need for a performant framework for

extreme scale coupled simulations. These challenges are

applicable to the WDMApp project, and here we discuss

the computer science context, including subsections about

WDM Frameworks, workflow systems, performance, and

the history/evolution of EFFIS. The approach we have

selected for EFFIS attempts to achieve balance among per-

formance, maintainability, and usability.

3.1. WDM frameworks

Multiple data and workflow management techniques are

applicable in the overall WDM context, and each has its

pros and cons. Previously, we mentioned the AToM proj-

ect, which is creating the framework called OMFIT (Mene-

ghini et al., 2015), with a plan to weakly couple over a

dozen physics components, using a file-based code-to-

code data movement approach. These weak couplings do

not require any source code modifications, but typically

need to modify the data from one code to another, which

requires new connectors. Moreover, since the file-system

of HPC machines is progressively outpaced compared to

the increase of FLOPS (Foster et al., 2017), this technique

is not advisable for strongly coupled codes with large data

transfers.

Another approach would be to incorporate and compile

all the physics into one executable. Maximal performance

is obtainable this way, but the maintainability goes down,

since the various physics are routinely over 100 K lines,

and combining all of these into a single executable can

make it challenging for developers to add new physics and

optimize everything on complex resources (such as an

exascale computer).

Our hybrid method is based on the principles of Service

Oriented Architectures (Erl, 2005). Each application runs

as a separate executable, with slight modifications to use a

well-defined (universal) interface for all communication of

data to other codes. A workflow manager then coordinates

the placement and execution of different applications. It

uses an advanced publish/subscribe system built for exas-

cale computers, but usable on desktop systems, which has a

file-like interface for self-describing I/O that can allow in-

memory or file-based communication between the compo-

nents (Godoy et al., 2020).

There are several reasons for the choice of methodology.

First, development of each code can proceed indepen-

dently, where it is easier to maintain the specializations

than in one larger monolithic code base for all the physics.

Note that they are being used stand-alone for many science

runs. Furthermore, WDMApp needs to be extendable with

new applications that target different physics or different

Suchyta et al. 5

scales (and may not exist yet), or simply to switch one

application for another that simulates the same physics

differently. It is easier to integrate new applications into

an existing coupled simulation if the data exchange uses a

self-describing data interface, whereby different applica-

tion teams can add their new producer/consumer compo-

nents independently.

3.2. Performance at scale

Beyond the basic goals of workflow composition and exe-

cution however, there is a need to ensure functionality and

performance at extreme scales, on the biggest supercompu-

ters with large amounts of simulation data. For one, place-

ment of the multiple codes on the compute nodes can have

a large impact on the overall speed of the coupled simula-

tion. Codes run faster when placed on isolated, separate

sections of the computer, but communication between the

codes is faster when the corresponding processes are close

to each other. Ideally, any user-directed placement strategy,

such as node sharing, is described through a high level

abstraction in the composition (workflow) script, and the

details of the placement execution are entirely the respon-

sibility of the workflow manager at run-time.

Since understanding and improving performance is crit-

ical in any ECP application’s success, it is important to be

able to visualize the performance data, in addition to the

science data. For WDMApp this means capturing the per-

formance of each code and I/O stream involved in the

coupled simulation. Our framework provides plotting cap-

abilities to generate performance graphs with EFFIS, such

that the plots can be published to a dashboard alongside the

visualizations of the simulation data.

A code coupling algorithm between separate code bases,

with a high-level description of the data production and

consumption, makes it easier to implement the coupling

interface from one code to yet-to-be-known codes, but the

performance of data exchange is a natural concern to devel-

opers. The core-edge coupling requires mathematically

strong coupling, and therefore the performance of data

exchange is critical. The success of our approach depends

on the performance of the data movement infrastructure

that connect the application codes (c.f. Data Movement).

We use the ADIOS ECP software technology, which can

achieve over 1 TB/s writing to the largest parallel file sys-

tems, and can use multiple approaches (using MPI, RDMA,

RUDP, TCP) to implement in-memory coupling (Godoy

et al., 2020; Wan et al., 2019).

3.3. Workflow management systems

A 2019 ASCR report highlights the potential for enabling

scientific discovery from diverse data sources through in

situ data management (Peterka et al., 2019). A growing

need is in situ, heterogeneous coupling of multiple tasks

and applications into sophisticated scientific workflows.

Dynamic command-and-control capabilities are an

important future requirement for these workloads (Deel-

man et al., 2018). Dynamic modifications may be needed

for various reasons, including occurrence of certain

events, efficient resource utilization, and performance

optimization.

Various workflow management systems provide a sub-

set of features required for composing and enacting sophis-

ticated in situ workflows. It is worthwhile to consider their

suitability for the needs of WDMApp. Some popular sys-

tems such as Pegasus (Deelman et al., 2015) allow con-

structing task pipelines through a graphical user interface,

but only offer limited support for in situ composition. Fire-

works (Jain et al., 2015) focuses on quality of service for

long-running ensembles of tasks with recovery mechan-

isms, but only supports coarse-grained, loose coupling of

applications. RADICAL-Pilot (Merzky et al., 2015) and

Parsl (Babuji et al., 2019) provide a programmatic interface

for composing workflows on heterogeneous resources, but

do not focus on strong coupling/performant data move-

ment. Frameworks such as Swift/T (Wilde et al., 2011)

amount to custom scripting languages centered around task

management, but this is not a formulation in which

WDMApp scientists are accustomed to operating, and its

bag-of-tasks model is not well-matched to the WDMApp

use case.

EFFIS differs from other workflow management sys-

tems in that it provides a service oriented architecture with

fine-grained support for constructing in situ workflows. In

particular, it r/elies on a publish/subscribe mechanism for

moving data, which allows the workflow management sys-

tem to subscribe to the data streams, thereby enabling

EFFIS to be used for command-and-control contingent on

the data. It is a workflow coordinator and coupling frame-

work that allows users to add, remove, and configure anal-

ysis and visualization services transparently without

impacting the running simulation. Built upon the ADIOS

data management library (Godoy et al., 2020) and Cheetah/

Savanna in situ runtime (Mehta et al., 2019), EFFIS sup-

ports file-based, in-memory, and WAN-based coupling,

with options to control data flows between components.

3.4. EFFIS 1.0

The EFFIS framework has its roots in the SciDAC pro-

gram, where it was originally created by researchers from

the fusion and computer science research community to

loosely couple fusion codes in an easy-to-use framework

(Cummings et al., 2010). EFFIS 1.0 combined the Kepler

workflow engine (Altintas et al., 2004), along with ADIOS

for I/O (Liu et al., 2014), eSimMon to operate as a dash-

board (Tchoua et al., 2010), and a MySQL12 database.

Even though EFFIS 1.0 was successful in allowing

scientists to compose, launch, monitor, and analyze their

jobs, there were several features that made it difficult to

maintain. Figure 4 shows an example workflow for cou-

pling the XGC code to the M3D code. Inside this workflow

there was a control loop, where Kepler would examine the

6 The International Journal of High Performance Computing Applications XX(X)

output of M3D, then stop XGC when a certain condition

was met. The difficulty with this implementation was that

when modifications needed to be made to the stopping

criteria, it required several days of the team’s workflow

expert’s time to modify the complex workflow to suit the

needs of the scientist. Furthermore, the method that Kepler

receives its parameters was through opening and reading an

ASCII file, which becomes inadvisable at the largest scales.

Over several years, as the complexity of the computa-

tional resources grew, as well as the complexity of the

physics of the coupling, EFFIS 2.0 has had to be re-

imagined to help enable scientific discovery in the exascale

age. For the remainder of this document, unqualified refer-

ences to EFFIS refer to EFFIS 2.0, the current version of

the software.

4. EFFIS description

As introduced in the preceding sections, EFFIS is a code

coupling and workflow manager, whose primary workload

target is concurrently running applications on large-scale

platforms. While the framework has been developed as part

of the WDMApp project to support its workloads, the soft-

ware techniques are suitably general to be more broadly

applicable. Like WDM, applications in other plasma phy-

sics contexts, seismology, molecular dynamics, computa-

tional fluid dynamics, additive manufacturing,

astrophysics, and other domain sciences are deployed as

part of sophisticated HPC workflows with multiply-

coupled physics components and auxiliary processes.

Beyond WDMApp, we currently have three initial engage-

ments with EFFIS. First, we have begun tests with another

fusion simulation code, GTC,13 where we are using EFFIS

to couple GTC with analysis and visualization services, and

to enable collaborative monitoring on our dashboard. Simi-

larly, we have worked with the radio astronomy SKA proj-

ect (Wang et al., 2020), and will integrate some parts of

EFFIS into their workflow. Finally, we plan to work with

the PIConGPU (Bussmann et al., 2013) team to integrate

data from their Photon source to their digital twin, enabling

interactive, in-memory analysis and simulation steering.

As we have described, a scientific workflow often

includes tasks beyond the simulation codes (cf. Figure 2).

Analysis and visualization, as well as monitoring pro-

cesses, are important accompanying components. Data are

shared between workflow components, with in situ readers

consuming data produced by the simulation(s) or other

writers. EFFIS aims to facilitate the necessary data move-

ment between the different processes in a performant way

and more broadly, to ease the integration of support ser-

vices into the workflow, automating actions application

scientists routinely perform, such as data plotting, perfor-

mance monitoring, and remote dashboard visualization.

