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Abstract—As heterogeneous data from different sources are being increasingly linked, it becomes difficult for users to understand

how the data are connected, to identify what means are suitable to analyze a given data set, or to find out how to proceed for a given

analysis task. We target this challenge with a new model-driven design process that effectively codesigns aspects of data, view,

analytics, and tasks. We achieve this by using the workflow of the analysis task as a trajectory through data, interactive views, and

analytical processes. The benefits for the analysis session go well beyond the pure selection of appropriate data sets and range from

providing orientation or even guidance along a preferred analysis path to a potential overall speedup, allowing data to be fetched ahead

of time. We illustrate the design process for a biomedical use case that aims at determining a treatment plan for cancer patients from

the visual analysis of a large, heterogeneous clinical data pool. As an example for how to apply the comprehensive design approach,

we present Stack’n’flip, a sample implementation which tightly integrates visualizations of the actual data with a map of available data

sets, views, and tasks, thus capturing and communicating the analytical workflow through the required data sets.

Index Terms—Visual analytics, analysis guidance, model-driven design, multiple data sets.
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1 INTRODUCTION AND RELATED WORK

THE advantages and challenges of multiple, heteroge-
neous data sets are widely recognized in the field of

Visual Analytics. Thomas and Cook recommend the
creation of “methods to synthesize information of different
types and from different sources into a unified data
representation” [1, p. 11]. Such a unified representation
can be envisioned as a heterogeneous information landscape,
in which information foraging and sense-making take place.
Like a person exploring an unknown territory in the real
world, a user navigating the high-dimensional, multifaceted
and overwhelmingly large, combined data space of multi-
ple, heterogeneous data sets must be provided with some
means of orientation. This challenge has been described in
the context of information retrieval as early as 1993 [2]. This
publication also coined the notion of information landscapes
and identified different strategies commonly used to gather
information within them—e.g., exploring the data in an
undirected fashion or following a concrete plan for finding
the desired information. In this paper, we take the next step
towards assisting these analytical strategies not only by
means of orientation within the data, but also within the

large and diverse set of available analysis, methods, and
visualization techniques.

In this context, data analysis can be aided by providing
two different levels of analytical support:

. Orientation that communicates the current position
within the information landscape, the path of analysis
steps that led there (history), and possible directions
for further investigation (e.g., related data sets).

. Guidance that suggests concrete analysis steps to be
taken in order to get from an analysis hypothesis to
an analysis result.

The contribution of this paper is a model-driven approach
to achieve these two levels of analytical support in two
steps: First, a model in the sense of the aforementioned
unified representation is constructed via an authoring
process. This model goes beyond the sole definition of the
information landscape, as it also contains details on suitable
visualization and computation methods to access the data
sets. In a second step, this model is utilized to provide
orientation by means of making the model explicit to the
user, and to provide step-by-step guidance by inferring
possible paths within the modeled analysis setup, which
will lead the user to a desired analysis result.

Several ways of providing such orientation and guidance
were described in the field of visualization. On a conceptual
level, the literature offers two prevalent strategies. The most
common strategy is the data-driven, bottom-up strategy,
which gathers data and distills it into navigational cues. For
example, the VisSheet system generates a number of pre-
views for a range of possible visualization parameter
changes and presents them to the user to choose from [3].
Another example is the approach of HARVEST’s behavior-
driven visualization recommendation which analyzes the
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user’s analytic activity [4]. When employing the concept of
Social Navigation user data, but crowdsources it from multi-
ple users and displays it as usage statistics indicating
popular or neglected user choices [5]. Similar data-driven
techniques can be employed on a higher level as well, as it is
done by the VisComplete system which mines a database of
existing visualization pipelines to aid the user in construct-
ing new ones by suggesting possible completions [6].

An approach used more rarely than the data-driven
strategy is the workflow-driven, top-down strategy, which
derives navigational assistance by instantiating a prede-
fined, abstract best-practice solution with concrete visual
and computational techniques. One example is the Systema-
tic-Yet-Flexible system, which gives a step-by-step guidance
along a high-level workflow, while leaving the choice of
concrete techniques that achieve the higher level objectives
to the user [7].

The approach presented in this paper falls into this
second category, but has a much larger scope: besides the
actual workflow, it also utilizes the aforementioned model
of the analysis setup, which includes the available data sets
and their interrelations, the available algorithmic and visual
methods and packages, as well as their applicability to
achieve individual steps of the workflow. As a result of
making this additional information available, it is possible
to automatically determine suitable analytical techniques
and subsequently use this information to provide naviga-
tional cues on a much more specific, lower level along a
given analysis path. This proves especially useful in
interactive systems that exhibit a large number of possible
continuations at any given point—so that the decision
which functionality to use on which part of the data and in
which order is particularly challenging.

Our concept of a model-driven design for visual analysis
support draws upon first ideas from our earlier position
paper [8].

2 CONCEPTUAL FOUNDATIONS

Large information landscapes with multiple, heterogeneous
data sets and numerous visual and computational interfaces
to access them require means of support to ensure their
timely and accurate analysis. Providing such user support is
not a trivial task, as the degree of support required by the
user may vary during the analysis session—the user may
need concrete guidance during one part of the analysis
session and only means for orientation during other parts.
To realize such a smooth back and forth between these two
levels of support, a visual analysis system must have
considerable knowledge about the available data sets, the
goals of its user, as well as its analytical capabilities. Our
approach encapsulates these aspects in three models:

. a domain-independent model of the setup in which
the interactive visual analysis takes place—describing
the data sets, the visual and computational interfaces
to the data, and the analytical operations that can be
performed with them,

. a model of the domain that captures what can be
done with a given setup in the context of a specific
domain—describing the numerous domain-specific
tasks and relating them to the data sets and
analytical operations of a given setup model,

. and a model of the analysis session that lists what has
to be done to pursue a given analysis goal—describing
the analysis workflow as a sequence of domain-
specific tasks from a given domain model.

