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Fig. 1. Vials showing isoforms for the gene EGFR and data from The Cancer Genome Atlas.

Abstract— Alternative splicing is a process by which the same DNA sequence is used to assemble different proteins, called protein
isoforms. Alternative splicing works by selectively omitting some of the coding regions (exons) typically associated with a gene.
Detection of alternative splicing is difficult and uses a combination of advanced data acquisition methods and statistical inference.
Knowledge about the abundance of isoforms is important for understanding both normal processes and diseases and to eventually
improve treatment through targeted therapies. The data, however, is complex and current visualizations for isoforms are neither
perceptually efficient nor scalable. To remedy this, we developed Vials, a novel visual analysis tool that enables analysts to explore
the various datasets that scientists use to make judgments about isoforms: the abundance of reads associated with the coding regions
of the gene, evidence for junctions, i.e., edges connecting the coding regions, and predictions of isoform frequencies. Vials is scalable
as it allows for the simultaneous analysis of many samples in multiple groups. Our tool thus enables experts to (a) identify patterns
of isoform abundance in groups of samples and (b) evaluate the quality of the data. We demonstrate the value of our tool in case
studies using publicly available datasets.

Index Terms—Biology visualization, protein isoforms, mRNA-seq, directed acyclic graphs, multivariate networks.

1 INTRODUCTION

Modern genome/transcriptome sequencing methods like RNA se-
quencing (RNA-seq) enable detailed insights into how RNA is gen-
erated from DNA. During the process of transcription from DNA to
RNA certain regions (introns) are spliced out. The resulting mature
RNA is composed of the remaining regions, i.e., the exons, which are
also called the coding regions of a gene. This mRNA is then used as
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a blueprint for assembling amino acids into a protein, which in turn
carries out specific functions in the cell. During this process, exons
can be omitted or truncated, resulting in variations of the protein being
produced, as illustrated in Figure 2. The assembly of exons into var-
ious alternative mRNA sequences is called alternative splicing; these
alternative mRNA sequences are referred to as isoforms. Isoforms in-
crease the diversity of proteins that can be produced from genes, and
alternative splicing is a common biological process [21]. However,
the variation in abundance of certain isoforms can be associated with
diseases such as cancer [2, 8, 9].

While the process of alternative splicing has been known since the
1970s [5], large-scale and reliable detection of isoforms was elusive
until recent advances in sequencing techniques. The increasing use
of RNA-seq to measure gene expression (the abundance of specific
mRNA transcripts) has also made the detection of isoforms practi-
cal. Consequently, analysis of isoform abundance will increasingly
become part of the standard toolbox that researchers use to further our
understanding of fundamental biological processes, the underlying na-
ture of diseases such as cancer, and the targeted development of new
and better drugs.

In this paper we introduce Vials (VIsualizing ALternative Splicing),
our primary contribution, a novel visual analysis tool targeted at ana-
lyzing isoform data for large-scale RNA-seq experiments. We enable
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Fig. 2. The process of alternative splicing. Introns are spliced out and
exons can be omitted or truncated. The final product of this process is
a population of transcript isoforms. Note that only some of the possible
isoforms are shown. The lower part of the figure shows all possible
junctions as arrows given the three exons and their truncated variants.

analysts to identify isoform distributions across individual samples or
groups of samples and compare them between others. In addition, we
provide analysts with the means to accurately judge the quality of the
data, which is critical given the early development stages of the mea-
surement and analysis technology. Our secondary contribution is a
detailed data characterization and tasks analysis for the investigation
of isoforms. We translate the biological questions of our collaborators
at a major pharmaceutical company into general data analysis tasks. In
support of these goals, we contribute a novel method to visualize mul-
tivariate ordered graphs that emphasizes comparison between various
subsets of the data.

We validate Vials using three case studies conducted by our col-
laboration partners, who were able to quickly confirm known findings
and also discover potentially novel effects.

2 BIOLOGICAL BACKGROUND AND DATA PROPERTIES

The region of DNA associated with a gene consists of an alternating
succession of exons, the protein-coding parts of the sequence, and in-
trons, the non-coding parts of the sequence. Functional gene products
are created by first copying a region of DNA to produce messenger
RNA (mRNA) in a process called transcription. This mRNA is then
used as the template for assembling amino acids into functional gene
products such as proteins in a process called translation [19].

DNA is double-stranded, i.e., there are two strands of complemen-
tary sequences. The two strands are identified as the forward and re-
verse strands. Genes are encoded on both strands of the DNA. De-
pictions of the genome commonly show the forward strand from left
to right, which means that genes on the reverse strand have to be read
from right to left. Individual genes are also occasionally depicted from
left to right in reading direction, independent of the strand. Arrows are
typically used to indicate the reading direction for genes.

An important part of transcription is the removal of introns and the
joining of exons, a process collectively called splicing. Exons can be
omitted or truncated, which results in a variety of different products
derived from the same input sequence. It is believed that more than
80% of all genes are alternatively spliced and that this contributes sig-
nificantly to the diversity of the proteome [19].

Figure 2 shows how a DNA strand can be transcribed into alterna-
tive assemblies of exons, called isoforms. There are eight biologically
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Fig. 3. Reads from a sample can either be directly mapped to an exon
(exon reads) or span the junction between two exons (junction reads).
By piling up the reads and counting how many reads map to a spe-
cific base-pair, expression on a per-base-pair level can be determined.
By counting the reads spanning a specific junction, support for junc-
tions can be derived. Instead of per-base-pair expression levels, some
datasets provide average per-exon expression, as shown in exons B
and C at the bottom of the figure.

distinct types of alternative splicing events [28], yet, with the excep-
tion of retained introns, all of these types can be described in terms of
omitting or truncating exons. Note that Figure 2 shows only some of
the possible variations and resulting transcripts. For more details on
the underlying biology we refer to the review by Matlin et al. [19].