The framework is also customizable and extensible by the

user. Extensions can include user-defined analysis or other

run-time programs, as well as the ability to couple through

different types of data movement and custom user-directed

command-and-control. We have designed a state-of-the-art

Figure 4. A typical XGC/M3D coupled job using EFFIS 1.0.

Suchyta et al. 7

COUPLER, which can subscribe to data from multiple

codes, and then perform the mathematics to couple them.

In designing EFFIS, our attempt is to make it flexible,

yet also easy to use. For example, we have chosen a

pragma-based approach for library integration, which pro-

vides the hooks to advanced features such as command-

and-control. This minimizes the application scientists’ need

for explicitly adding new APIs to their source code distri-

butions and facilitates trivial EFFIS-less compilation if it is

not available. Furthermore, we use a simple text-based

keyword-value interface for workflow composition. The

intent is such that the WDM application scientists need not

learn new programming/scripting languages or workflow

paradigms. EFFIS’ workflow composition, submission,

and execution process is the same from platform to plat-

form. EFFIS was made to be a portable framework, which

can run on all DOE exascale-track machines as well as

Linux-based clusters/workstations, macOS, and Windows

O/S; it allows users to execute their coupled jobs using

many different job schedulers.

Synergistic use of complementary ECP software is

essential to the EFFIS framework. ADIOS provides I/O

middleware suitable for both the strong and weak coupling

in WDMApp. The Cheetah/Savanna software from the

ECP CODAR project offers a back-end to assist in job

composition and execution. PerfStubs integration and TAU

form a basis for run-time performance monitoring.

The remainder of this section further elaborates what

makes up the EFFIS framework, explaining the finer details

of what we have introduced heretofore. First, we further

document EFFIS’ design and implementation. Then, we

consider enabling technologies, essential software that

EFFIS leverages to enable its functionality. Finally, EFFIS

services are discussed, characteristic of the useful add-on

features that the framework can facilitate.

4.1. Design

Figure 5 illustrates EFFIS’ basic structure and usage. The

framework consists of a library, a set of run-time daemons,

and command line tools. These components work together

to enable workflow management before, during, and after

production jobs. In this section, we describe the various

design features of Figure 5. Roughly speaking, we proceed

in an order that follows the development life cycle. The

first subsection begins with application library integration

through a pragma-based approach. Then we describe work-

flow composition formatting and the processing along the

left half of Figure 5, which results in the construction the

job to run. Next, run-time execution is discussed. This

includes descriptions of EFFIS run-time daemons and

workflow orchestration, such as plotting processes and

command-and-control functionality.

4.1.1. Pragma-based source code integration. Integrating

EFFIS into applications (cf. top right of Figure 5) is accom-

plished by introducing EFFIS-specific pragmas into the

source code. These amount to code comments, which do

not affect compilation if EFFIS is not used. The EFFIS

distribution includes a pre-processor (effis-cpp), which

performs the necessary source-to-source translation to

modify the existing APIs to include the EFFIS ones. Cur-

rently, Fortran, Cþþ, and Python bindings are supported.

EFFIS APIs that have been integrated by the pre-

processor present the opportunity to propagate additional

control (meta)data through the workflow. For example,

there is a pragma to record the physical time for a simula-

tion time step (@effis-timestep physical¼<float

time>, number¼<integer step number>). This time

can then be made available to services that plot data from

the simulation. The internal EFFIS APIs are also the chan-

nel through which command-and-control can operate. One

needs appropriate pragmas for use in the user application

wherein the EFFIS library listens for signals coming from

elsewhere in the workflow.

EFFIS applications/services operate within the publish/

subscribe data movement paradigm. Data producers “put”

sets of variables that can then be accessed by one or more

consumers in a “get.” I/O pragmas can be associated with

these I/O groups, which make the variables within the I/O

groups accessible to EFFIS services. Included variables

then might be automatically plotted and viewed on a dash-

board or monitored with the possibility of generating feed-

back. Listing 1 and Listing 2 show pseudo-code examples

of the I/O pragma markup, @effis-begin and @effis-

end lines wrapping sets of ADIOS put and get APIs respec-

tively. These examples are based on the GENE to XGC

strong coupling density exchange. The name before the

arrow in the pragma statements matches the name of the

run:
app1: . . .
app2: . . .

...

Input file

effis-compose

Cheetah

Job

Savanna

ef
fis

-s
ub

m
it

app1

EFFIS

app2

EFFIS

ADIOS

EFFIS
daemons

Visualization

Monitor

..
.

Figure 5. Schematic of EFFIS design, workflow orchestration, and
enabling technology usage. EFFIS components are colored orange.
The user edits an input (YAML) text file to configure how the
workflow runs, then an EFFIS command line utility, built upon
Cheetah’s composition library, compiles the job. After job sub-
mission, EFFIS uses Savanna as the execution engine, launching the
applications, along with EFFIS support daemons, which perform
tasks such as plotting, dashboard coordination, and command-
and-control. Data movement between applications or to EFFIS
processes occurs through ADIOS.

8 The International Journal of High Performance Computing Applications XX(X)

declared ADIOS I/O group, which could be remapped to be

referenced under a different name in the EFFIS workflow

composition file, if desired (cf. Listing 3). However, we

choose to maintain the same names.

We note, EFFIS itself is not the data movement library,

but a thin layer atop the data movement library that

enhances the library’s APIs with the EFFIS services. Our

current implementation expects ADIOS APIs (Godoy et al.,

2020), but extensions are feasible, as long as the format is

self-describing and capable of handling multiple time steps,

such as HDF5 (Folk et al., 2011). In some contexts,

optimized inter-computer data movers such as Globus

(Chard et al., 2016) may be appropriate.

No pragma integration/translation is needed merely to

compose and run a workflow with EFFIS. However, in this

case the feature set will be limited to plotting (without

physical time labeling), and no command-and-control or

dashboard functionality is available.

4.1.2. Cheetah/Savanna as a back-end. The two sides of Fig-

ure 5 show composition on the left and execution on the

right. To clarify the terminology, composition concerns the

user specifying what needs to be done in the workflow,

before it actually runs. EFFIS leverages the Cheetah and

Savanna framework as its composition and run-time exe-

cution back-ends (Foster et al., 2017, 2020; Mehta et al.,

2019): Cheetah is a tool for creating co-design campaigns

using Python classes, and Savanna is an execution engine

counterpart to Cheetah, which can run Cheetah-created

workloads on compute nodes.

Dependencies notwithstanding, users need no knowl-

edge of Cheetah/Savanna to use EFFIS; we have a devel-

oped a custom text-based front-end to Cheetah, with a

lightweight toolset, which simplifies the required Cheetah

specification for application scientists (albeit at the expense

of not supporting all Cheetah co-design features, such as

parameter sweeps). The effis-compose script ingests

the configuration file and internally converts it to the Chee-

tah representation, then the effis-submit utility invokes

the Savanna runtime to execute the compiled workload.

This process is platform independent for users.

4.1.3. Composition. Our primary workload target is concur-

rently running applications. In this environment, it is more

suitable to consider the workflow specification more like a

multi-tier service stack rather than attempting to compose

EFFIS workflows with a traditional directed acyclic graph

(DAG). Our specification centers around a set of processes

and data connections between them.

Workflows are composed using a text file specification

in YAML format.14 Users list the executables to run, their

task decomposition (total MPI processes, number per node,

cores per process, etc.), along with several other settings.

For instance, composing a core-edge coupled workflow

follows the skeleton pattern shown in Listing 3. The names

core and edge are not special keywords, but YAML vari-

ables that are effectively references for the executable code

to run, specified in executable_path. In this case, only

two applications are run, but arbitrarily many could be

included. On machines that support it, multiple applications

can be configured to share the same nodes, as shown in

Listing 3 with the share keyword.

Each code includes a section that configures I/O groups

that were marked up with EFFIS pragmas, where their ref-

erence names in the YAML file are those on the right hand

side of the pragma arrow (cf. Listing 1 and Listing 2). These

I/O sections are denoted with a leading period/dot char-

acter (e.g., .density-coupling, .field-coupling).

Listing 1. Example EFFIS pragma usage around data put.

Listing 2. Example EFFIS pragma usage around data get.

Listing 3. Illustrative EFFIS workflow composition.

Suchyta et al. 9

Readers can be matched to a writer group, e.g. reads:

edge.field-coupling in core, to appropriately config-

ure getting data according to how it was put. In this case

SST, a memory-to-memory transport in ADIOS, was used to

publish field-coupling in the edge code.

Listing 3 is not a complete composition file. Compre-

hensive syntax documentation is beyond the scope of this

publication; we refer readers to the online EFFIS source

repository,15 and the WDM release documentation.16

4.1.4. Execution. Internally, the Savanna execution engine is

a Python kernel running on the login/service node that

invokes subprocess calls to launch the programs run by the

workflow. Savanna supports leadership computing

machines, such as Summit,17 Theta,18 and Cori,19 as well

as commodity Linux clusters and local machines without a

scheduler. Built-in scheduler support includes Slurm (Yoo

et al., 2003), LSF (Zhou, 1992), Cobalt,20 and PBS/TOR-

QUE (Staples, 2006).