The knowledge specified by these models requires an
authoring phase in which the models are put together. It is
obvious that the overhead of such an elaborate modeling
phase is not justified for straightforward setups with a
manageable complexity. However, with increasingly com-
plex models, the benefits soon outweigh the initial modeling
costs. This is especially true for highly repetitive analysis
sequences, which have to be modeled only once and can then
be reused over and over again. For such routine tasks, the
guidance ensures that every repetition is done with the same
care as the very first analysis and without forgetting a crucial
intermediate step. A guided analysis thus provides a high
degree of reproducibility and traceability, which makes most
sense for application fields in which a faulty analysis may
lead to dire situations, such as the diagnosis of patients or the
analysis of safety hazards in airplane inspection. Never-
theless, if the user wants to deviate from the workflow of a
guided analysis to freely roam the information landscape in a
more explorative, unplanned fashion, he can do so at any
point, resulting in a fall back from guidance to orientation
support. Transitioning back from such an exploratory side
step onto the planned analysis path means that guidance can
then continue with step-by-step instructions again.

The setup model is authored once and needs to be adapted
or extended only when new data sets or tools become
available. With this underlying, domain-independent model,
different domain models can be associated, as different
application domains may use the same setup to carry out the
analysis. This can be frequently observed, e.g., in the field of
life sciences, where a geneticist and a biochemist may use the
same data sources and interfaces, but perform completely
different tasks. In the last step, a concrete analysis workflow
is formulated, which is then tailored to the availability of data
and analysis methods for a given case, by pruning tasks that
cannot be performed. This yields a streamlined analysis
workflow, which contains only those analysis paths that can
be realized with the given data and tools.

The next subsection outlines the overall authoring
process together with the different roles involved in each
individual authoring step.

2.1 Overall Authoring Process and Involved Roles

The description of complex, possibly cross-domain analyses
require a good deal of expertise in all fields involved. As the
assumption of an omniscient expert is unrealistic, we elicit
different roles for the authoring of the different models.
Table 1 lists the three roles involved in the authoring, as
well as two possible roles for analysts using the models.

The process of authoring the different models is best
described as a step-wise procedure, which sequentially
adds to the complexity of the models until they are fully
specified. This is shown schematically in Fig. 1. The
authoring process consists of the following sequence of
steps, each being the responsibility of one of the three
expert roles from Table 1:

I. Developing the data model: this is the responsibility
of the data manager, who describes the data sets and
their interrelations.
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II. Enriching the data model with interfaces: this is
done by the visual analysis expert, who annotates
the data sets with information about how to access
each of them—via graphical interfaces (visualiza-
tions) or through computational interfaces (query
languages, statistics packages).

III. Compiling a list of operators for each interface: this
lies within the responsibility of the visual analysis
expert, who denotes which interface is suitable to
perform which operations, as some interfaces may
be more fitting than others.

IV. Connecting tasks to the data model: for this, the
domain expert identifies the required data sets for
each of the high-level analysis tasks that are
commonly performed in a given scenario and relates
them to the task.

V. Associating operators with the tasks: this is speci-
fied by the domain expert who links concrete
operators to carry out the given tasks on the
associated data. As the operators are domain
independent, the translation from domain-specific
tasks to operators should be supported by the
visual analysis expert who contributes knowledge
about suitable analysis methods.

VI. Specifying a workflow of analysis tasks: in this step,
the domain expert details concrete analysis sessions
for pursuing a given goal by defining an analysis
workflow using the tasks defined.

VII.Pruning the workflow according to the actually
available data sets and tools: as a final step, it is
automatically determined, which paths within the
workflow cannot be performed for a concrete
instance of data and analysis tools. These are then
pruned from the workflow.

The first three steps of this process describe the rather static
setup of the analysis: data sources, ways to access these data
sources, and analytical operators to run on them. Steps IV
and V concern the domain model, as they add the domain-
specific tasks on top of the setup model. The last two steps
connect these tasks to meaningful analysis sessions and
prune these sessions to use only the data and tools available
at analysis time.

With all these models available, we have identified two
different roles of users that can benefit from the explicitly
modeled setup and analysis session. The first is the
informed analyst who analyzes the data freely, without
following a predefined analysis path. For the informed
analyst, the key benefit is the provision of orientation, which
allows him throughout the entire exploration process, to
pinpoint exactly which part of the information landscape is
currently under investigation, which methods are available
to analyze this particular information, and which other parts
of the information landscape may be related and thus be of
interest. For informing an analyst, only the model of the
setup with all its data sets and different visual and
computational operators is needed.

The second role is the one of a guided analyst, who
follows a given analysis path and possibly conducts similar
analyses routinely. The guided analyst benefits from the
formal model of the analysis session, as it provides exactly
the step-by-step guidance on how to pursue an analysis
path to achieve a given analysis goal with the data at hand.
If necessary, the guided analyst may also deviate from the
proposed workflow, in which case the user’s role switches
to an informed analyst.

It should be noted that a one-to-one mapping of a specific
person to a role is not required. Depending on the use case
and its complexity, the responsibilities of one role can be
performed by multiple individuals. Also, one person can
fulfill multiple roles—for instance, the domain expert may
fulfill one or both user roles. It is also possible to further
extend or subdivide the suggested roles, for example, with
more concrete user profiles for specific applications.

1000 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 6, JUNE 2012

Fig. 1. The authoring process shown as a sequence of authoring steps (I-VII) carried out by data, visual analysis, and domain experts. The authored
models can be taken as aids for providing analytical support on two levels: the setup model (1) for informing (providing orientation to) a user within
the sets of data, computational procedures, and visualizations, the intermediary domain model (2), and the model of the analysis session (3) relying
on the setup and domain model for guiding (providing step-by-step directions) the user.