2.1 Genomic Data Acquisition and Data Types

Isoforms can be detected using various techniques, but the most versa-
tile and increasingly prevalent method is sequencing. Sequencing was
in the past primarily used to read the DNA sequence (the genome), but
advances in technology and cost reductions have made it feasible to
also capture and quantify the transcriptome [29], i.e., the RNA. RNA-
seq works by slicing the RNA in a sample into short sequences that can
then be read using sequencing machines. These reads are then aligned
to the genome using bioinformatics algorithms. By counting the reads
that match a specific sequence its expression level can be determined,
i.e., if many reads map to a part of the DNA, its expression is high.
Figure 3 shows examples of reads that can be directly aligned to exons
(in yellow, red, and green), as well as reads that span two exons, which
are called junction reads. Junctions are the points along which exons
are assembled and can be considered the “edges” between the exons,
which in turn are the “nodes”. In the example in Figure 3 there are
three junctions (between exons A and B, B and C, and A and C). Junc-
tions are detected when RNA fragments are found that contain the end
of one exon and the beginning of another exon (the junction reads in
Figure 3), suggesting that the two exons are joined in the fragment. By
counting these junction reads, scientists can measure how frequently
two exons are spliced together. In the example in Figure 3 there are
three junction reads connecting A and B and three reads connecting A
and C, but only two reads connecting B and C.

The lower part of Figure 3 illustrates expression levels on a per-
base-pair level, as shown in exon A, or on a per-exon level (exons B
and C). While all RNA-seq techniques provide per-base-pair expres-
sion, in many datasets this is summarized into per-exon expression
values (a single expression value for the whole exon) for reasons of
privacy and/or to reduce the data size.

Using this data, it is possible to infer the relative frequency of iso-
forms in a sample. Bioinformatics algorithms that align, quantify,
and infer isoform frequencies include MISO [10], TopHat [27], and
RSEM [16]. These algorithms typically provide read alignment to a
reference genome, calculate expression levels, and determine the num-
ber of junction reads. In addition, they provide estimates of how often
an exon is spliced into an isoform, as well as estimates for isoform
abundances.



In summary, alternative splicing data is made up of three types
of experimental data: (1) isoform abundances, capturing how much
of a specific isoform there is in a sample, (2) per-exon or per-base-
pair expression data, describing how much of a specific region of
the genome is expressed, and (3) junction support data, representing
how frequently two exons are spliced together.

In addition to these data types, there are two data sources indepen-
dent from experimental data: the reference genome, i.e., the sequence
of base-pairs that scientists agree upon as the “standard” genome for
humans, and reference information about exons and isoforms, i.e.,
which exons and isoforms are known to exist. These data sources are
usually taken from databases such as Ensembl1.

2.2 Metadata
The data described in the previous section is collected and analyzed on
a per-sample basis. Samples are taken from various sources, depend-
ing on the experimental design. Sometimes analysts want to compare
tumor tissue with normal tissue within the same organ, while other
times they are interested in different conditions, such as treatment ver-
sus no-treatment, or in investigating different phenotypes. These dis-
tinctions and other attributes (such as age, gender, etc.) are typically
captured in metadata, which is available in categorical or numerical
format and provides information about how the samples are related.

2.3 Data Model
The data sources used to analyze alternative splicing exhibit character-
istics of common data types. The isoform abundances correspond to
a table, with isoforms as rows, samples as columns, and quantitative
values describing the abundances as cells.

The data describing an isoform corresponds to a binary vector, were
the genetic sequence defines the order of values and the values define
whether a base-pair is part of an isoform or not. In practice, the data
consists of long ranges of included and excluded base-pairs. As every
isoform corresponds to a binary vector, all isoforms together form a
table where again the isoforms correspond to the rows.

The expression data is also based on the genetic sequence, but in
contrast to the binary vectors used for isoforms, it contains scalar val-
ues. For expression data, the rows correspond to the samples, which
often results in a large table. As previously mentioned, some data is
aggregated on a per-exon level, which we model as all base-pairs in a
region of the vector having the same values.

Finally, the junction information is best described as a multivari-
ate, ordered, directed acyclic graph G = (N,E), with nodes (N) repre-
senting all variants of exons that occur in all isoforms, and edges (E)
representing junctions between exons. For each edge, we also have a
vector containing the junction support for each sample. The lower part
of Figure 2 illustrates such a graph. The directionality of the edges is
given by the reading direction of the gene. Each isoform thus can be
described as a path through the graph; some isoforms share the same
nodes, while others have nodes that are not identical but cover a par-
tially overlapping region.

3 DOMAIN GOALS AND TASKS

Vials was developed in a user-centered design process over the course
of ten months involving the scientific data analysis team of a major
pharmaceutical company. Two of the authors of this paper are also
members of that team. The development of Vials was triggered by
their need to make sense of large amounts of alternative splicing data
and their frustration with state of the art tools.

Based on interviews with our collaborators we identified two types
of goals: finding biologically relevant insights in the data, and check-
ing the quality and correctness of the data to establish trust. In practice,
judging data quality is also an important prerequisite for exploring the
data to find insights.

Hereafter we assume that the biologist has already identified a gene
of interest. Interesting genes for a particular task can be found in
databases or can be the output of an algorithm. Such an algorithm
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could, e.g., report a deviating use of isoforms for the samples un-
der consideration. Our collaborators use an in-house bioinformatics
pipeline to identify interesting candidate genes. Given this precondi-
tion we identified the following domain goals:

G1: Explore differences between samples and groups One
of the biologically relevant observations our collaborators are inter-
ested in are differences between samples and groups of samples, e.g.,
to identify variations in isoform expression. This is interesting because
it could explain an effect observed in a disease phenotype or could
show the effect of differing treatments between groups. Differential
expression is judged in terms of magnitude (the size of the effect) and
consistency across members of a group.