By default, tasks are launched on the compute nodes,

where the bulk of the workload runs. However, we also

support execution on the service node. At OLCF,21 the

HTTP-fetchable storage is not visible from the compute

node network, which needs to be accessed by the dashboard

preparation daemon, further discussed below. Command-

and-control workflows also need to be able to access ser-

vice nodes, as that is the only place where one can launch

new MPI processes.

Here, we note compute resource usage for EFFIS com-

ponents. Following sections will describe EFFIS daemons

for automating 1D and 2D data plotting, as well as perfor-

mance monitoring, Each of these three runs as a single

process, but all can be run on the same compute node if

the system supports it, or even a node where one or more

application runs, if desired. EFFIS daemons that run on the

service nodes (e.g. we will discuss ones for command-and-

control and dashboard integration) do not require additional

resources, as they do not run on the compute nodes. Work-

flow composition/submission is all on a login node.

4.1.5. Command-and-control. Figure 6 shows two examples

of the command-and-control workflows that EFFIS is

designed to support. When a job begins, EFFIS launches

a monitoring daemon (cf. “Monitor” in Figure 5 and

Figure 6), which is subscribed to some data products: the

coupling data in this case. Each step, the data is read and an

action is triggered if a user-supplied condition is met:

checkpointing and stopping the codes in Figure 6a and

starting an analysis routine in Figure 6b. For launching new

processes, EFFIS allows the possibility of running daemons

on the service nodes, where MPI task launching is allowed

within a job on HPC resources.

Checks to be run by the monitoring daemon are given as

user-supplied Python functions, and we will support issuing

a limited number of commands therein: checkpointing,

stopping, starting new processes, etc. This list is not fina-

lized as the command-and-control layer in EFFIS is still

under development. (Currently, a dummy implementation

exists. No commands are actually issued.) EFFIS APIs will

be available to the source codes to catch control signals and

be suppliable with callback functions where necessary

(e.g., how to checkpoint a simulation).

Issuing control signals from applications themselves is

another use case possibility. For example, the edge simula-

tion encounters an exception, branching into a checkpoint

then stop code sequence, and communicates a signal to the

core code to do likewise. At any rate, command-and-

control requires passing relatively small messages between

multiple running executables, possibly with high process

counts. Thus, we are exploring the design of a control

signal subsystem, apart from the usual ADIOS data move-

ment, which is not designed for small messages.

This command-and-control functionality uses a publish/

subscribe model, where processes can subscribe to topics

that map to particular subsets of the data generated, and

publishers push messages to channels that match these

topics. Topics are named resources to which messages are

sent by publishers. Subscribers, such as an application wait-

ing for a notification, can specify callback handler func-

tions, which are automatically invoked when matching data

is received, and can enable data driven dynamic run-time

behavior.

Specifically, the command-and-control functionality is

implemented as a simple lightweight library that is persis-

tent for the total duration of the workflow, and applications

can join and leave at any point. Architecturally, it is

designed as a scalable network of lightweight processes

that coordinate to manage subscriptions and to match

Edge Core

ρ

φ

Monitor

Bad Condition

Custom
Check

Checkpoint, stop

Checkpoint, stop

Edge Core

ρ

φ

Monitor

Anomaly Detected

Custom
Check

Analysis

(a) (b)

Figure 6. Examples of workflows using command-and-control in WDMApp. (a) Workflow that checkpoints and stops upon finding a
bad condition. (b) Workflow with feedback to start an analysis upon anomaly detection.

10 The International Journal of High Performance Computing Applications XX(X)

published data to these subscriptions. In order to segregate

messages across different application groups that use this

messaging infrastructure, applications specify a namespace

in addition to a topic as part of their subscriptions. When a

message is published to a particular namespace and topic,

only applications subscribed to that namespace will be

matched.

EFFIS will implement command-and-control using this

publish/subscribe messaging framework by publishing con-

trol signals, which are subscribed to by relevant signal

handlers that use these signals to either trigger new appli-

cations or change the behavior of that application. Further

development and demonstration of the system will be

explored in a subsequent publication.

4.1.6. Visualization. EFFIS includes daemons to auto-

generate plots of output one- (1D) and two-dimensional

(2D) variables (cf. Figure 2, Figure 5). Currently, those

implemented are Python programs with Matplotlib plotting

directives, but extension to other back-ends are feasible,

and as described below, users can also define their own

visualizations. One could invoke these daemon processes

directly with the usual application formatting in the work-

flow composition file, but we have provided shortcuts, e.g.

the default of single process. Listing 4 is a non-exhaustive,

but indicative illustration of the abbreviated formatting for

1D quantities. (Additional plotting details, such as scaling

and axes ranges, can be made available to the user through

command line options, but are not explicitly discussed

here.) The data keyword in the plot-1D section selects

the relevant I/O group for the plot. Listing 5 is an alterna-

tive formatting to do the same, which we will support in

future releases, where triggering the plot is directly under-

neath the data group itself.

Figure 7 shows examples of auto-generated plots 1D and

2D plots. In EFFIS, 1D visualization means plotting y vs. x

curves, where x and y are two 1D arrays (or 1D slices of

multi-dimensional arrays) of the same number of elements.

Figure 7a, for example, plots the 00-moment of charge

density against the radial coordinate.

Figure 7b is a 2D color map of potential fluctuations

over a toroidal slice of the reactor. EFFIS 2D visualization

supports image-like data, i.e. pixel values on a regular grid,

and unstructured triangular mesh data, like that of XGC.

Extensions to other grid types are possible; we are currently

developing a more generalized approach to accommodate

more visualization schemas.

Users can identify individual variables to plot or make

selections of associated variables within an I/O group, all

which share the same coordinates to plot against. For exam-

ple, cden00_1d (Figure 7a) is among about 40 output

quantities with the same dimensions as psi. All were

plotted during the run that generated Figure 7, by specify-

ing psi as the generating variable in Listing 4. Similarly,

four other variables in addition to dpot (Figure 7b) were

plotted, sharing the same unstructured triangular mesh.

The labels in Figure 7 include the physical simulation

time (in seconds). This is an example of “extra

information” that has been inherited through pragma

enhancement. Nominally the diagnosis.1d I/O group

(or analogous group for dpot) has no time variables, in

Listing 4. 1D generative plotting composition.

(a) (b)

Figure 7. Example output visualizations from EFFIS plotting daemons. (a) 1D y vs. x plot. (b) 2D plot on unstructured triangular mesh.

Listing 5. Alternate generative plotting composition.

Suchyta et al. 11

which case the plotter would have no knowledge of the

physical time. When the EFFIS pre-processor encounters

the time-publishing pragma, I/O groups marked with prag-

mas will include the published time if they are to be plotted.

4.2. Enabling technologies

WDMApp and the EFFIS framework leverage several

enabling technologies in order to achieve the project’s

goals. Figure 2 pictures these technologies in the overall

workflow. First we discuss why ADIOS is well-suited for

the data movement needs. Then, we discuss how perfor-

mance monitoring software is being instrumented into the

workflow. Finally, we explain our COUPLER, an inter-

mediary for data transformations between distinct physics

representations in different applications.

4.2.1. Data movement. Previously, we explained the differ-

ences between strong and weak coupling, and that

WDMApp must support both. Similarly, EFFIS must

accommodate both synchronous and asynchronous data

movement. Synchronous coupling involves a wait barrier.

The receiving process cannot continue until the data is

received. Asynchronous coupling involves no such com-

munication block. The sender off-loads its data, which may

or may not be consumed. Visualization is an example can-

didate for asynchronous coupling, while the WDMApp

fluid exchange is synchronous. Generally, strong coupling

is likely synchronous, and weak coupling is likely asyn-

chronous, but the terms are not mutually exclusive.

The EFFIS code base itself does not implement data

movement, rather it relies on external libraries and services.

In the current version of EFFIS, the ADIOS (Godoy et al.,

2020) framework is used exclusively for several reasons.

First, ADIOS provides data movement alternatives for all

flavors of coupling mentioned above: strong, weak, syn-

chronous, and asynchronous. Therefore, it is well-suited to

serve WDMApp’s coupling needs. Furthermore, several

fusion codes (e.g. XGC, GENE, GEM) have already been

using ADIOS. Thus, there are already ADIOS I/O blocks in

the source code that need only some augmentation to con-

nect into the workflow. Nevertheless, EFFIS can be

extended in the future to support other libraries that may

provide optimized solutions for some specific data move-

ment scenario.

ADIOS’ performant and flexible I/O has been an impor-

tant enabling technology for WDMApp, which uses the

following ADIOS capabilities: a) large scale storage I/O

for checkpointing the entire coupled application (synchro-

nous), b) memory-to-memory data movement for synchro-

nous strong coupling of fusion codes implemented with

one-sided MPI communication, c) memory-to-memory,

asynchronous data movement for visualizing data imple-

mented with separate threads performing the data move-

ment and d) continuous storage I/O with asynchronous

plotting of diagnostic data. Typical usage sets the ADIOS

transport type to BP4 (the name of ADIOS’ file format) for

diagnostic or analysis data (i.e. data that should persist after

the run) and SST for asynchronous RDMA transport during

strong coupling.