TABLE 1
Roles in Authoring and Using Models of Setup,

Domain, and Analysis Session



Having sketched the overall authoring process, it
remains to detail the individual authoring steps and how
they build upon one another.

The models are not targeted toward orientation and
guidance per se, but can potentially be used to optimize all
kinds of processes, such as the treatment of missing data or
collaborative analysis, as we have envisioned in [8]. We
embrace this generality as a strong argument for such a
comprehensive authoring approach. To reflect the clear
distinction between the general models and their specific
application, we keep the following explanation of the
authoring steps general as well. Nevertheless, we use the
domain of biomedicine to give examples.

2.2 Authoring the Setup Model

The setup model captures the basic infrastructure in which
the analysis takes place. Besides all the different data
sources being available (Step I), this includes the software
infrastructure for accessing the data (Step II), as well as the
available software tools, such as visualization frameworks
or statistics libraries, for analyzing the data (Step III).

2.2.1 Step I: Developing the Data Model

The data model captures all data sets (shown green in Fig. 2)
available in an analysis setup. This can include local data sets
(i.e., an electronic patient file), data sets available from online
databases (i.e., pharmaceutical lists or digital anatomical
atlases), streamed data (i.e., a patient’s vital signs coming
from intensive care), etc. Additionally, the different data sets
contain different types of data, such as imaging data from
body scans, gene expression data from microarray analyses,
text data from electronic documents, etc. The data sets are
then related via common keys or identifiers where this is
possible. In our biomedical use case, this can be, for example,
the patient’s name or social security number, thus identifying
a patient’s records across different data sets. In the case of
different conventions being used for identifiers among
multiple data sets, an ontology can often be used to map them.

A data model of this sort is commonly used to plan and
implement the combination of large database collections [9].
Large organizations, such as hospitals, usually have employ-
ees dedicated to define and refine such models, to validate
and cross-reference entered data, and to supply necessary
metadata. Hence, many larger setups and even many freely
available data collections, such as linkeddata.org or data.gov,
do already have a data model of some sort. Yet beyond the
pure organization of data sets, such data models are rarely

used. A first approach utilizing a data model for visual
analysis was only recently given by Lieberman et al. [10].
They use well-established, standard data models (e.g., ERM
[11]), which our approach also relies on. This makes it easy to
reuse or adapt existing data models for our setup model.

2.2.2 Step II: Enriching the Data Model with Interfaces

A first step to enhance the data model beyond what is
stored is to add information about how to access each data
set. The access is conceptually performed through inter-
faces, which can be

. computational interfaces (purple in Fig. 2), that fetch
the data either directly from the source (low-level,
query interfaces—e.g., SQL or MapReduce [12]) or
calculate derived data, such as clusterings or
correlations (high-level, algorithmic interfaces—e.g.,
R statistics toolkit1 or WEKA2)

. visual interfaces (shown blue in Fig. 2), e.g., scatter
plots or parallel coordinates, allowing for access
using interactive, graphical methods, such as visual
queries or query by example.

These interfaces are provided by the software infra-
structure of the analysis setup—database front ends,
statistical libraries, visualization frameworks, etc. As dif-
ferent types of data require or permit different interfaces,
the information about which method of access is available
for each data set is added to the data model. This is done
through one-to-many assignments, as a data set may
require a combination of multiple visual interfaces to be
properly displayed, or as an algorithmic interface may need
several data sources to derive the desired information.

2.2.3 Step III: Compiling a List of Operators for the

Interfaces

Operators (shown red in Fig. 2) are domain-independent
analysis actions that describe in general terms what each
available interface can be used for. For example, an SQL
interface is perfect for querying individual data items, a
statistics library is well suited for correlation analyses and
clustering, and a parallel coordinates view is ideal for
interactive filtering.

The list of operators for each interface is usually based on
the experience of the visual analysis expert, as well as on
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Fig. 2. The different parts of the setup, the domain and the analysis session: interfaces (blue and purple), operators (red), data sets (green), and
tasks (yellow). These parts are described and interrelated during the authoring process. An example of a fully authored model of analysis setup,
analysis domain, and analysis session is shown in Fig. 3.

1. www.r-project.org.
2. www.cs.waikato.ac.nz/ml/weka.



domain-specific conventions and recommendations from
the literature. Hence, this step encodes common knowledge
and the current state of research in the field of Visual
Analytics in general.

This completes the modeling of the setup. It effectively
describes the information landscape, and computational as
well as visual access methods, as they are needed for
guiding the informed analyst.

2.3 Authoring the Domain Model

The domain model adds a layer of domain-dependent
knowledge on top of the setup model. It does so by
associating tasks being formulated in terms of the domain
with the appropriate data (Step IV) and operators (Step V).

2.3.1 Step IV: Connecting Tasks to the Data Model

As Munzner points out, the term “task” is overloaded in the
visualization literature [12]. Hence, it should be made clear
that the term “task” is being used here for domain-
dependent, textual descriptions of what an analysis step
should achieve on which data set. An example of a domain-
specific task is “Find all patients with a common character-
istic.” At this stage, tasks (yellow in Fig. 2) are described and
linked to the data sets they are performed on. In the example
given, patient characteristics may be scattered across multi-
ple data sets. As no concrete characteristic is specified, the
task would be connected to all of these data sets.

Tasks are closest to the actual analytical process and
describe, in the words of the domain expert, what is being
analyzed with which goal. They are used later as the
building blocks of analysis sessions.