G2: Discover Novel Isoforms As mentioned previously, data
about exons, junctions, and isoforms is retrieved from reference
databases. However, these databases do not contain all possible iso-
forms, as many have not yet been discovered. When analyzing data,
biologists want to confirm whether the data matches the reference in-
formation, or whether there are potentially new isoform candidates.

G3: Evaluate Isoforms The biologists want to judge the impact
and similarity of isoforms. When two isoforms differ by multiple ex-
ons, for example, they are more likely to have different functions than
two isoforms that are identical with the exception of a short truncation.

G4: Control Data Quality The quality control (QC) goal is, as
previously mentioned, an essential part of the regular exploratory pro-
cess, but can also be independent from actual data analysis. QC is im-
portant to identify mistakes made by the analysis algorithms or issues
with the data collection. An example for a QC process is to compare
whether overall isoform abundance correlates with mRNA expression.
For example, if one isoform is reported to be very common in a sam-
ple, but the exons of that isoform are not well expressed, it is likely
that the reported isoform abundance value is wrong. Other QC pro-
cesses include comparing the output of different algorithms (for proof-
reading purposes) and checking whether biological replicates behave
the same way (as expected), or show deviating behavior.

3.1 Tasks

From this set of domain goals we infer two groups of tasks: those that
are primarily concerned with the tabular experimental data (expres-
sion, junction support, isoform abundance; enumerated with T), and
those that are concerned with the composition of isoforms (C). In the
following, we describe these tasks and state the related goals.

For each of the three data types isoform abundance, exon expres-
sion, and junction support, we identify the same tasks for the tabular
experimental data (T).

T1: Judge the magnitude of a sample or group (e.g., is the isoform
highly expressed for a given sample?) [G1, G4]

T2: Compare samples and identify within-group variance and outliers
(e.g., is the junction support different between samples?, is the
junction support within a group of samples consistent?) [G1, G4]

T3: Compare groups, i.e., identify between-group variance (e.g., is
an exon expressed differently between the groups?) [G1, G4]

The tasks related to the composition of isoforms (C) bridge the
data types. The composition tasks are:
C1: Identify the exons/junction that are part of an isoform. [G2, G3]
C2: Identify the relationships between isoforms, e.g., find out

whether they include the same or similar exons. [G2, G3]
C3: Identify evidence for novel exons or isoforms that are not in the

reference data. [G2]
Finally, there is the supporting task of defining sample groupings,

either based on user knowledge or through data (GR).
As is evident from this list, comparing between groupings and ex-

ploring the connections of multiple data types are critical for this type
of analysis. We have designed Vials to address these tasks so that our
collaborators can answer their higher-level questions.

http://www.ensembl.org/


4 RELATED WORK

Our work is not only related to isoform and genome visualization
methods, but also to techniques of multivariate network visualization,
as a key part of the data is a multivariate graph. In the following we
discuss these two areas of related work.

4.1 Isoform visualization
The most commonly used visualization for isoforms involving both
junction support and exon reads are Sashimi plots [11], shown in Fig-
ure 4. Static sashimi plots can be generated as part of the MISO
pipeline [10], an interactive variant is part of IGV [11]. Sashimi plots
show both exon expression and junction support in the same plot.
Exon expression is plotted as an area chart, while the junctions are
represented as edges connecting the exons. The magnitude of junction
support is encoded using edge weights and labels. As is evident in
Figure 4, Sashimi plots suffer from multiple shortcomings. First, edge
weight is not a suitable visual encoding for the wide range of data
values that junction support can take. In the fourth row of Figure 4,
for example, we can see two edges connecting roughly the same re-
gion, one with a labeled value of 17, the other one with a value of 346,
roughly 20 times as much, but the difference in edge weight is barely
perceivable. Consequently, analysts have to rely almost exclusively on
labels when judging edge weights, defeating the purpose of visualiza-
tion. Second, Sashimi plots do not scale to more than a few isoforms.
The example in Figure 4 shows a gene with only three isoforms (indi-
cated by the blue bars below the Sashimi plots), yet, many occlusions
of edges are evident. This problem can be partially addressed by us-
ing interactive Sashimi plots, where isoforms can be selected. Third,
edges connecting base-pairs in close proximity are often not visible, as
there is not enough space to draw them. Fourth, comparison of junc-
tion support between samples is perceptually inefficient, as it requires
the comparison of values that can only be read from labels. Finally,
Sashimi plots are not well suited to visualize more than a handful of
samples. We designed Vials specifically to address the shortcomings
of Sashimi plots.

SpliceSeq [24] uses a similar visual metaphor but only shows data
about the junctions and high-level information on whether a genomic
region is coding or non-coding. SplicePlot [30] can produce Sashimi
plots, and can also aggregate multiple samples into a single Sashimi
plot, conveying the average expression and junction support. Splice-
Plot, however, does not convey information about the deviation from
the average in the aggregated groups. The GTEx Portal2 supplements
a Sashimi-plot like visualization of junctions with a list of all isoforms
and their abundances, resolving some of the Sashimi-plot shortcom-
ings. However, it does not facilitate comparison between samples.

SpliceGrapher [23], a static plotting tool, separates the visualization
of isoforms, reads and junctions, similar to Vials. However, SpliceG-

2http://www.gtexportal.org

Fig. 4. Sashimi plot published in Nature illustrating differences between
various analysis platforms [17]. The line width encodes edge attributes,
yet the differences between small and large values are difficult to per-
ceive. Also notice the overplotting, e.g., at the bottom right. Reprinted
with permission from Macmillan Publishers Ltd.

rapher is not equipped to make comparisons between multiple samples
or groups of samples.

SplicingViewer [18] visualizes splicing at a much lower level by
directly showing each read aligned to the genome and indicating junc-
tions as glyphs. SplicingViewer cannot visualize more than one sam-
ple at a time, making it unsuitable for comparison tasks.