We note, ADIOS (as well as other familiar scalable I/O

packages such as HDF5) runs on the CPU and that all data

movement discussed in this paper is CPU data movement,

though codes run through EFFIS certainly may run on

GPUs. (XGC and GENE can.) But such codes’ communi-

cation to the GPU devices is for all intents and purposes

orthogonal to this paper’s discussions. Core-edge data

transfer occurs in stages where the data is on the CPU in

both codes, and there is no coupling-related overhead to

measure relative to the GPUs. ADIOS is researching GPU

to GPU data movement in case such scenarios become

necessary.

4.2.2. Performance monitoring. An important aspect of job

execution is understanding performance. In the case of

coupled execution, the goal is to understand the perfor-

mance of not only individual components, but also interac-

tions between components. Performance monitoring of the

coupled execution must also be compatible with existing

performance instrumentation used by the developers of the

individual codes.

EFFIS supports the use of TAU (Shende and Malony,

2006), a comprehensive set of tools developed to measure

the performance of large-scale parallel libraries and appli-

cations written in Fortran, C/Cþþ, Python, and other lan-

guages. TAU can gather performance information through

system-interrupt-based sampling and/or via instrumenta-

tion inserted in the source code automatically, provided

by callbacks from libraries or interfaces (Python, OpenMP,

OpenACC, MPI), or included manually by using the instru-

mentation API. TAU measurements represent per-OS

thread measurements for all processes in a distributed

(e.g., MPI) application. TAU measurements are collected

as profile summaries and/or a full event trace.

For the purposes of run-time performance monitoring,

low-overhead measurements are necessary so as not to dis-

tort application performance and to justify having the mon-

itoring available during production runs. For that reason,

only high-level profiling data and operating system/hard-

ware monitoring data are collected. It is desirable to gen-

erate performance data at the granularity of important code

regions, such as major functions, while avoiding excessive

instrumentation of frequently called small routines. The

three major physics codes used in the WDMApp proj-

ect—XGC, GENE, and GEM—already contain source

code instrumentation at the appropriate granularity. By

augmenting or substituting the existing instrumentation

with a stub interface, any performance tool that implements

that interface can be used to collect performance data and

output it in a flexible manner for display or other purposes

such as archiving or control.

In the current EFFIS performance monitoring setup,

individual codes are instrumented by using the PerfStubs

interface (Boehme et al., 2019). PerfStubs is a thin stub

12 The International Journal of High Performance Computing Applications XX(X)

interface for instrumenting library or application code.

Function calls, which are stubs in the form of function

pointers, initialized to nullptr, are optionally assigned

at runtime by using dlsym() calls, as is typical with

plugin implementations. If static linking is used, a weak

symbol technique is used instead. If the function pointers

have the value nullptr, then this library is a few more

instructions than a no-op. If the function pointers are

assigned, the measurement library functions are called.

The PerfStubs API includes functions for starting and

stopping timers that can have either user-defined or auto-

matically generated names. TAU provides a PerfStubs

plugin implementation. Hence, if an application that has

been instrumented with PerfStubs is either linked with

TAU or run using tau_exec, the PerfStubs calls will

generate TAU profile data.

When run with tau_exec through EFFIS, the TAU

performance data values are output as ADIOS variables for

each process in the simulation. The data schema includes

variables for application timers, as well as timers and coun-

ters for MPI events, CUDA events, Kokkos events, Open-

ACC events, hardware and operating system events, and

ADIOS events. The timer variables consist of the number

of calls and inclusive and exclusive times. Counter vari-

ables consist of the number of samples, minimum value,

maximum value, total values, and a sum of squares for

computing variance. A TAU plugin for ADIOS output is

enabled that will stream the performance data out to

ADIOS during pre-defined application periods, such as

every N iterations of the outer loop. Thus, performance data

for the entire coupled simulation is available in a unified

way through use of a consistent schema.

The performance data from each component/executable

of the coupled simulation is written to its own ADIOS

stream, and visualized using a Python script to generate

images from each period of data, analogous to 1D and

2D data plotting. Figure 8 is an example using XGC timing

measurements. The currently implemented script can only

visualize one stream of output per plot. However in the

future, the scripts will be updated to read from multiple

output streams and visualize them together as one dataset,

using the periodic output intervals for synchronization

between applications. Combining the performance data in

this manner will make it easier to diagnose performance

problems such as load imbalances, under-utilization from

inefficient configurations and excessive wait times.

4.3. COUPLER

An essential ingredient in coupling multiple physics codes

for WDMApp is what we call the COUPLER (cf. Figure 3),

which reads data from one or more physics codes and pre-

pares it for use as input to another code. WDMApp presents

three types of physics couplings for which we are preparing

the COUPLER. The first concerns mesh data from codes

with different spatial extents (e.g., core and edge), but with

an overlapping region. Often such data originates from

codes that use different numerical approaches and meshes,

in which case the COUPLER is required to transform/inter-

polate the data from one code to another. The second type

of coupling is between codes containing fine-grained time

integrators with applications for coarse-grained time inte-

gration. The goal is to maintain the physics accuracy of the

fine-grained code but over long time scales. In the third

type of coupling, codes cover the same spatial region but

solve for different physics. Although in the future the COU-

PLER will address all three scenarios, here we are con-

cerned with coupling the core and edge codes (GENE,

GEM, XGC) used in WDMApp.

In all cases, the COUPLER is built to address three

objectives: accuracy, performance, and abstraction. Con-

cerning the first, the coupled application must produce a

consistent and accurate solution, where the accuracy can be

tested from a reference solution (Dominski et al., 2018;

Merlo et al., 2018). To ensure performance in an exascale

environment, the time spent exchanging data between

applications and the COUPLER and the time spent inside

the COUPLER must both be much less than that spent in

the applications. Abstraction is about separating the ortho-

gonal concerns of data movement and physics. To this end,

we create a COUPLER as a separate application with an

interface that allows codes to publish and subscribe to data.

Then, the COUPLER’s sole concern is to receive and trans-

form data provided by one application into a representation

required by another application, via the use of methods that

maintain required accuracy. We can execute the COU-

PLER either in the same process space as one of the appli-

cations, by using the ADIOS inline engine, which uses the

COUPLER as a library in that code, or as a separate appli-

cation that can be placed on the same nodes as one appli-

cation or on a completely separate set of nodes.

Figure 8. Example of performance measurement collected by
PerfStubs/TAU and plotted automatically in EFFIS. The y-axis has
units of microseconds, and each entry on the x-axis is an MPI rank.
Here, the cumulative duration of XGC’s main simulation loop is
the quantity graphed.

Suchyta et al. 13

The COUPLER is currently built to transform the fields

between the XGC and GENE codes. In the future, GEM

and other code options will be available to the COUPLER

as well. The COUPLER contains a pre-process step, which

aligns the flux tubes of GENE’s mesh with those of XGC’s

within GENE’s spatial domain. This includes setting the

MPI structures used to coordinate mesh-to-mesh commu-

nication. At each step, the COUPLER carries out the coor-

dinate transformation between GENE’s field-aligned

coordinates and XGC’s cylindrical coordinates (for the

mesh nodes located within GENE’s poloidal mesh) and

makes the forward and backward Fourier transformations

along the binormal direction.

ADIOS allows scientists to use files or in-memory

approaches, and can allow the COUPLER to live directly

inside the process space of one of the codes, or in a separate

process space. This allows physicists to conceive of the

COUPLER as a place to conceptually write data, read and

accurately transform that data, then read that data back into

their other physics code(s). While it introduces an extra

inter-component communication step, this use of the COU-

PLER avoids the complexities of modifying the physics

codes to execute coupling operations and then maintaining

those code portions as the applications evolve. It also

enhances the ability to reuse coupling components and/or

to extend them with new capabilities. In WDMApp, where

the majority of the computation resources are spent in the

edge, our goal is to minimize the time in the edge code

waiting for data from the COUPLER.

We are also expanding the COUPLER to allow XGC to

communicate to GEM, and making the COUPLER easier to

extend as we add more codes. An important consideration

is understanding where the COUPLER will run (e.g., on the

same nodes as GENE/GEM or on different nodes), along

with understanding performance impacts. Our design

allows for multiple COUPLER instances for multiple types

of code coupling, thereby allowing the different codes to

utilize the near-optimal placement and resources for each

type of coupling. We are exploring optimizations such as

MPI message packing and GPU acceleration.

4.4. EFFIS services

EFFIS workflows generate several types of output data,

including science datasets, visualizations (as images), and

performance results. EFFIS services allow scientists to plug

in user-defined analysis and visualization methods, monitor

simulations through a web-based dashboard, and run post-

processing actions such as data migration. We expand on

these topics in the following.

4.4.1. Dashboard. In addition to generating output images

themselves, we have been connecting EFFIS visualization

results to a dashboard for remote viewing (Figure 9). Our

dashboard implementation uses the eSimMon framework.22

However, the use of a structured interface to expose the

images and data allows integration with other software com-

ponents that would like to consume this output.

When dashboard functionality is enabled, EFFIS runs a

service daemon, which is aware of the various visualiza-

tion processes that are running, for both data and perfor-

mance. When all images for a given (simulation) time step

have been rendered, the service daemon bundles them into

a tar archive and updates a timing text file (JSON) to

record what time steps are ready for dashboard ingest.

(EFFIS pragma replacement enables this ability as well;

otherwise in general, one is not sure when a time step has

finished.) This JSON file is the integration point for exter-

nal systems that wish to consume the assets generated by

the EFFIS service daemon. The JSON file and archive are

exposed via a HTTP server in order to be accessible to

remote external services.