2.3.2 Step V: Associating Operators with the Tasks

While Step IV models what to do with which data set, Step V
finally defines how to do it, in order to actually be able to
carry out a task. This is achieved by mapping the tasks to the
domain-independent operators. The mapping can either
assign a single operator or a few operators to be carried out
subsequently. Otherwise, in the case of tasks getting too
complex, they can always be broken down into multiple more
fundamental tasks. In the case of the example task “Find all
patients with a common characteristic,” this would be a
single filter operator that filters the data set of patients by the
given characteristic. If a data set provides multiple interfaces
to perform the filter operator with, e.g., an SQL interface and a
parallel coordinates visualization, then the task is connected
to all operators provided by the different interfaces. Which
one to choose is for the user to decide.

This completes the modeling of the domain. It bridges
the domain-dependent analysis steps and the domain-
independent analysis setup, and effectively yields a graph
that connects data sets and tasks via domain-independent
operators. The last authoring steps define the missing
workflows on top of the domain model.

2.4 Authoring the Analysis Session Model

Often, an analysis session is seen as being equivalent to
performing a sequence of analytical tasks. Yet in our
concept, analysis sessions are more abstractly defined, also
capturing different analytical possibilities, in order to ensure
their reusability for other instances of data (e.g., other
patients). Specifically, an analysis session model consists of
two parts: the actual analysis workflow (Step VI) and the

constraints imposed on the workflow due to unavailability
of data sources or analysis tools (Step VII).

2.4.1 Step VI: Specifying Workflows of Tasks

This authoring step assembles analysis workflows using the
available tasks as building blocks in whichever order they
are needed. In addition to simply appending tasks in a
purely sequential order, Step VI also makes it possible to
model more complex analysis patterns than a linear, step-
by-step composition of tasks. In order to capture the
involved and convoluted nature of analysis, branching,
looping and forward jumping is possible as well—in the
very same spirit, as task models [13] or user-task models
[14] are authored in the field of interface design.

The analysis workflows are modeled as directed graphs
with tasks as nodes and edges as transitions from one task
to the next. Alternative analysis paths leading to the same
analysis goal are rather common, so the branching of a
workflow is an important property that makes it possible to
capture and combine multiple possible analysis paths in
one analysis session model. Likewise, the incorporation of
forward jumps as shortcuts allows the same session model
to be used for novice and professional users, alike. The
guided analysis can switch between a detailed step-by-step
walkthrough for the former and a less elaborate, shorter
“todo-list” for the latter—even in the middle of the analysis.
On top of that, loops make it possible to encode any number
of task repetitions by revisiting a task (sequence) until its
result is refined enough to be taken as an input for the next
task. Moreover, it is possible to define preconditions per
task to specify certain requirements to be met, e.g., a
hierarchical clustering or aggregation to be performed
before visually analyzing the results of the processed data.
Likewise, postconditions can be formulated that impose
requirements on the result of an analysis task, e.g., with
regard to accuracy.

While the definition of the analysis workflows is usually
done by the domain expert, it is also possible, to leave this
to an informed user, who can also define paths for the
guided, routine users.

2.4.2 Step VII: Pruning the Workflows According to the

Available Data Sets and Tools

As a final step, the analysis session model is adapted to the
constraints imposed by the unavailability of data (e.g., as
not all theoretically collectible data may have been gathered
for a given patient or the analyst may not have the clearance
to view them) and of the analysis tools (e.g., licensing issues
may prevent their use or an analyst may not be properly
trained to use them). This adaptation is done by auto-
matically pruning all tasks that rely on unavailable data or
interfaces from the workflows. As a result, the remaining
workflows cover all currently possible analysis paths which
can be chosen as the analysis progresses.

This completes the overall authoring process. It may
seem quite elaborate at first, but the modularity of the three
models ensures a high level of reusability. The same setup
model can be used to build different domain models on top
of it, and the same domain model can in turn be used to
author numerous workflows utilizing it. This makes a lot of
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sense, as the definition of workflows is usually more short-
lived and prone to be changed and optimized more often
than the basic setup model or the domain model. The
following section briefly explores the final use of the models
for providing analytical support, which motivated the
externalization of the experts’ knowledge about infrastruc-
ture, domain, and workflows in the first place.

2.5 Utilizing the Models for Analytical Support

The use of the setup model for orientation support is rather
straightforward, as the model itself already provides a map
in which to pinpoint the current analysis step and determine
possible next steps. Using the analysis session model for the
guidance support requires some extra computation.

At first, it needs to be determined, if any continuous
analysis path is left after pruning. This allows to check,
whether or not an analysis goal can be pursued at all by the
specific analyst on the given data within the current setup.
If not, one could, for example, request the collection of
additional data in order to obtain enough information to be
able to complete an analysis path. In our use case, this can
be additional tests or screenings for a patient. The session
model makes it possible to determine the smallest gap
among the analysis paths, which can then be bridged at
minimal costs—financially or in terms of the stress a patient
has to go through. It thus realizes the opposite direction of
the pruning: the pruning ensures that nothing is (intended
to be) used that is actually unavailable by removing these
parts from the model, whereas the reachability check makes
sure that everything is available that is needed at the bare
minimum to pursue the intended analysis goal.

Second, it must be determined which analysis path to
actually use for guiding the analyst among all the possible
analysis paths contained in the analysis session model. For
this, it is important to observe that the paths differ in terms
of their seamlessness and effectiveness. A path is considered to
be effective when it is short compared to other possible
analysis paths. A path is called seamless if for each transition
from one task to the next, there exists a relation (edge)
between the data sets that the tasks are connected with as
well. A seamless analysis path would allow the analyst to
proceed from one task to the next without destroying the
mental map, as the data sets used by both tasks are related
via a common identifier. The more discontinuities between
data sets an analysis path has to bridge, the less seamless it
is. For a traceable and swift analysis, paths that are more
seamless and effective are generally preferred and thus
chosen for the guidance.

To bring this whole process to life, the following section
gives an example for authoring the three models and using
both forms of analyst support.