A wide range of genome browsers and other tools show the exis-
tence and composition of isoforms as they are available in the refer-
ence databases (e.g., [7, 14]), but do not readily quantify the abun-
dance of isoforms or junctions. A common approach for visualizing
isoform abundances is to use simple plots, such as heat maps, but those
simple plots fail to account for exon expression and junction data.

4.2 Multivariate Graphs
As previously mentioned, our data can be understood as a graph
dataset where the exons are nodes and the junctions are edges. Rich
attributes are available for both the exons and the junctions, and thus
depicting this data is a multivariate graph visualization problem. We
focus here on multivariate graph visualization techniques and not on
the also relevant tabular data, as we use common representations for
the tabular datasets, but claim a generalizable technical contribution
for the multivariate graph visualization.

Multivariate graphs have received a lot of attention, as a recent
state of the art survey demonstrates [12]. In this survey, biological
data is identified as one of the main data sources for multivariate net-
works [13]. Partl et al. [22] identified four approaches to visualize
multivariate networks: on-node mapping, i.e., directly encoding the
data within the node or edge; small multiples, i.e., showing multiple
versions of the graph that are, e.g., color-coded by the attributes; sep-
arate linked views, i.e., separating the topology information from the
attributes into independent views, and adapting the graph layout to
create a hybrid topology and attribute visualization. For our design,
we chose to employ layout adaption to visualize the edge attributes
and small multiples for the node attributes. We did not use direct en-
coding, as it does not scale to the desired number of samples, and avoid
linked views, as they introduce a strong separation between attributes
and topology.

One example for layout adaptation related to our junction view are
parallel node-link bands [6]. Nodes are connected to an axis using
edges, where the axis represents a dimension, similar to a parallel co-
ordinates plot. The position of the edge-axis intersection encodes the
value of the node; multiple attributes can be shown using multiple
axes. Parallel node-link bands hence use position to encode the at-
tributes of the nodes, similar to our design for edge attributes.

Another example for layout adaptation is GraphDice [1], where
nodes are positioned solely based on their attributes, effectively re-
sulting in a scatterplot, while again using position to encode the data.
Pathline [20] adapts the layout of the graph by linearizing it. Next to
the nodes of the linearized graph the attributes are plotted as dot plots,
which is similar to our approach. Pathline, however, is limited to a
single attribute per node, and uses a different linearization approach.

5 VIALS DESIGN

Figure 1 shows the three different views in Vials. The topmost is the
junction view, which depicts the network of exons and junctions and
the junction reads for all samples. Below it is the isoform abundance
view, which shows the isoforms, the exons they include, and the pre-
dicted isoform abundance for each sample. At the bottom is the ex-
pression view, which displays the expression levels for all samples or
for groups of samples along the genomic coordinates.

5.1 Design Principles
Our design is guided by principles partially motivated by the domain
problem and partially based on visualization theory and experience.

First, we always use the most perceptually efficient visual encod-
ing available for all data. We prefer, for example, position on a com-
mon scale to encode data over size or color [3], whenever possible.
This differentiates Vials from other splicing visualization techniques,
such as Sashimi plots, which use edge width (size) to encode junction

http://www.gtexportal.org


(a)

(b)

Fig. 5. Isoforms and expression of three samples on two different
scales. (a) Scaled by original genome coordinates, including the introns.
(b) In intron-collapsed mode (the default), where introns are reduced to
a short, constant distance. The former enables a global overview of the
gene, while the latter makes the exon configurations and the expression
of the samples easier to read. The figures are clipped.

data. Hence, our design makes use of dot plots instead of, e.g., heat
maps.

Second, our design uses position to integrate information across all
views by using a shared genomic coordinate system. This means
that, for example, a specific exon is at the same horizontal position
across all views. We also employ a strong coordination of views
through linking and brushing.

Nevertheless, we decided to keep each data type in a separate
view. This choice was partially guided by insights gained from under-
standing our collaborator’s workflow. We observed that they investi-
gate one data type at a time by, for example, comparing data within
a data type, and only when they found something interesting do they
look for supporting evidence in other data types. Separate views also
allow us to address the tasks regarding the experimental data (T1-T3)
in a scalable way. Showing hundreds of samples, for example, is not
possible in an integrated view, like Sashimi plots.

5.2 Genomic Coordinates
The isoform abundance view, junction view, and expression view share
one horizontal scale based on the genomic sequence. As can be seen in
Figure 1, a reference “crosshair” line indicates the current genomic po-
sition across all views, and we periodically render genomic positions
and arrows indicating the reading direction to provide orientation.

The average length of a gene is between 10k and 15k base-pairs,
although the length varies significantly between genes, while exons
(the coding regions) make up only a small percentage of these [25].
As the most relevant data is associated with the exons, we introduce
an intron-collapse feature, shown in Figure 5. We break the genomic
scale in regions where no exons occur, yet preserve the ratio of exon
lengths, i.e., length comparison between two different exons remains
possible. On demand, introns can be shown at full length. This de-
sign was motivated by our collaborators, who sometimes need to see
the global structure of the gene, but often prefer more details for the
relevant coding parts.

By default, we follow conventions and show the forward strand of
the genome from left to right. However, we also allow users to re-
verse the reading direction. Our collaborators commented that doing
so makes it easier to read genes located on the reverse strand, which
would otherwise have to be read from right to left.

5.3 Isoform Abundance View
The isoform abundance view, shown in Figure 6, visualizes the binary
matrix of isoforms, which is used to understand the composition and
similarity of isoforms (tasks C1 and C2), and the isoform abundances

Fig. 6. The isoform abundance view shows all isoforms in a dataset as
a combination of exons (left) and the abundance values of the samples
for each isoform as box and dot plots on the right. The user can sort
isoforms by the average abundance value (as shown in this plot), or by
inclusion of an exon (isoforms that include a specified exon are moved
to the top). A line connects all dots associated with a selected sample.
The figure is clipped.