Running at a remote site, the dashboard ingestion engine

periodically fetches the timing JSON file over HTTP. If the

values in this file show that data are available, it uploads

those data to the dashboard’s data management platform,

Girder,23 built on MongoDB24 with data exposed through a

RESTful API. The eSimMon client is a web application

that uses the API provided by Girder to present and monitor

the data associated with a run. Pictured in Figure 9’s

screenshot, the client can monitor a live run, dynamically

refreshing to display the data for the current timestep or

play back a completed run, replaying each timestep. The

user has the ability to search and select the particular para-

meters to monitor. The images for a parameter can also be

exported as an MPEG-425 file for playback offline.

Our primary focus is HPC resources, such as those found

at leadership facilities like OLCF. At OLCF, there is one

project-accessible directory space that accepts incoming

HTTP requests suitable for image download. However, it

is not accessible from the compute nodes; thus in our case,

the EFFIS dashboard compatibility daemon must run on the

service node.

4.4.2. User-defined analysis and visualization. In addition to the

EFFIS Matplotlib-based plotting daemons, users require

the flexibility to design their own visualization and analysis

services: for example, to provide three-dimensional views

of the data. The visualization and analysis must be able to

perform efficiently, and have the flexibility to be placed

where needed by the system. Compiling with an appropri-

ate pragma can then prepare the images to be compatible

for dashboard ingestion.

We have designed specialized visualizations for

WDMApp. Figure 10 shows output from a service that

calculates the turbulence in the plasma and renders the

result. The visualization services are implemented in the

VTK-m toolkit (Moreland et al., 2016), which provides

portability across CPU and GPU multi-core computing

devices. This allows EFFIS to schedule the service in a

flexible way on available resources; the same service could

run on a single core of a CPU, on multiple cores of a CPU,

or on a GPU. Interpretation of the simulation data is done

14 The International Journal of High Performance Computing Applications XX(X)

using the Fides schema.26 Fides is a schema that annotates

data in a stream or file to provide meaning for the data

arrays and provide a data model for a mesh-based repre-

sentation. The schema makes it possible for services to be

connected in arbitrary ways and able to understand the data

in the underlying streams.

4.4.3. Post processing. There are several post processing

events which WDMApp will require to be automated

immediately following an exascale simulation. These

include: 1) aggregating images across multiple time steps

into a video sequence/animation, 2) running additional post

processing analysis, and 3) archiving all data in order to

manage the metadata across the different outputs from a

simulation. While the first two are fairly straightforward,

the third beckons further discussion.

Application scientists often launch campaigns that exe-

cute complex workflows with different inputs and config-

urations, raising the question of how to efficiently manage

the heterogeneous data produced by such campaigns.

WDMApp faces two particular challenges.

First, the data are enormous and have highly variable

types and formats. For instance, a single run within a cam-

paign might generate data that includes, but is not limited

to, the outputs of edge and core simulations; performance

measured by TAU; and images and videos produced by

visualization tools. These data are saved in different for-

mats with different characteristics. When scientists launch

multiple campaigns for different purposes, where the

Figure 10. Example from custom EFFIS service to visualize the
turbulence in an XGC simulation from a D3D tokamak run.

Figure 9. Example of eSimMon client dashboard interface. Four variables have been selected for live monitoring, including two 1D data
variables, one 2D data variable, and a performance monitoring variable.

Suchyta et al. 15

workflows within each campaign are executed multiple

times with different inputs or configurations, the number

and size of heterogeneous datasets generated can be

problematic.

Second, the data cannot reside in fast storage tiers (such

as parallel file systems) indefinitely, due to limited storage

capacity. Eventually, data must be purged from the fast

storage and moved to a slower archival storage system. For

example on Summit, data can only persist on the parallel

file system for a maximum of 90 days. It must be moved to

the site’s HPSS27 archives or elsewhere off-site, lest it be

permanently deleted.

Once data are moved to archival storage, it can take

weeks or even months for scientists to retrieve them in

order to run their analysis procedures. In such a case, the

goal is to achieve efficient data management with a meta-

data service that not only tracks the placement and move-

ment of heterogeneous data within the multi-tiered storage

hierarchy, but also supports flexible and lightweight query

operations to enable streamlined access to the needed data

for further studies.

Our initial work on this metadata service have led to the

design and implementation of a new metadata file format for

ADIOS called BP4 (Wan et al., 2019) that significantly

reduces metadata construction overhead. Future improve-

ments will rely on two functionalities. First is the construc-

tion of a global indexing structure for tracking

heterogeneous datasets from all campaigns. Currently, dif-

ferent indexing structures are under evaluation, including B-

tree, hash table, and log-structured merge-tree (LSM tree).

Second, rich information and attributes must be attached to

the global indexing structure to enable a variety of query

operations. Since many scientific datasets are already in

self-describing formats, the existing metadata and attributes

of each individual self-describing dataset can be extracted

and inserted into the global indexing structure. Moreover,

scientists are able to attach workflow and campaign-related

information, such as the intention of each campaign or

experiment run, to the global indexing structure.

5. WDMApp demonstration and results

We now exemplify how EFFIS enhances WDMApp.

Although the focus of this article is not new physics studies

or detailed performance measurements, we present charac-

teristic results related to the challenges and requirements

alluded to throughout the manuscript, paying particular

attention to metrics of success defined for the framework.

Our main test case is the cyclone base case in circular

geometry, with core-edge fluid coupling between GENE

and XGC, which has been the subject of several WDMApp

milestones and publications (Dominski et al., 2018; Merlo

et al., 2020). We present results on two HPC platforms:

Summit and Rhea.28 Strongly coupled charge and field data

between XGC and GENE is exchanged via the ADIOS

asynchronous RDMA transport and all other data is saved

to ADIOS BP4 files. WDMApp runs have been modest in

size to date: here, 32 nodes for XGC and a single node for

GENE. However, the same methodologies and results anal-

ysis can be applied to larger runs. In the Summit case, the

three EFFIS plotters (1D, 2D, performance) shared a single

compute node. On Rhea, only a single executable is

allowed per node, meaning three additional nodes were

added for EFFIS.

The reason we have not run a job occupying a significant

fraction of Summit is twofold. First is simply a matter of

compute time usage. EFFIS has been developed as part of

the WDMApp program, and the majority of the project’s

compute hours are reserved for physics studies and perfor-

mance optimization of the individual codes, not the frame-

work manager. Secondly, as mentioned above, WDMApp

coupling runs have been modest in size to date. This is

because less complex physics is being solved, while appro-

priate, stable coupling algorithms are being developed.

Upping the job size does not gain much; effectively, it

over-resolves the simulation more than is really necessary.

No EFFIS/ADIOS bottleneck is expected to inhibit larger

workloads. In fact, the fractional overload for automated

EFFIS processors will decrease. In future publications,

larger EFFIS runs will be presented and in additional con-

texts beyond this WDMApp coupling example.

The first metric for success for the framework is assist-

ing the project in achieving its performance targets.

WDMApp workflows run via EFFIS collect hundreds of

performance variables periodically throughout the simula-

tion, as outlined in the Performance Monitoring section.

Listing 6 shows a small subset of these quantities for the

32 node, 500 time step XGC run. The first block of vari-

ables are timers, including times spent in coupling and

ADIOS I/O (BeginStep, EndStep, XGC_COUPLING_

CORE_EDGE, RESTART_WRITE, DIAGNOSIS), different

Listing 6. Examples of performance monitoring variables: timers
(upper block) and usage statistics (lower block).

16 The International Journal of High Performance Computing Applications XX(X)

computational segments of the code (ipc1: PUSH,

CHARGE, POISSON, MAIN_LOOP), and MPI subroutines.

Each timer has three quantities associated with it, the num-

ber of calls, as well as the exclusive and inclusive timing

measure; however, we have suppressed all but inclusive

value after the first variable. The second block of variables

are other performance counters: memory, CPU, and I/O

usage statistics. Each comes with a minimum, maximum,

mean, number of events, and sum of squares variant; but

again, we have suppressed all but a single choice after the

first example.

As noted earlier, it is important to minimize time that the

edge code (XGC) is idling while waiting for coupling data.

We use the collected performance measurements to test if

this is case. Figure 11 shows the waiting time relative to the

full simulation time. It is a small overhead, * 0.005% of

the execution time. Our framework enables us to make such

measurements for each type of new coupling tested, to

understand if it is an appreciable performance detriment.

During WDMApp code coupling, EFFIS adds a small

library layer atop ADIOS, to support the additional EFFIS

features. We confirm that EFFIS does not add a significant

overhead to the ADIOS performance. Figure 12 shows the

per-step coupling data movement timing, including the

EFFIS-added time, for a WDMapp run on Summit with

RDMA application-to-application data movement. For

simplicity, the COUPLER has been run within GENE

instead of as a separate application. (The figure does not

include code-to-code representation transformation time.)

For comparison, the timing for the entire step is also

included at the top of Figure 12. The combined charge and

field exchanges are approximately 0.2% of the looping

time, with the EFFIS overhead less than 1% of that amount.

Thus, data movement is not a significant cost here in our

coupling approach.

Another of our framework goals is to make it as simple

as possible to couple and configure as many codes as

needed. Listing 7 demonstrates an example of enabled ease.