3 APPLYING THE DESIGN PROCESS TO A

BIOMEDICAL USE CASE

Based on the theoretical foundation laid in the previous
section, we demonstrate how to apply the concept to a real
use case. The use case covers a comprehensive analysis of
patient-related data. Our long-term collaboration partners
from the Institute of Pathology at the Medical University of
Graz approached us with a need for visual analysis: they try

to base a decision of how to treat a newly diagnosed cancer
patient on a wider array of available data. In such a
scenario, they would like to analyze the patient’s basic data,
anamnesis, tissue data, gene expression data, etc., and relate
it to other reference patients. Moreover, they want to be able
to explore information about genes, proteins or pathways,
which they encounter during an analysis. Hence, it is a
prime example of visual analysis across multiple, hetero-
geneous data sets.

3.1 Creating the Setup Model

The starting point for creating the setup model (cf.,
Section 2.2) is a well-defined data model, which in an
optimal case can be based on an existing hospital data
management system. In this scenario, many of the data
sets are directly linked to the patient. This is reflected in
Fig. 3 by the high degree of connectivity from the
patients’ basic information to other data sets. The
patient-related data sets include:

MR/CT/X-ray. Magnetic resonance (MR), computer
tomography (CT), and X-ray data are acquired using
imaging techniques. For cancer patients, a tumor might be
visible in one, several or all of the imaging data sets. In
some cases, computer-based analysis, such as automatic
tumor segmentation, is employed.

Tissue samples. When a tumor is discovered, the
standard procedure is to take a biopsy. The acquired tissue
is investigated under the microscope. High-resolution scans
are acquired and stored in a database.

Gene-/protein expression. High-throughput techniques
like DNA microarrays enable the biomedical expert to
measure the regulation of �omics data (genomics, proteo-
mics, metabolomics, etc.—for details see [15]) for a patient
at a specific point in time. This snapshot of the expression
tells a life scientist how active a gene/protein is, which
influences the cellular processes and in turn the disease
itself. A common procedure to analyze expression data is to
cluster a group of patients with known features and try to
find similarities and/or differences between their profiles
which allow to draw conclusions in the analysis.

Anamnesis. The anamnesis is a patient’s medical
history—including illnesses, allergies, etc.

Lab results. Lab results include blood levels, urine, and
stool sample results, etc.

The patient-independent data sets are:
Pathways. Pathways are models of the biochemical

processes in cells. They are especially valuable in combina-
tion with �omics expression data [15].

Disease database. Diseases and health-related condi-
tions are classified according to various disease schemes
(e.g., ICD).

Gene/protein database. Information about genes and
proteins is stored in public databases as, for example,
GeneCards3 and EntrezGene.4 These web sources include
metainformation such as short names, alternative identi-
fiers, a detailed description, references to publications, and
disease classifications.

Publications. Articles published about genes, proteins,
pathways, and diseases play an important role during the
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analysis, as an analyst can gain deeper knowledge on the

topics if needed. The most commonly used database for

literature research in the biomedical domain is PubMed.5

To create the data model, the clinical data manager

collects those data sets (green in Fig. 3) and defines their

relations (cf., authoring Step I). Having the data model at

hand, the design responsibility is handed over to the visual

analysis expert who chooses or develops suitable visual as

well as computational interfaces and assigns those inter-

faces to the data sets (Step II). This step requires in-depth

knowledge about the tools available for conducting the

analysis. In our scenario, we use the Caleydo visualization

framework [16], [17] for biomolecular-, tissue-, patient-, and

metadata. We use a commercial volume visualization tool

for MR/CT and X-ray data. The visual analysis expert starts

by compiling a list of the available (visual as well as

computational) interfaces, as shown in Fig. 3 at the bottom

(visual interfaces are shown in blue and computational

interfaces in purple). The available visualization techniques

are suitable for depicting data with specific properties. For
example, parallel coordinates are capable of visualizing

multidimensional data. Therefore, this visual interface can

be assigned to expression data as well as patient informa-

tion. Other visual interfaces are the document viewer, heat

map, web-browser, pathway viewer, etc. Caleydo’s compu-
tational interfaces include the R statistics toolkit, WEKA and

SQL, which are assigned to the data sets using the same

procedure as before.
The visual analysis expert then compiles a list of

operators and assigns interfaces from the compiled list

(cf., Step III). In Fig. 3, the operator pool is presented as a
series of red blocks. Operators in our use case are for

instance query, similarity analysis of images as well as

partitional and hierarchical clustering, where partitional
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Fig. 3. Setup and domain model of the biomedical use case. The data sets (green)—either from local or online sources—are connected when they
share a common identifier. The interfaces (blue for visual interfaces, purple for computational interfaces) are compiled from several tools and
assigned to the data sets. For the analysis session description, tasks (yellow) and operators (red) are added and connected to the data sets.

5. www.ncbi.nlm.nih.gov/pubmed.



clustering is realized through the R interface, and hier-

archical clustering through WEKA. Note that the operators

provided in Fig. 3 are only a sample compilation for the

workflow of patient treatment planning.

3.2 Creating the Domain Model

In Step IV, the domain expert, in this case our partner from

the Medical University, defines a set of tasks (yellow in Fig. 3)

and assigns the tasks to the data on which they operate. A

sequence of operators which enable the fulfillment of the task

is associated with each task (Step V). One example for our use

case is the “Find gene”-task, which is assigned to the gene

database and can be accomplished using the Query operator.

Note that this step does not include ordering or connecting

the tasks.

3.3 Creating the Analysis Session Model

In Step VI, the domain expert defines the workflow as a

sequence of tasks, which is the basis for guidance. The

following workflow, depicted in Fig. 4, is an example aimed

at the goal described before: determining a treatment plan

for a patient diagnosed with cancer. Patients are known to

respond differently both to therapy and the disease itself

based on several factors, including their genetic traits.