Fig. 7. Group comparison in the isoform abundance view. The samples
are colored based on a grouping (orange, blue and yellow), gray sam-
ples are not grouped. For the first isoform, we show a detailed view:
each group is shown in a separate row to the right of the main view.

used for quantification and comparison (tasks T1-T3). The exons that
are part of an isoform are shown as dark blocks. Light-gray columns
indicate the regions where at least one isoform expresses an exon. This
allows our collaborators to quickly judge whether an exon is truncated,
as can be seen in the first column of Figure 6.

Isoforms can be highlighted and selected, and these interactions
are propagated to the other views. The isoforms can be interactively
ranked, either by the average abundance of all samples, to see the most
important isoforms on top, or by inclusion of an exon, to quickly see
which isoform contains an exon of interest. The example in Figure 6 is
ranked by the mean isoform abundance as indicated by the dark header
bar. Sorting by exon uses a three-tier hierarchy. The first criterion is
binary: isoforms containing the exon are ranked above those where it
is absent. Ties are then broken by exon start position (exons that start
earlier are put on top), and remaining ties are broken by coverage, i.e.,
larger, less truncated exons are ranked on top.

The abundance of each isoform for the samples is shown using box
plots and dot plots to the right of the exons. We initially used only
dot plots, however, while our collaborators were excited about the dot
plots for smaller datasets, they mentioned that distributions are harder
to judge for larger datasets and commented that box plots would be
more intuitive for them. Hence, we added a box plot to the background
of the dot plots and allowed them to switch off the dots (except for
outliers) for larger datasets. To improve scalability of the dot plots we
use jitter to spread the dots and transparency to reduce overplotting.

The dots can be brushed, which results in the sample being high-
lighted across all views. We chose to use dot plots over a heat map
matrix view due to its more efficient visual encoding (position vs.
color) and its superior scalability. The downside of dot plots—that
patterns do not emerge across columns—can be alleviated using in-
teractive brushing. Another alternative to the dot plots are parallel
coordinates, however, given the limited available space, we found that
parallel coordinates lead to significant clutter. Nevertheless, to show
all values of a selected sample, a polyline is drawn across isoforms
highlighting the samples value in each isoform (see Figure 6).

When groups are defined, the dots are color-coded using colors as-
sociated with the groups across all views, as shown in Figure 7. Our
collaborators noted, however, that for some use cases group compari-
son for many dots with different colors can be difficult due to overlaps.
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Fig. 8. Expression view showing one group on top and two individual
samples in tracks. The first two tracks are selected and color-coded,
which is propagated to the other views. The grouped track shows the
average expression of its members plus/minus one standard deviation.

To enable accurate group comparisons using position on a common
scale, the analyst can reveal a detail view: for a selected isoform, we
show each group in a separate row to the right of the primary abun-
dance plot (see Figure 7).

5.4 Expression View
The expression view, shown in Figure 8, shows the measured abun-
dance of mRNA along the genomic coordinates for samples and
groups of samples in tracks. The expression is encoded as an area
chart along the genomic coordinates, a common encoding for expres-
sion in genomic data.

The expression view also serves as the main point of interaction
with samples and groups. Hovering over a sample highlights this sam-
ple across other views for quick inspection. Selecting a sample or a
group highlights it in color (green group and orange individual sample
in Figure 8), both in the expression view and in all other views.

The expression view enables users to define groups of samples
(task GR) to allow comparison between aggregated expression values.
Groups can be specified manually by selecting samples and pressing
the “group” button, or based on meta-data associated with each sam-
ple. The tracks belonging to a group can be collapsed, as can be seen
in the first group in Figure 8. The collapsed view shows an area chart
capturing the values of one standard deviation around the mean for
each entry.

As previously discussed, expression data is available either on a
per-base-pair or a per-exon basis. Figure 8 shows per-base-pair data,
while Figure 1 shows per-exon expression. For per-base-pair data, the
resolution of the data far exceeds what can be sensibly shown on the
screen, hence down-sampling of the data is prudent. For details on the
data processing see the supplementary material.

5.5 Junction View
The visualization of junction support in multiple samples poses the
most challenges regarding efficient visualization, as discussed in Sec-
tion 4. A junction connects the end of one exon and the start of a fol-
lowing exon. As shown in Figure 2, the junction data for one sample
can be modeled as a weighted, directed, acyclic graph. An edge in this
graph corresponds to a junction and its weight describes the junction
support. Furthermore, the graph has a defined ordering of nodes: the
exons only connect to other exons that are upstream along the genome.
As we consider multiple samples, the graph is multivariate: each edge

B C
E1 S1E2 E3 S2

E1-S1 E2-S1 E2-S2 E3-S2

A

Fig. 10. Concept of the junction view. Nodes (exons) are plotted along
a horizontal axis, the start (S1, S2) and end (E1-E3) of a node are indi-
cated by triangles on top of the exons. For each end of an exon (e.g., the
variants of exon A terminate at E1 and E2) we draw a polygon. Within
that polygon, we display a dot-plot for each edge originating from that
exon. For the exon associated with position E2, for example, there are
two connections (to S1 and S2), which are indicated by explicit edges
to the start of the exons. For cases where the connected exons imme-
diately follow each other on the genomic sequence, we use a polygon
connecting both exons directly (see E3-S2). The dot plots visualize the
edge attributes, i.e., the support of the junctions.

has different weights for each sample. The objective of our visual-
ization is to compare junction support (weights) between individual
samples and between groups of samples. This is interesting to our
collaborators on both a global scale, e.g., to identify the most com-
mon junctions (tasks T1-T3) for certain samples, and for individual
isoforms, to, e.g., judge whether the junction information corroborates
the isoform predictions (task C3).