Users need only edit one line of run-time input to change

how coupling proceeds, e.g. switching the adios_engine

Figure 11. Relative wait time overhead for XGC in WDMApp fluid coupling on Rhea. As XGC dominates computation time, we want
that overhead to be small, to minimize resource idling.

Figure 12. Coupling I/O timings for fluid coupling on Summit.
Both the relative I/O expense and the overhead introduced by
EFFIS are small.

Suchyta et al. 17

for the edge’s field-coupling from BP4 to SST to

switch from file-based to memory-based data movement.

Moreover, adding another executable only requires adding

another section under run. Here, custom-analysis

(weakly) couples through two inputs, data and mesh, set-

ting reads to the proper edge data products. This also

demonstrates the metric to allow seamless integration of

in situ analysis/visualization. It is merely another workflow

component to couple to in the same fashion, which is con-

figured in the same way. The few lines of pragmas added to

the codes are analogous to the previously exemplified in

Listing 1 and Listing 2.

Custom analysis in EFFIS can be used to check the

validity of physics results. For example, we have computed

the growth rate in simulations, and then these can be com-

pared in post-processing. Figure 13 is an example, where

the plot has been reproduced from Cheng et al. (2020).

Here, GEM has been used in the core instead of GENE

(with code-to-code representation transformation occurring

inside GEM; the COUPLER was not GEM-compatible at

the time of publication). A linear growth mode is expected

to asymptote to a constant in the plot. The coupled simula-

tion is compatible with the reference non-coupled one.

6. Conclusions

In this paper we have presented EFFIS, a general frame-

work used to compose, execute, and couple multiple codes

in workflows. EFFIS’ features have been driven by the ECP

WDMApp, which requires a high performance framework

to couple multiple gyrokinetic simulations on an exascale

supercomputer. The software environment contains meth-

ods to strongly or weakly couple, in both synchronous or

asynchronous fashions. Furthermore, it allows users to

monitor the performance and physics data and can be pro-

grammed to send control commands to the applications that

are contingent on the data. As a workflow manager, EFFIS

differs from other systems in that it provides a way through

which it can subscribe to data published in the workflow,

then provide fine-grained support for deploying in situ

workflow services.

The essential elements of EFFIS include:

� An easy-to-use composition engine, which allows

scientists to specify the applications that are to exe-

cute during a run, and specify the resource and pla-

cement of the applications, along with the coupling

technique.

� Flexible and performant self-describing I/O support,

for both disk storage and in-memory data movement.

� A state-of-the-art COUPLER, which can subscribe to

data from one or more codes and perform the mathe-

matics required for exchanging data in a accurate and

stable manner.

� A method for performance monitoring of all coupled

applications, yielding data feeds that can be sub-

scribed to through EFFIS.

� Automated plotting of output data.

� Advanced command-and-control processing for

automating workflow actions contingent on the data.

� Extensibility for user services, e.g. custom analysis

and visualization, and run monitoring via a dashboard.

� Post processing for archiving, campaign manage-

ment, and other purposes.

In the longer term, we envision creating a useful com-

munity framework with WDMApp and EFFIS, one that is

reasonably easy to use for users who are not experts with

the first-principles codes XGC, GENE, and GEM. We have

described progress toward this goal, but more research

and development remains, such as defining the interface and

schema requirements for all applications to be coupled, and

designing a validation engine to ingest a supplied configura-

tion and test if it is runable, at least insofar as not to crash

early during execution. There is a large possible parameter

Listing 7. Simple workflow composition configuration, coupling
core, edge, and custom-analysis.

Figure 13. Time evolution of linear growth rate of XGC refer-
ence (blue line) and GEM-XGC coupling (red line) results (Cheng
et al., 2020). Comparing the growth rate is a good validation check
because it should match between the cases.

18 The International Journal of High Performance Computing Applications XX(X)

space, which only grows as more codes are coupled. It is

important to be able to identify out-of-range values, mis-

spellings, incompatible data types, etc.

In the context of WDMApp, we demonstrated that the

data movement cost in the WDMApp strong coupling case

is low, including the associated EFFIS overhead. Further-

more, results indicated that the time XGC spends for wait-

ing during coupling is close to zero. We also exemplified

EFFIS plotting services, which can be used by multiple

users to monitor WDMApp runs with the eSimMon dash-

board, including visualizations from the performance

instrumentation. We are continuing to develop EFFIS, to

enable greater degrees of command-and-control, more gen-

eralized automated plotting, additional post-processing

hooks, and more.

In the next step of the WDMApp project, we will enable

kinetic coupling, which will further stress our system, and

we will introduce new techniques to reduce, analyze, and

visualize salient features during a simulation. We are also

building up a knowledge repository of EFFIS input scripts,

along with the inputs to all of the coupled runs and their

corresponding checkpoint files, so that users can run these

example runs and then examine the performance, and accu-

racy. This will allow us to explore more complex, kinetic

coupling with the WDMApp, and include more in situ

analysis and reduction during the simulation.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This research was supported by the Exascale

Computing Project (17-SC-20-SC), a collaborative effort

of the U.S. Department of Energy Office of Science and

National Nuclear Security Administration. It used

resources of the Oak Ridge Leadership Computing Facility,

a DOE Office of Science User Facility supported under

Contract DE-AC05-00OR22725.

ORCID iD

Eric Suchyta https://orcid.org/0000-0002-7047-9358

Ian Foster https://orcid.org/0000-0003-2129-5269

Cameron W Smith https://orcid.org/0000-0001-9258-

5226

Notes

1. WDMApp Brochure, https://www.exascaleproject.org/

wp-content/uploads/2020/01/ECP_AD_Fusion-En

ergy.pdf

2. ECP Homepage, https://www.exascaleproject.org/

3. PerfStubs, https://github.com/khuck/perfstubs

4. Titan Homepage, http://www.olcf.ornl.gov/olcf-

resources/compute-systems/titan/

5. AToM Homepage, https://atom.scidac.io/

6. SciDAC Homepage, https://www.scidac.gov/

7. HBPS Homepage, https://epsi.pppl.gov/

8. ASCR Homepage, https://www.energy.gov/science/

ascr/advanced-scientific-computing-research

9. FES Homepage, energy.gov/science/fes/fusion-energy-

sciences

10. Frontier Homepage, olcf.ornl.gov/frontier/

11. Aurora Homepage, https://www.alcf.anl.gov/aurora

12. MySQL Homepage, https://www.mysql.com/

13. GTC, http://sun.ps.uci.edu/gtc/

14. YAML Specification, https://yaml.org/spec/1.2/spec.

html

15. EFFIS Source Repository, https://github.com/wdmapp/

effis

16. WDM Release Documentation, https://wdmapp.read

thedocs.io/en/latest/effis/effis-main.html

17. Summit Homepage, https://www.olcf.ornl.gov/olcf-

resources/compute-systems/summit/

18. Theta Homepage, https://www.alcf.anl.gov/support-

center/theta

19. Cori Homepage, https://www.nersc.gov/systems/cori/

20. Cobalt Job Scheduler, https://xgitlab.cels.anl.gov/aig-

public/cobalt

21. OLCF Homepage, https://www.olcf.ornl.gov/

22. eSimMon, https://github.com/Kitware/eSimMon

23. Girder Homepage, https://www.github.com/girder/

girder

24. MongoDB, https://github.com/mongodb/mongo

25. MPEG-4, https://tools.ietf.org/html/rfc4337

26. Fides Software, https://gitlab.kitware.com/vtk/fides

27. HPSS Homepage, http://www.hpss-collaboration.org/

28. Rhea Homepage, https://www.olcf.ornl.gov/olcf-

resources/compute-systems/rhea/

References

Altintas I, Berkley C, Jaeger E, et al. (2004) Kepler: an extensible

system for design and execution of scientific workflows. In:

16th international conference on scientific and statistical

database management, Santorini, Greece, 23–23 June 2004,

pp. 423–424. IEEE.

Aymar R, Barabaschi P and Shimomura Y (2002) The ITER

design. Plasma Physics and Controlled Fusion 44(5):

519–565.

Babuji Y, Woodard A, Li Z, et al. (2019) Parsl: pervasive parallel

programming in Python. DOI: 10.1145/3307681.3325400.

Boehme D, Huck K, Madsen J, et al. (2019) The case for a com-

mon instrumentation interface for HPC codes. In: IEEE/ACM

international workshop on programming and performance

visualization tools (ProTools), Denver, CO, 17 November

2019, pp. 33–39.

Bonoli P, McInnes LC, Sovinec C, et al. (2015) Report of the

workshop on integrated simulations for magnetic fusion

energy sciences. Technical Report, Office of Fusion Energy

Sciences and the Office of Advanced Scientific Computing

Research.