Therefore, it is crucial to identify the likely course of the

disease for a patient under different treatments.

1. Determine similar patients. First, the guided ana-
lyst filters patients based on their anamnesis (for
example, in terms of age, gender, blood values)
using a computational approach.

2. Browse patients. The analyst explores the patients
that remain in the sample and tries to find
differences in their conditions.

3. View tissue. For those patients, he explores the
tissue images, on which the initial diagnosis was

based. This is done to make sure that the patients
actually present similar manifestations.

4. Discard patients. Remove patients with different
manifestations in terms of the tissue samples.

5. Cluster expression data. To be able to identify
patients with similar gene expression patterns,
which might indicate common traits and therefore
a similar course of the disease, the data are clustered.

6. Inspect expression data. The analyst inspects the
clustering results to find patterns where the patient
under investigation is similar to one group of
patients, while different to others. He then selects a
group of genes that clearly distinguishes the patient
group from others. If the genes’ functions are clear to
the analyst (e.g., a well-known protoonco or tumor
suppressor gene), he can directly jump to Task 9. If
this is not the case, he can proceed with the next task
to find out more about their function.

7. Explore related pathways. To understand the found
genes’ function, the analyst explores the pathways
containing the genes.

8. View gene information. Further information about a
particular gene is gathered by inspecting its entry in
an online database.

9. Select patients. With the knowledge that the genes
are in fact relevant for the condition, the analyst
goes back to the gene expression view; where he
selects those patients that are in the same group as
the patient under investigation.

10. View anamnesis. The analyst then views the
anamnesis to judge whether previous courses of
actions were successful for similar cases and bases
his treatment decision on the findings.

11. Record treatment decision. He records the treat-
ment decision in the patient’s anamnesis.

Alternatively, instead of conducting an analysis based on
gene expression data (Tasks 5 to 8 in the left branch of Fig. 4),
the guided analyst can choose to conduct the selection of
patients in Task 9 based on an exploration, segmentation, and
comparison of tumor images (cf., Tasks 5a to 7a). However,
the right branch is only feasible if the disease under
investigation causes tumors, visible in imaging data.

Preconditions are defined optionally for each task. For
instance, before viewing the tissue slices in Task 3, the
analyst needs to filter below 20 patients.

Before the models can be utilized by an analysis
system they need to be tailored to the given constraints
(cf., Step VII). In our scenario, we do not have the
patients’ protein expression profiles available, which
makes the protein database obsolete. Furthermore, due
to access restrictions at the hospital, lab results cannot be
a part of the setup. Based on the remaining available
setup resources, the automatic pruning of paths is
performed. As the exemplary defined workflow samples
are rather small, all tasks of the workflow are possible
and consequently remain in the analysis session model.

4 IMPLEMENTATION IN REAL SYSTEMS

Before a real system can be developed based on the
described model, we first have to briefly discuss ways to
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Fig. 4. The workflow of finding a treatment plan for a newly diagnosed
cancer patient.



create such a model (i.e., authoring). This is followed by an
example of a concrete visual analysis system which can
make use of the gained information.

4.1 Authoring

To be of use in actual systems, the models described
must be available in machine-readable form: either by
explicitly creating the model offline, or by capturing
interface actions and associating them with tasks at
runtime. The interactive method is only suitable for the
domain and the analysis session model, since it requires
the setup model to be performed.

Tools for offline creation of the model range from
dedicated authoring solutions6 to simple XML editors.
While these external tools can be used out-of-the-box, an
integrated solution is potentially more powerful: on-the-fly
editing and refinement can be tightly bound to the visual
data analysis. It enables users to create and refine
models—making a live role switch possible—i.e., the
analyst becomes the author.

The choice between these two variants is a tradeoff
between flexibility and costs. This tight integration of data
analysis and authoring requires high initial costs in terms of
software engineering. As authoring interfaces are not the
focus of this paper, we have defined the models covering
our biomedical use case directly in XML.

4.2 Implementation Example: Stack’n’flip

In this section, we give a practical example that realizes a
system using a previously authored model.

The “Stack’n’flip” system is grouped into two parts: a
space for data visualization, similar to what Shrinvasan
and van Wijk [18] call the Knowledge View, and a space
showing the relations between data, views, and analysis
paths, similar to their Navigation View. While our realiza-
tion of this system and application goals are very different
from those proposed in [18], the views are conceptually
similar. Therefore, these terms were adopted. Two factors
distinguish Stack’n’flip from other systems: first, the
navigation and the knowledge view are seamlessly inte-
grated, and second, the kind of support (guidance) based
on the developed setup model goes well beyond prove-
nance and history.

Some approaches, such as Aruvi [18], History Mechanism
[19], as well as Heer et al.’s temporal work for Tableau [20]
visualize the exploratory process in a history tree. We take
this principal idea a step further by not only presenting
history information, but also proposing future steps—either
following a predefined path, or showing possible next steps
independent of the path. However, in contrast to the
VisComplete approach of Vistrails [6], the path suggestions
are not purely derived from previous sessions and work-
flows, but by employing the authored models. In addition,
the associations between previous and possible future
analysis steps are made explicit on both levels—the
navigation and the knowledge view.

The Stack’n’flip implementation is a part of the Caleydo
visualization framework. It is developed in Java and uses
the Java OpenGL (JOGL) binding for rendering. The

authored model is loaded from a predefined XML
representation and is stored in a graph data structure. The
interactive support of Stack’n’flip is based on simple graph
traversal operations.

4.2.1 Data View

Exploring multiple data sets naturally lends itself to the
usage of multiple coordinated views. However, traditional
systems often present those multiple views either in tiled
windows or in tabs. This does not correspond well to an
analysis path, where one data set or view is in focus, while
the previous (and possibly the next) data set is also
contextually relevant.