We considered multiple alternative designs, including those illus-
trated in Figure 9 (see the supplementary material for an enlarged ver-
sion of the figure). Figure 9(a) shows the support of a junction in a
matrix between two samples. We abandoned this design as it is only
suitable for up to two samples and is not space efficient. The design
in Figure 9(b) uses lines to show edges between the exons and edge
width to encode the strength of the edges. This design is similar to
Sashimi plots, yet resolves some of the cluttering issues. However,
like Sashimi plots, it is limited to a single sample and uses edge width,
an inefficient visual encoding. Figure 9(c) uses a matrix to identify the
edge and bars to encode the edge weight, in a design similar to Up-
Set [15]. We abandoned this design due to a lack of scalability with
respect to the number of samples. Finally, Figure 9(d) shows a vari-
ation of the bar approach using a heat map instead of bars, which is
more scalable than the bars but uses an inferior visual encoding (satu-
ration vs. position).

We settled on the design illustrated in Figure 10 due to its supe-
rior scalability with respect to the number of edges and samples and
its direct connection of the nodes, the links, and their attributes. Hor-
izontally, we plot exons along the gene coordinate axis (A, B, C in
Figure 10). As variants of exons can overlap, we render each exon

(a) Matrix (b) Lines (c) Bars (d) Heat Map

Fig. 9. Selected design alternatives for the junction view. The figures are reproduced in a larger format in the supplemental material. (a) Two
sequences are juxtaposed and a matrix view visualizes the strengths of the connections. (b) Lines directly show the edges, where the edge weight
encodes the connection strength. (c) Bars show the weight of the edges, the source and target of an edge are identified using a matrix to the left.
Each bar column is associated with a single sample. (d) A heat map’s rows are placed next to samples, the columns represent edges that are
traced to the exons using connection lines.



Fig. 11. An example of the junction view for the gene TP53. The
exon start/end triangles are detached from the exon representation and
spaced out to avoid overplotting and create visual elements suitable for
interaction. Here the end of the first exon (the reading direction, indi-
cated by the arrows, is right to left, as the gene is on the reverse strand)
is selected and all unrelated junctions are faded out. We can see that
this exon has edges to three other exon variants. The cursor displays
the genomic location.

variant transparently, which makes the common variants stand out.
The start and end of an exon variant are represented by triangles

placed at their genomic location, pointing towards their exons. The
end of an exon, shown as a gray triangle, corresponds to the start of
an edge (i.e., the junction); the beginning of another exon, shown as a
white triangle, corresponds to the end of an edge.

We draw a box for each end of an exon variant and connect it with
a polygon. As multiple edges can originate from each variant, we
plot the edge weights for each edge in columns. The columns are
linked with another exon’s start site (see, e.g., the link from E1 to S1
in Figure 10).

To reduce clutter resulting from too many lines, we make use of
a property of the data our collaborators observed: The majority of
junctions in transcripts are only between adjacent exons. We simplify
the visualization of these junctions by extending the polygon to bridge
the gap between the adjacent exons (see E3-S2 in Figure 10).

To represent the edge weights (the junction support data) we again
use dot and box plots, as we do in the isoform abundance view, making
the design consistent and perceptually efficient.

Due to exon truncation, it is common that variants of exons ter-
minate at genomic positions that are very close to each other, which
would cause many of the triangles marking the start and end sites over-
lap. To counteract this, we detach the triangles from the exon represen-
tations and space them out so that they don’t overlap. We then connect
them with their original genomic location (see Figure 11), similar to
the approach taken in Variant View [4]. This not only results in a bet-
ter overview of exon start and end sites but also introduces visual ele-
ments (the triangles) that can be used for interaction. By hovering over
a triangle, all unrelated edges are faded out, as shown in Figure 11.

Drilling Down into the Junction View While the junction view is
well suited to address tasks C2 and C3 (identify relationships between
isoforms, identify novel exons/isoforms), it can become dense when a
dataset with many isoforms and many exons is visualized. To better
support tasks T1, T2, T3 and C1 and reduce clutter we allow analysts
to interactively specify a focus isoform and fade out the edges not
associated with this isoform. As there is only a single edge connecting
two exons when an isoform is selected, we also replace the polygon
connecting the box with a direct link to the dot plot column.

Additional information in the junction view can be revealed on de-
mand. The example in Figure 12(a) shows multiple box plots for each
edge; the data is divided by a grouping of samples, which is also indi-
cated by color, thus enabling the tasks of judging and comparing the
junction support data of groups (T1-T3).

Alternatively, we can expand the dot plots showing the edge weights
into a scatterplot with an animated transition. In this scatterplot, the
horizontal position of the edge weights is driven by the order of the

a)

b)

(p4)
(p5)

selected isoform

Fig. 12. Edge attribute visualization showing a novel observation in the
gene SRSF7. Only the edges for the first isoform are shown. Edge
attributes are colored by groups (LAML and GBM). (a) Box plots are
drawn for each group. (b) The dot plots are expanded to a scatterplot
and the leftmost edge is selected, which defines the horizontal position
of the dots. In this edge, the dots are spaced equally and ordered by
their attribute value. The order is applied to all edges, which reveals
correlations to the selected edge. The edge attributes for exons where
no alternative splicing occurs correlate well with the leftmost edge, yet
the second edge from the right shows differential behavior. Patterns p4
and p5 are explained in a case study description (Section 6).

values of one selected edge, for example, the rightmost edge in Fig-
ure 12(b). We order the dots horizontally by their value (smallest value
on the left, largest value on the right), resulting in the characteristic
curve that all dots follow exactly. The horizontal position of the sam-
ples of the selected edge is propagated to all other edges, thus showing
their correlation to the selected junction. In Figure 12(b), for example,
we see a characteristic divide between two groups at the edge labeled
p5. This feature is particularly useful to address task T2, i.e., to iden-
tify variance.