Suchyta et al. 19

https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0001-9258-5226
https://orcid.org/0000-0001-9258-5226
https://orcid.org/0000-0001-9258-5226
https://orcid.org/0000-0001-9258-5226
https://www.exascaleproject.org/wp-content/uploads/2020/01/ECP_AD_Fusion-Energy.pdf
https://www.exascaleproject.org/wp-content/uploads/2020/01/ECP_AD_Fusion-Energy.pdf
https://www.exascaleproject.org/wp-content/uploads/2020/01/ECP_AD_Fusion-Energy.pdf
https://www.exascaleproject.org/
https://github.com/khuck/perfstubs
http://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
http://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://atom.scidac.io/
https://www.scidac.gov/
https://epsi.pppl.gov/
https://www.energy.gov/science/ascr/advanced-scientific-computing-research
https://www.energy.gov/science/ascr/advanced-scientific-computing-research
http://energy.gov/science/fes/fusion-energy-sciences
http://energy.gov/science/fes/fusion-energy-sciences
http://olcf.ornl.gov/frontier/
https://www.alcf.anl.gov/aurora
https://www.mysql.com/
http://sun.ps.uci.edu/gtc/
https://yaml.org/spec/1.2/spec.html
https://yaml.org/spec/1.2/spec.html
https://github.com/wdmapp/effis
https://github.com/wdmapp/effis
https://wdmapp.readthedocs.io/en/latest/effis/effis-main.html
https://wdmapp.readthedocs.io/en/latest/effis/effis-main.html
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.alcf.anl.gov/support-center/theta
https://www.alcf.anl.gov/support-center/theta
https://www.nersc.gov/systems/cori/
https://xgitlab.cels.anl.gov/aig-public/cobalt
https://xgitlab.cels.anl.gov/aig-public/cobalt
https://www.olcf.ornl.gov/
https://github.com/Kitware/eSimMon
https://www.github.com/girder/girder
https://www.github.com/girder/girder
https://github.com/mongodb/mongo
https://tools.ietf.org/html/rfc4337
https://gitlab.kitware.com/vtk/fides
http://www.hpss-collaboration.org/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/rhea/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/rhea/

Bussmann M, Burau H, Cowan TE, et al. (2013) Radiative sig-

nature of the relativistic Kelvin-Helmholtz instability. In:

SC’13: Proceedings of the international conference on high

performance computing, networking, storage and analysis,

Denver, CO, USA, 17–22 November 2013, pp. 1–12. IEEE.

Chard K, Tuecke S and Foster I (2016) Globus: recent enhance-

ments and future plans. In: XSEDE16 conference, Miami, FL,

USA, 17–21 July 2016, pp. 1–8.

Chen Y and Parker SE (2007) Electromagnetic gyrokinetic d f

particle-in-cell turbulence simulation with realistic equili-

brium profiles and geometry. Journal of Computational Phy-

sics 220(2): 839–855.

Cheng J, Dominski J, Chen Y, et al. (2020) Spatial core-edge

coupling of the PIC gyrokinetic codes GEM and XGC. Physics

of Plasmas 27(12): 122510.

Cummings J, Lofstead J, Schwan K, et al. (2010) EFFIS: an end-

to-end framework for fusion integrated simulation. In: 18th

Euromicro conference on parallel, distributed and network-

based processing, Pisa, 17–19 February 2010, pp. 428–434.

Deelman E, Peterka T, Altintas I, et al. (2018) The future of

scientific workflows. International Journal of High Perfor-

mance Computing Applications 32(1): 159–175.

Deelman E, Vahi K, Juve G, et al. (2015) Pegasus: a workflow

management system for science automation. Future Genera-

tion Computer Systems 46: 17–35.

Dominski J, Cheng J, Merlo G, et al. (2020) Spatial coupling of

gyrokinetic simulations, a generalized scheme based on first-

principles. Physics of Plasmas 28(2): 022301.

Dominski J, Ku S, Chang CS, et al. (2018) A tight-coupling

scheme sharing minimum information across a spatial inter-

face between gyrokinetic turbulence codes. Physics of Plas-

mas 25(7): 072308.

Dorf MA, Dorr MR, Hittinger JA, et al. (2016) Continuum kinetic

modeling of the tokamak plasma edge. Physics of Plasmas

23(5): 056102.

Erl T (2005) Service-Oriented Architecture (SOA): Concepts,

Technology, and Design. Hoboken, NJ: Prentice Hall.

Folk M, Heber G, Koziol Q, et al. (2011) An overview of the

HDF5 technology suite and its applications. In: Baumann P,

Bill H, Kjell O and Silvia S (eds) EDBT/ICDT 2011 workshop

on array databases, Uppsala, Sweden, 25 March 2011, pp.

36–47.

Foster I, Ainsworth M, Allen B, et al. (2017) Computing just what

you need: online data analysis and reduction at extreme scales.

In: European conference on parallel processing, Santiago de

Compostela, Spain, 28–29 August 2017, pp. 3–19. Springer.

Foster I, Ainsworth M, Bessac J, et al. (2020) Online data analysis

and reduction: an important co-design motif for extreme-scale

computers. International Journal of High-Performance Com-

puting Applications (in press).

Foster I and Kesselman C (2006) Scaling system-level science:

scientific exploration and IT implications. Computer 39(11):

31–39.

Germaschewski K, Allen B, Dannert T, et al. (2020) Exascale

whole-device modeling of fusion devices: porting the GENE

gyrokinetic microturbulence code to GPU. Physics of Plasmas

(submitted).

Germaschewski K, Chang C, Dominski J, et al. (2019) Quantify-

ing and improving performance of the XGC code to prepare

for the exascale. APS 2019: BP10–081.

Godoy WF, Podhorszki N, Wang R, et al. (2020) ADIOS 2: the

adaptable input output system. A framework for high-

performance data management. SoftwareX 12: 100561.

Görler T, Lapillonne X, Brunner S, et al. (2011) The global ver-

sion of the gyrokinetic turbulence code GENE. Journal of

Computational Physics 230(18): 7053–7071.

Jain A, Ong SP, Chen W, et al. (2015) FireWorks: a dynamic

workflow system designed for high-throughput applications.

Concurrency and Computation: Practice and Experience

27(17): 5037–5059.

Jardin S (2004) A triangular finite element with first-derivative

continuity applied to fusion MHD applications. Journal of

Computational Physics 200(1): 133–152.

Jenko F, Dorland W, Kotschenreuther M, et al. (2000) Electron

temperature gradient driven turbulence. Physics of Plasmas

7(5): 1904–1910.

Khaziev R and Curreli D (2018) hPIC: a scalable electrostatic

particle-in-cell for plasma-material interactions. Computer

Physics Communications 229: 87–98.

Ku S, Chang C and Diamond P (2009) Full-f gyrokinetic particle

simulation of centrally heated global ITG turbulence from

magnetic axis to edge pedestal top in a realistic tokamak geo-

metry. Nuclear Fusion 49(11): 115021.

Ku S, Hager R, Chang C, et al. (2016) A new hybrid-Lagrangian

numerical scheme for gyrokinetic simulation of tokamak

edge plasma. Journal of Computational Physics 315:

467–475.

Liu Q, Logan J, Tian Y, et al. (2014) Hello ADIOS: the challenges

and lessons of developing leadership class I/O frameworks.

Concurrency and Computation: Practice and Experience

26(7): 1453–1473.

Mehta K, Allen B, Wolf M, et al. (2019) A codesign framework

for online data analysis and reduction. In: IEEE/ACM work-

flows in support of large-scale science, Denver, CO, 17

November 2019, pp. 11–20.

Meneghini O, Smith S, Lao L, et al. (2015) Integrated modeling

applications for tokamak experiments with OMFIT. Nuclear

Fusion 55(8): 083008.

Meneghini O, Smith S, Snyder P, et al. (2017) Self-consistent

core-pedestal transport simulations with neural network accel-

erated models. Nuclear Fusion 57(8): 086034.

Meneghini O, Snyder PB, Smith SP, et al. (2016) Integrated

fusion simulation with self-consistent core-pedestal coupling.

Physics of Plasmas 23(4): 042507.

Merlo G, Dominski J, Bhattacharjee A, et al. (2018) Cross-

verification of the global gyrokinetic codes GENE and XGC.

Physics of Plasmas 25(6): 062308.

Merlo G, Janhunen S, Jenko F, et al. (2020) First coupled GENE-

XGC microturbulence simulations. Physics of Plasmas 28(1):

012303.

Merzky A, Santcroos M, Turilli M, et al. (2015) RADICAL-Pilot:

scalable execution of heterogeneous and dynamic workloads

on supercomputers. CoRR, abs/1512.0819.

20 The International Journal of High Performance Computing Applications XX(X)

Moreland K, Sewell C, Usher W, et al. (2016) Vtk-m: accelerating

the visualization toolkit for massively threaded architectures.

IEEE computer graphics and applications 36(3): 48–58.

Park JM, Ferron JR, Holcomb CT, et al. (2018) Integrated model-

ing of high bn steady state scenario on DIII-D. Physics of

Plasmas 25(1): 012506.

Peterka T, Bard D, Bennett J, et al. (2019) ASCR workshop on in

situ data management: enabling scientific discovery from

diverse data sources. DOI: 10.2172/1493245.

Shende SS and Malony AD (2006) The Tau parallel performance

system. International Journal of High Performance Comput-

ing Applications 20(2): 287–311.

Staples G (2006) TORQUE resource manager. In: ACM/IEEE

conference on supercomputing, SC ‘06, p. 8-es. New York,

NY, USA: Association for Computing Machinery. DOI:10.

1145/1188455.1188464.

Tchoua R, Klasky S, Podhorszki N, et al. (2010) Collaborative

monitoring and analysis for simulation scientists, Chicago, IL,

17–21 May 2010, pp. 235–244. DOI: 10.1109/CTS.2010.

5478506.