To take this into consideration, we propose a stacking of
views as depicted in Fig. 5a. The views are projected and
rendered on 2D planes in a 2.5D scene, making it related to
Collins and Carpendale’s VisLinks [21], the Bucket approach
[17], or even Apple’s Cover Flow. The view in focus is in the
center and parallel to the screen. Other views are stacked to
the left and right of the focus view, tilted toward the user.
The adjacent views are either from the same data set, or
from a data set explored in a previous (on the left) or
upcoming (on the right) analysis step. This makes it
possible to easily relate data in adjacent views. Additionally
to conventional highlighting of selected items, visual links
[21] are shown between related entities in adjacent views.

4.2.2 Navigation View

The contribution of the proposed approach is not primarily
the view arrangement, but the orientation provided by a
“map” through the information landscape—the navigation
view. When designing such a navigation view, it is
important to find a balance between the amount of
information presented and the requirement to give as much
space as possible to the knowledge view, which contains the
actual information.

We realized the map by depicting the network of data
sets as large symbols (see (1) in Fig. 5a). Transitions in the
data model between loaded data sets are visible at any time,
while all possible transitions are shown only when
hovering over the associated symbol (see (2) in Fig. 5a). A
red exclamation mark followed by a short description
indicates that a precondition needs to be met before the
analyst can continue to a data set. By picking one of those
possible next data sets, the associated data are loaded and
shown in the knowledge view. Its symbol is added to the
navigation view permanently.

The association between interfaces and data sets, con-
tained in the setup model, is shown as icons on top of the
data set symbol. Opening a new interface for a particular
data set is achieved by clicking the interface icon.

In case of a guided analysis, the information available
through the analysis session model is employed to highlight
the recommended path, while still showing other options to
proceed (i.e., switching from guided to informed support).
The highlighting is realized in red ((2) in Fig. 5a).
Recommended interfaces for performing the next task are
also shown in red and are opened by default when the data
set symbol is clicked. A short description of the current task
is presented at the bottom of the navigation view.
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4.2.3 Fusion of Navigation and Knowledge View

A key contribution of Stack’n’flip is the seamless integration
of navigation view and knowledge view. Open, active
views are connected with a curve to their interface symbol
on top of the data set symbol, thereby clarifying the
relationship between the view and its data set. This
association of data sets and views makes it explicit which
data set is shown in which view, and also allows the
unambiguous use of the same visualization technique for
different data sets.

This merging of interactive visualization with analysis
context is related to Ma’s Image Graphs [22], Jankun-Kelly’s P-
Set Model [23] as well as the Graphical Histories by Heer et al.
[20]. However, Image Graphs and the P-Set Model capture
only the analysis process operating on a homogeneous data
set. In contrast, Heer’s Graphical History view does handle
heterogeneous data, but is restricted to history information
and therefore does not support real guidance or orientation
in the sense of Stack’n’flip.

4.2.4 Discussion of the System

We believe that the Stack’n’flip approach is general enough
to be utilized in many different forms. In fact, as it mainly
describes how to visually handle transitions in heteroge-
neous data analysis, it is applicable to a wide range of existing
visualization frameworks. We have chosen the 2.5D layout,
because we have shown in the past, that it is an effective
method for working with multiple, interconnected views (cf.,
[17]). However, pure 2D layouts, avoiding problems arising
from distortion, are of course possible as well.

As such, this system provides orientation when explor-
ing heterogeneous data spaces by showing a history of
previously explored data sets, a list of possible connected
data sets (in the navigation view) as well as employed

visualizations (through the stacking in the knowledge view)
and is therefore suitable for the informed analyst. This is
especially important in comprehensive analysis of data
from different sources, as it requires the analyst to switch
back and forth between different views and data sets,
refining, for example, selections or filters. Each switch
requires mental effort and is potentially confusing for the
analyst. By making such switches seamless and keeping the
source view as contextual information, the mental effort can
be reduced significantly.

The guided analyst benefits from the explicit path laid
out for him, while the navigation view shows possible
alternatives—thereby encouraging a deviation from the
predefined path (and therefore a switch from guided
analyst to informed analyst) for a deeper understanding
of the data.

5 FURTHER IMPLICATIONS

In this section, we discuss how the models can potentially
be utilized for different purposes besides orientation and
guidance.

Visual Analytics goes well beyond simply providing the
necessary tools for an analysis scenario—it also aims at
helping the analysts in choosing the appropriate techniques
by defining several processes as best practice solutions for
given analytical objectives. These are based on high-level
guidelines, such as Keim et al.’s Visual Analytics Mantra
[24] or Shneiderman’s well established Information Seeking
Mantra [25]. Both have found their way into the design of
Visual Analytics systems, as they give valuable advice on
which kind of tools to provide at which point in the
analysis. These processes can be understood as abstract
design patterns for visual analysis software. However, they
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Fig. 5. (a) Stack’n’flip showing the guided analyst working on Task 6 of the described workflow. A heat map view is shown in the center, a tissue
browser on the left, a web-browser on the right and additional stacked views on both sides. The succession of large symbols at the bottom
represents the analysis path taken, with each symbol showing a data set (1). On top of the data set symbols, smaller icons show which interfaces are
available for the data set. Possible future steps or branches (2) are either highlighted red, symbolizing the suggested analysis path, or gray, showing
alternative options. Visual links emphasize relations between the views (3). (b) The analyst has selected a gene and can therefore move on to Task 7
and explore the loaded pathways. Visual links indicate the location of the gene in the pathways. (c) To take an alternative analysis branch or even
leave the suggested path the guided analyst can always go back.



are too abstract to actually specify visual analysis techni-
ques to be used on a concrete set of data. Hence, most
approaches derive suggestions for the analysis from low-
level events (mouse clicks, etc.) recorded during previous
analysis sessions.