6 CASE STUDIES

In this section we report on two case studies that demonstrate Vials’
fitness for use. In addition to the two case studies described here, we
also report on a third case study—how Vials can be used to under-
stand alternative splicing in different tissues—in the supplementary
material.

These case studies were chosen to demonstrate the various tasks de-
scribed in Section 3. They illustrate how Vials can be used to confirm
expected effects in the data and to discover novel insights. All datasets
used here are available on the Vials website3.

While feedback was elicited from multiple team members, the case
studies reported on here were conducted by the domain experts that
are also co-authors of this paper.

6.1 Alternative Splicing in Cancer Types
Our collaborators use publicly available data from The Cancer
Genome Atlas (TCGA) [24] to study how cancer types differ with re-
spect to common isoforms and exons. The TCGA project collects,
publishes, and analyzes all kinds of genetic and clinical data from hun-
dreds of patients who suffer from one of more than 20 different types
of cancer.

In this case study, the experts chose to compare variants of the
SRSF7 gene using samples of a brain cancer (glioblastoma, GBM, 100
samples) and a form of leukemia (acute myeloid leukemia, LAML,
167 samples), which corresponds to Goal G1—exploring differences
between samples and groups. The gene SRSF7 regulates alterna-
tive splicing at a variety of targets genome-wide, while the gene it-
self is also regulated by alternative splicing. They chose to inves-
tigate SRSF7 because exon 4 shows large differences in how often

3http://vcglab.org/vials
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average expression for exon 4

exon 4 exon 8

(p1) (p2)

(p3)

Fig. 13. Alternative splicing of the gene SRSF7. Exon 4 is alternatively spliced, i.e., only exists in the first isoform. The 100 GBM (orange) and
167 LAML (blue) samples are grouped. Notice the difference in isoform abundance: the first isoform is more common in LAML, while the second
isoform is more common in GBM. The expression of exon 4 is low in both groups, yet notably lower in GBM. The junction view shows that junction
support for both the edge leading to and from the alternatively spliced exon is low, but higher in LAML (blue).

it is “used” in LAML and GBM. Because differences in usage are
derived from measurements of both exon expression levels and data
about junctions across the two diseases, this gene is a good analysis
target for the described tasks (see Section 3).

Figure 13 shows SRSF7 with GBM samples highlighted in orange
and LAML samples highlighted in blue. The TCGA data provides
expression data as an average for every exon, as is evident from the
constant blocks in the expression view in Figure 13. The expression
data in Figure 13 is aggregated into the two disease groups LAML
and GBM. When exploring this data, the domain expert noted that
there is roughly equivalent expression of the exons that are not al-
ternatively spliced between the two groups (e.g., exons 3,5,6,7). In
contrast, the alternatively spliced exon 4 shows very low expression
in GBM, but some expression in LAML (task T3 applied to the ex-
pression data). Consistent with this, our collaborators observed in the
junction view (top), that there is greater support for the junction join-
ing exon 3 to exon 4 in LAML (blue) than GBM (orange) (Fig. 13,
pattern p1; task T3 applied to junction support). On the other hand,
GBM samples show more support for the splice junction that skips
exon 4 (higher orange values in pattern p2). This confirms that both
exon abundance and junction use support a difference in exon 4 splic-
ing between LAML and GBM. Additional evidence is visible in the
isoform abundance view for the first isoform (pattern p3). This iso-
form is characterized by the inclusion of exon 4 (task T3 applied to
isoform abundance, combined with tasks C1 and C2). As expected
from exon and junction data, this isoform is more abundant in LAML
samples than in GBM (the blue dots show larger values than the orange
dots in p3).

Potential Novel Isoform In addition to these differences, exon 8
of SRSF7 in the TCGA data is known to have weak but statistically
significant alternative splicing [24]. While the support for differences
in expression of this exon between GBM and LAML is small, explor-
ing the junctions associated with exon 8 lead our collaborators to a
new hypothesis regarding a yet unknown exon variant. Specifically,
in ranking samples by support for the exon 8 – exon 9 junction (p4 in
Figure 12), they observed that levels of non-alternatively-spliced junc-
tions are generally highly correlated with this junction in both cancer
types (both orange and blue samples show approximately equivalent
correlation in the boxed scatterplots in Figure 12(b)). In contrast, two
visually distinct populations emerge in the exon 2 – exon 3 junction

(p5). Specifically, LAML samples (blue) show a greater and appar-
ently linear relationship with the exon 8 – exon 9 junction, while GBM
samples (orange) display lower exon 2 – exon 3 junction use propor-
tional to the exon 8 – exon 9 junction in the starred scatterplot. One
potential explanation for this observation is an alternative transcrip-
tion start site which is absent from the gene reference database, and
which does not use exons 1 or 2, leading to an observation of the type
of Goal G2—discover novel isoforms. This hypothetical alternative
starting exon would be connected with a junction to exon 3.

6.2 Quality Control

While exploring the data, our collaborators were continuously looking
for issues of data quality (goal G4). They eventually found a striking
case of missing and wrong data in the gene EGFR in the Bodymap4

dataset. Figure 14 shows a case where the white blood cell sample,
highlighted in red in Figure 14(a), shows strongly deviating behavior
from other samples in the isoform abundance view. Initially intrigued,
our collaborators quickly identified that this is a data quality issue, as
there is no expression data available for the white blood cell sample,
as is evident when inspecting the data in the expression view, shown
in Figure 14(b). Similarly, there is no junction support for this sample,
indicating that the reported isoform abundances are an artifact of the
processing pipeline. While this is an extreme case of a data quality
problem, it would not be immediately apparent when only the isoform
abundances are investigated.