Wan L, Mehta K, Klasky S, et al. (2019) Data management chal-

lenges of exascale scientific simulations: a case study with the

gyrokinetic toroidal code and ADIOS. In: Proceedings of the

international conference on computational methods, vol. 6,

Singapore, 9–13 July 2019, pp. 493–503.

Wang R, Tobar R, Dolensky M, et al. (2020) Processing full-scale

square kilometre array data on the summit supercomputer. In:

2020 SC20: international conference for high performance

computing, networking, storage and analysis (SC), Atlanta,

GA, USA, 9–19 November 2020, pp. 11–22. IEEE Computer

Society.

Wilde M, Hategan M, Wozniak JM, et al. (2011) Swift: a lan-

guage for distributed parallel scripting. Parallel Computing

37(9): 633–652.

Yoo AB, Jette MA and Grondona M (2003) SLURM: Simple

Linux utility for resource management. In: Feitelson D,

Rudolph L and Schwiegelshohn U (eds) Job Scheduling

Strategies for Parallel Processing. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 44–60.

Zhou S (1992) LSF: load sharing in large heterogeneous distrib-

uted systems. In: Workshop on cluster computing, vol. 136,

Orlando, FL, USA, April 1992, pp. 1–48.

Author biographies

Eric Suchyta earned his Ph.D. in Physics from the Ohio

State University in 2015 and currently holds a Computer

Scientist position at Oak Ridge National Laboratory,

where his research interests include workflows, code cou-

pling, and data management. He is a member of the ECP

Whole Device Modeling Application, leading framework

design, workflow orchestration, and data movement

efforts.

Scott Klasky is a distinguished scientist and group leader in

the Scientific Data Group. He is the leader of the ADIOS-

ECP project, which previously won an R&D 100 award in

2013. He is also the leader of the MGARD data reduction

project, and focuses on workflow automation, data reduc-

tion, data movement, code coupling, and in situ processing

of data.

Norbert Podhorszki is a senior research scientist in the

Scientific Data Group at Oak Ridge National Laboratory.

He is one of the key developers of ADIOS that won an

R&D100 award in 2013. His main research interest is in

creating I/O and staging solutions for in-situ processing of

data on leadership class computing systems.

Matthew Wolf is a Senior Computer Scientist in the Scien-

tific Data Group at Oak Ridge National Laboratory. His

research interests are in in situ and online workflow sys-

tems and data lifecycle management.

Abolaji Adesoji is a second-year PhD student at RPI’s Sci-

entific Computation Research Center and he is working on

the wdmapp external coupling project. His research interest

spans HPC software development, parallel programming

and in-situ ML data compression.

CS Chang is a Managing Principal Physicist at Princeton

Plasma Physics Laboratory and the head of the SciDAC

Partnership Center for High-fidelity Boundary Plasma

Simulation. He is also the Co-Head for Science in the ECP

WDMApp project. C.S. Chang is a Fellow of American

Physical Society.

Jong Choi is a scientist in the Scientific Data Group at Oak

Ridge National Laboratory. His research interests are in

scalable data management and analysis.

Philip E Davis is a software developer at the Rutgers Dis-

covery Informatics Institute at Rutgers University. His

development work focuses on data staging infrastructure

for scientific computing workflows.

Julien Dominski is a research physicist at the Princeton

Plasma Physics Laboratory. He received his Ph.D. from the

Swiss Plasma Center (EPFL), where he explored the influ-

ence of passing electrons on electrostatic turbulence in

tokamaks. At PPPL, he works on gyrokinetic codes and

their application, as a member of the XGC team.

Stéphane Ethier is a Principal Computational Scientist at

the Princeton Plasma Physics Laboratory (PPPL) and co-

head of the Advanced Computing Group. His work

focuses on high performance computing on large-scale

systems, particle-in-cell methods for magnetic fusion

research, GPU programming, data management, and other

related fields.

Suchyta et al. 21

Ian Foster is a Senior Scientist and Distinguished Fellow,

and director of the Data Science and Learning Division, at

Argonne National Laboratory, and the Arthur Holly Comp-

ton Distinguished Service Professor of Computer Science

at the University of Chicago.

Kai Germaschewski is an Associate Professor at the Uni-

versity of New Hampshire. His research interests are in

computational plasma physics, and specifically in effec-

tively using state of the art GPU-based supercomputers for

large-scale simulations.

Berk Geveci leads the Scientific Computing Team at Kit-

ware Inc. He is one of the leading developers of the Para-

View visualization application and the Visualization

Toolkit (VTK). His research interests include large scale

parallel computing, computational dynamics, finite ele-

ments and visualization algorithms.

Chris Harris is a Principal Engineer in the Scientific Com-

puting team at Kitware Inc. His work focuses on enabling

complex scientific workflows in a broad range of domains.

Kevin A Huck is a Research Associate and Computer Scien-

tist in the Oregon Advanced Computing Institute for Sci-

ence and Society (OACISS) at the University of Oregon.

His research interests include performance measurement,

analysis, and runtime adaptation.

Qing Liu is an Assistant Professor in the Department of

Electrical and Computer Engineering at NJIT and Joint

Faculty with Oak Ridge National Laboratory. His research

interests include high-performance computing, storage, and

networking.

Jeremy Logan is a Computer Scientist in the Workflow

Systems Group at Oak Ridge National Laboratory. His

research interests include Model Driven Generative Tech-

niques for HPC and Scientific Data Management. He is the

primary developer of the Skel toolkit.

Kshitij Mehta is a Computer Scientist in the Scientific

Data Group at Oak Ridge National Laboratory. He is

one of the lead developers of the Cheetah and Savanna

toolset. His research interests lie in workflow technolo-

gies for dynamically adaptive workflows for scientific

computing.

Gabriele Merlo earned his Ph.D. in Physics from the Ecole

Polytechnique Fédérale de Lausanne in 2016 and currently

is a Postdoctoral Fellow at the Oden Institute at the Uni-

versity of Texas at Austin. He is part of the GENE devel-

opment team.

Shirley V Moore is an Associate Professor of Computer

Science at the University of Texas at El Paso and a senior

member of the Association for Computing Machinery. She

was a Senior Computer Scientist at Oak Ridge National

Laboratory (ORNL) from 2016 to 2020 where she led

ORNL efforts on several Exascale Computing Project

(ECP) projects. Her research interests are in computer

architecture and performance analysis.

Todd Munson is a senior computational scientist at

Argonne National Laboratory, a senior scientist for the

Consortium for Advanced Science and Engineering at the

University of Chicago, and the Software Ecosystem and

Delivery Control Account Manager for the Exascale Com-

puting Project.

Manish Parashar is Distinguished Professor of Computer

Science at Rutgers University and the founding Director of

the Rutgers Discovery Informatics Institute (RDI2), whose

research interests are in the broad areas of Parallel and

Distributed Computing and Computational and Data-

Enabled Science and Engineering. Manish is the founding

chair of the IEEE Technical Consortium on High Perfor-

mance Computing (TCHPC), Editor-in-Chief of the IEEE

Transactions on Parallel and Distributed Systems, an

AAAS Fellow, an IEEE/IEEE Computer Society Fellow,

and an ACM Distinguished Scientist.

David Pugmire is a Senior Research Scientist in the Scien-

tific Data Group at the Oak Ridge National Laboratory. His

research interests are in scalable in situ visualization and

analysis of scientific data.

Mark S Shephard is the Samuel A. and Elisabeth C. John-

son, Jr. Professor of Engineering, and the Director of the

Scientific Computation Research Center at Rensselaer

Polytechnic Institute. He is a past President of the US

Association for Computational Mechanics and editor of

Engineering with Computers.

Cameron W Smith is a Senior Research Scientist at Rensse-

laer Polytechnic Institute’s Scientific Computation

Research Center with expertise in simulation automation,

parallel computation, load balancing, unstructured mesh-

ing, and heterogeneous architectures.

Pradeep Subedi is a Research Associate at the Rutgers

Discovery Informatics Institute at Rutgers University. His

research work focuses on machine learning techniques,

autonomic extreme scale data management, and supporting

scalable middleware for scientific workflows.

Lipeng Wan is a computer scientist and R&D staff member

of the Scientific Data Group in Computer Science and

22 The International Journal of High Performance Computing Applications XX(X)

Mathematics Division at Oak Ridge National Laboratory.

He received his Ph.D. in computer science from the Uni-

versity of Tennessee, Knoxville in 2016. His research inter-

ests include scientific data management, high-performance

computing and I/O, file systems and non-volatile storage

devices.

Ruonan Wang received his Ph.D. at the University of West-

ern Australia on data system design for the Square Kilo-

meter Array radio telescope. Since joining the Scientific

Data Group at the Oak Ridge National Laboratory, he has

been focusing on designing and optimizing production soft-

ware systems for data I/O, data staging, and network data

transfer, which target extremely large applications running

on the world’s top supercomputers.

Shuangxi Zhang received his Ph.D in plasma physics from

University of Science and Technology of China in 2013

then worked as a postdoc at Kyoto University in Japan and

the University of Strasbourg in France. Currently, he works

at Rensselaer Polytechnic Institute as the main developer of

the COUPLER. His research includes magnetically con-

fined plasma physics, gyrokinetic theoretical models, large

scale parallel simulations of magnetized plasmas based on

implementing Euler scheme, Semi-Lagrangian scheme and

Particle-In-Cell scheme over the gyrokinetic model.

Suchyta et al. 23

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