In between high-level mantras and low-level mouse
clicks, a gap emerges that neither can fill. A mid-level
approach, like the one proposed, makes it possible to
formulate analysis sessions as abstractly as needed in order
to serve as reusable patterns and at the same time being
specific enough to be used for concrete user support, thus
merging the best of both worlds. However, in our proposed
design approach, high-level mantras are still incorporated.
Task 1-6 in Fig. 6 is one example where Keim et al.’s Visual
Analytics Mantra—“analyze first—show the important—zoom,
filter and analyze further—details-on-demand” is evident.

The benefits of using the proposed three-stage model is
twofold: on the one hand, it can be employed by a visual
analysis system to provide analyst support on different
levels, as already discussed in detail; on the other hand, it
can help in the design phase of a complex analysis scenario.
Benefits gained by the definition of the comprehensive
models are:

5.1 Data Selection

The proposed concept makes it possible to dynamically
select a set of relevant data sets for a specific analysis goal.
Selecting a reduced list of data sets needed in an analysis
session makes the analysis more targeted toward the goal.
Additionally, the system can anticipate the next steps of an
analyst and preprocess, prefetch, or prelayout data in
otherwise idle times. For example, fetching of large tissue
images from databases can be triggered before the analyst
traverses the data set during the interaction. An example for

a time-consuming preprocessing step is clustering of gene
expression data, based on a selection of patients. Since an
analyst can always choose a path different from the
preferred one, we propose to prefetch data first for the
preferred path, and then for other possible paths, if enough
processing power, memory and/or bandwidth is available.
By conducting such operations in a separate thread, such a
system can utilize modern multicore systems, resulting in a
significant speed up.

5.2 Missing Data or Interface Identification

When defining the analysis session model with an analysis
goal in mind, interfaces or data sources might be missing
from the analysis setup in order to perform a task. Due to the
structured authoring process, however, such missing inter-
faces or data sets are immediately obvious to the domain
expert. At this early stage the domain expert can try to fill
these gaps by requesting the missing data sets or interfaces
from the data manager or visual analysis expert, respectively.

5.3 Post Analysis Optimization

Based on the analysis session model, it is possible to log the
workflow path actually taken by a user during an analysis
session. Fig. 6 depicts an example path including the
interfaces used for each step. Switches between the visual
(purple) and computational (blue) domain are of special
interest as these are often not seamless and therefore imply
a higher mental effort for the user. The extracted data can be
utilized to:

. Optimize the workflow. By comparing the sug-
gested path with the one taken by the user, a feedback
loop can be introduced in the authoring process.

. Optimize the analysis framework. Based on the
gained insights, the underlying application can be
modified to better reflect the user’s needs.

5.4 Generalization of Workflows

Analyst support based on history and provenance informa-
tion is an integral part of various Visual Analytics systems
(e.g., [5], [26]). However, by logging low-level application
events, the collected information is tightly coupled to one
specific setup and cannot be reused for guidance purposes
within different applications and tools. With the proposed
association of tasks to application and domain independent
operators, we detach implementation internal matters from
the actual semantic path information. This indirection
allows us to employ the collected path information in
different analysis setups as well. It is even possible to
unhinge the workflow with the associated domain inde-
pendent operator sequences from a specific setup in order
to find an alternative combination of analysis tools.

6 CONCLUSION AND FUTURE WORK

In this paper, we have introduced a three-stage, model-
driven design process for the interactive visual analysis of
heterogeneous data sets, which allows a system to guide a
user on two different levels during the analysis. In the first
authoring stage, a basic model of the given setup is created
which considers data sets from different sources, relations
between them and visual as well as computational
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Fig. 6. Sample analysis path showing the chosen interfaces. Jumps
between computational (purple) and visual (blue) interfaces denote
switches from the data to the view domain and vice versa. High-level
interaction mantras can be found as reoccurring patterns.



interfaces operating on them. A visual analysis system
employing these models can support the analyst by
providing orientation within the conglomerate of data sets,
where not only previous but also possible future analysis
steps are shown. On top of the setup, a set of domain-
specific tasks are defined, forming the domain model. In the
last stage, the analysis session model, which contains a
workflow with a concrete analysis goal in mind, is defined.
These three models are used to actively guide the analyst
along a predefined path.

We have demonstrated the concept for a biomedical
use case and presented a concrete implementation based
on an existing visualization framework. Initial feedback
from our project partners at the Medical University of
Graz was encouraging and the proposed design approach
will become a key component of our joint biomedical
research projects.

The current Stack’n’flip implementation provides gui-
dance based on the predefined models via the compact
navigation view. In a next step, the navigation view could
be switched on demand to a full authoring interface with
on-the-fly model editing capabilities. This tight integration
of authoring and data analysis has the potential to support a
wide range of Visual Analytics applications.

Approaches such as Stack’n’flip demonstrate the useful-
ness of analyst support and are in fact important for specific
data analysis problems. However, as visual analysis often
employs highly specialized and expensive tools, using a
single superapplication to support users in all their analysis
needs is unrealistic. Consequently, there is a strong need for
bridging the gaps between these existing, independent
tools. In this paper, we have provided the conceptual
foundations for doing so. What is left to do is to solve the
technical problems of such a multitool scenario. In the spirit
of the Snap-Together Visualization [27], we have previously
explored possibilities to visually link information across
applications [28]. The approach works without a common
database on the basis of ID-Strings that are collected from
minimally modified applications (e.g., via plug-ins) and
matched by a light-weight management application. There-
by identified related entities are connected by visual links.
We plan to extend this idea with model-driven guidance
and possibly also implementing a Stack’n’flip-like scenario
with independent tools.

Collaboration is another important topic for solving
complex domain problems. For a complex analysis, experts
from multiple domains with different background knowl-
edge are required. We believe that the proposed concept
has the potential to also serve as a basis for supporting this
collaborative scenario.
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