7 DISCUSSION

Our collaborators noted that Vials is an ideal companion to the many
tools that compute abundances of exons and isoforms, as it allows
them to “drill down” from the isoform-level differences into the spe-
cific junction data that determine the identity and abundance of each
transcript isoform. They were excited that Vials provides a mecha-
nism for both visualizing abundance of each isoform and comparing
isoforms at the level of exon abundance and junction use, directly from
primary data. They specifically highlighted the importance of analyz-
ing many and grouped samples, a feature competing methods lack and
which they identified as their primary limitation.

4http://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-513/
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(a) isoform abundance for white blood cell

(b) read abundance for white blood cell

(partial view)

Fig. 14. Example for control of data quality in EGFR using Bodymap.
The white blood cell sample can be easily spotted as outlier with respect
to isoform abundance and read abundance.

Regarding learnability, both, the group of people more closely in-
volved with the development, but also others on the team commented
that they found the tool generally straight-forward to use, with the
junction view being harder to understand than the other views of Vials.
However, after they became familiar with the representation, they re-
ported to be very satisfied with its expressiveness.

While we believe that Vials is an efficient and useful alternative
splicing visualization technique it has some limitations. Compared to
Sashimi plot-like approaches, where all the information related to one
sample is in a single place, it is more difficult in Vials to see all the
characteristics of a single sample, as they are distributed over multi-
ple views. However, Sashimi plots and Vials have different use cases:
Vials is designed as an exploratory data analysis tool for the visual-
ization of many samples, whereas Sashimi plots are better suited for
visualization of individual samples.

Lessons Learned The iterations on this project taught us some
interesting lessons about working with genomic data. First, we discov-
ered that most data we dealt with is complex, i.e., it does not fit easily
into a simple conceptual model. For example, early in the project we
expected an isoform to be a well-defined combination of a set of exons,
and we expected isoforms to differ only in terms of which of these ex-
ons they use. In reality, however, exon start and end-sites can vary by
“a couple of base-pairs”, which meant that we had to deal with many
more variants of exons than we initially expected. This observation
triggered the development of the flags indicating start and end sites of
exons.

Another insight is that there are many competing data formats for
representing biological data, which necessitates a highly flexible pre-
processing pipeline. These different data formats sometimes even re-
quire that the visual representations are flexible. For example, the ex-
pression view in Vials can display per-base-pair reads and per-exon
reads using the same visual encoding.

Generalization While the topic of visualizing alternative splicing
is very important, it is also highly specialized, and consequently the
combination of views used in Vials is also specialized. However, we
believe that individual components of Vials translate well to other do-
mains and datasets. The most interesting example is the junction view,
which visualizes a highly multivariate graph. Similar data characteris-
tics can be found, for example, in time-series data, where potentially
overlapping events correspond to the nodes (exons) in the graph, and
information about these events (e.g., attributes of attendees) could be
visualized using the dot plots, or other visual representations.

Scalability Vials scales to the vast majority of genes, as most
genes have fewer than 10 exons and the vast majority of genes have 20
exons or less [25]. Yet there are outliers—the largest known human
gene (TTN) has more than 300 exons. We consider about 30 junctions

to be the limit up to which Vials can be used without restrictions. For
more than 30 junctions, scrolling becomes necessary.

With respect to the number of samples, Vials is very scalable. We
demonstrate a case study with 276 samples which is considered a large
study of mRNA-seq data by current standards, which results in no
complications for the isoform or junction view. To handle larger num-
bers of samples, we will not plot individual data points, but instead use
the box plots as aggregates. For more than about 20 samples, the ex-
pression view can require a lot of scrolling. This, however, can easily
be remedied by grouping the samples.

8 IMPLEMENTATION

Vials is a web-based, open source visualization with a D3/JavaScript
front-end and a Python back-end that enables sophisticated computa-
tion and data management. Our prototype is based on the Caleydo
Web framework5. The Python server component runs in a Vagrant vir-
tual box and is therefore separated from the rest of the machine it runs
on, thus easing deployment on different platforms. On the client side
the framework uses require.js to modularize its components. An event
handling mechanism enables sophisticated view coordination.

A client-only prototype that includes the datasets used for the fig-
ures and case studies in this paper, and links to the source code of vials
are available at http://vcglab.org/vials/.

9 CONCLUSION AND FUTURE WORK

Vials is the first visualization technique that allows analysts to explore
isoforms and their properties for a large number of samples and to flex-
ibly compare groups of samples. It is also distinct from prior work as it
emphasizes the use of perceptually efficient visual encodings. Vials in-
tegrates all information needed for isoform analysis including isoform
abundance data, per-exon/per-base-pair expression data, and junction
support data. It provides an overview of hundreds of samples but also
enables experts to drill down into the data associated with individual
samples.

We have shown in two case studies that Vials is fit for use in real-
world scenarios. For a more efficient workflow of our collaborators,
we plan to integrate Vials with their current tools, which will allow
them to easily and interactively explore the isoforms of genes or exons
reported as interesting by their bioinformatics pipelines.

While Vials as a whole is a specialized technique, we believe that its
individual views, principles, and the lessons we have learned translate
to other datasets and domains. For example, we plan to generalize the
junction view to work with similar multivariate graph datasets.

In the future, we plan on integrating Vials with additional data types
and visualizations. For example, it would be desirable to see how
mRNA-seq data is correlated with pathways, mutation data, and/or
copy number variation data. Similarly, it would be valuable to see
clinical data, such as survival plots, in the context of groupings derived
from isoform abundances [26].
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members of the SDA team for their expertise and feedback. This work
was supported in part by Novartis Institutes for BioMedical Research,
the Austrian Science Fund (J 3437-N15), the Air Force Research Lab-
oratory and DARPA grant FA8750-12-C-0300, and the US National
Institutes of Health (U01 CA198935)

REFERENCES

[1] A. Bezerianos, F. Chevalier, P. Dragicevic, N. Elmqvist, and J. D. Fekete.
GraphDice: A System for Exploring Multivariate Social Networks. Com-
puter Graphics Forum (EuroVis ’10), 29(3):863–872, 2010.
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