
ANALYSIS-GUIDED IMPROVEMENTS OF THE

MATERIAL POINT METHOD

by

Michael Dietel Steffen

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

December 2009

Copyright c© Michael Dietel Steffen 2009

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Michael Dietel Steffen

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

Chair: Robert M. Kirby

Martin Berzins

Christopher R. Johnson

Steven G. Parker

James E. Guilkey

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Michael Dietel Steffen in its final form
and have found that (1) its format, citations, and bibliographic style are consistent and
acceptable; (2) its illustrative materials including figures, tables, and charts are in place;
and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready
for submission to The Graduate School.

Date Robert M. Kirby
Chair, Supervisory Committee

Approved for the Major Department

Martin Berzins
Chair/Dean

Approved for the Graduate Council

Charles A. Wight
Dean of The Graduate School

ABSTRACT

The Material Point Method (MPM) has shown itself to be a powerful tool in

the simulation of large deformation problems, especially those involving complex

geometries and contact where typical finite element type methods frequently fail.

While these large complex problems lead to some impressive simulations and so-

lutions, there has been a lack of basic analysis characterizing the errors present

in the method, even on the simplest of problems. However, like most methods

which employ mixed Lagrangian (particle) and Eulerian strategies, analysis of the

method is not straightforward. The lack of an analysis framework for MPM, as is

found in finite element methods, makes it challenging to explain anomalies found in

its employment and makes it difficult to propose methodology improvements with

predictable outcomes.

In this dissertation, we provide a formal analysis of the errors in MPM and use

this analysis to direct proposed improvements. In particular, we will focus on how

the lack of regularity in the grid functions used for representing the solution can

hamper both spatial and temporal convergence of the method. We will show how

the use of smoother basis functions, such as B-splines, can improve the accuracy of

the method. An in-depth analysis of the current time stepping methods will help

to explain behavior currently demonstrated numerically in the literature and will

allow users of the method to understand the balance of spatial and temporal errors

in MPM. Lastly, extrapolation techniques will be proposed to improve quadrature

errors in the method.

CONTENTS

ABSTRACT . iv

ACKNOWLEDGMENTS . viii

CHAPTERS

1. INTRODUCTION . 1

1.1 Contributions . 2
1.2 Organization . 3

2. RELEVANT WORK . 5

3. OVERVIEW OF THE MATERIAL POINT METHOD 10

3.1 Solid Mechanics Overview . 11
3.1.1 Galerkin Discretization of Equation of Motion 11
3.1.2 Constitutive Models . 13

3.2 MPM Discretization . 13
3.2.1 Standard MPM . 15
3.2.2 Moving Mesh MPM . 17
3.2.3 Choice of Grid Basis Functions . 21
3.2.4 Generalized Interpolation Material Point

Method (GIMP) . 27
3.2.5 Kinematic Boundary Conditions . 30

4. ANALYSIS AND REDUCTION OF QUADRATURE ERRORS
IN THE MATERIAL POINT METHOD 32

4.1 Interpretation of Particle Volume . 33
4.2 Analysis . 35

4.2.1 Uniformly Stressed Body in MPM . 38
4.2.2 Piecewise-linear Basis Functions . 38
4.2.3 Quadratic B-spline Basis Functions . 40
4.2.4 Cubic B-spline Basis Functions . 41

4.3 Results . 43
4.3.1 Uniformly Stressed Body . 43
4.3.2 Test Problem With Dynamic Traction

Boundary Conditions . 46
4.4 Summary and Conclusions . 51

5. EXAMINATION AND ANALYSIS OF
IMPLEMENTATION CHOICES
WITHIN THE MATERIAL
POINT METHOD . 53

5.1 Analysis and Interpretation . 54
5.1.1 The Relationship Between GIMP and B-Splines 54
5.1.2 Smoothing Length Dependent Integration Errors 56
5.1.3 Impact of Boundary Treatments . 60

5.2 Test Problem Development . 62
5.2.1 Method of Manufactured Solutions Overview 63
5.2.2 One-Dimensional Periodic Bar . 64
5.2.3 Axis-Aligned Displacement in a Unit Cube 65

5.3 Results . 66
5.3.1 One-Dimensional Smoothing Length Experiments 66
5.3.2 One-Dimensional Spatial Convergence Results 67
5.3.3 Verification with the Method of Manufactured

Solutions in Multi-D . 70
5.4 Summary and Conclusions . 72

6. DECOUPLING AND BALANCING SPACE AND TIME ERRORS
IN THE MATERIAL POINT METHOD 74

6.1 Background . 75
6.2 Interpreting the Coupling of Lagrangian

and Eulerian Simulations . 77
6.3 Studies of Simplified Decoupled Problems . 79

6.3.1 Decoupling Strategy . 80
6.3.2 Impact of Spatial Discontinuities on Time-Stepping 81
6.3.3 Impact of Spatial Quadrature Errors on Time-Stepping 88
6.3.4 Balancing Space and Time Errors . 94

6.4 Results for Full MPM Simulations . 96
6.4.1 Impact of Spatial Discontinuities on Time-Stepping 96
6.4.2 Impact of Spatial Quadrature Errors on

Time-Stepping . 97
6.4.3 Balancing Space and Time Errors . 100

6.5 Guidelines . 105
6.6 Summary and Conclusions . 108

7. IMPROVING SPATIAL ERRORS IN THE MATERIAL POINT
METHOD USING EXTRAPOLATION TECHNIQUES 111

7.1 Richardson Extrapolation . 111
7.1.1 Standard Extrapolation . 112
7.1.2 Extrapolation Techniques in Numerical Quadrature 114
7.1.3 Extrapolation Techniques in Finite Element Methods 116

7.2 Extrapolation Techniques in MPM . 117
7.3 Results . 121

vi

7.4 Summary and Conclusions . 121

8. FUTURE WORK . 123

APPENDIX . 125

REFERENCES . 129

vii

ACKNOWLEDGMENTS

First and foremost, I would like to express immense gratitude to my advisor,

Mike Kirby, for expending the tremendous time and effort to help me through this

process. Mike’s involvement in my graduate school career provided me the guidance

and motivation to ask, explore, and answer the tough questions required in the

research process. His guidance has afforded me the tools and skills to continue in a

research career. Numerous life events can occur in the span of five years, and Mike

showed more sympathy than anyone could have asked for when school work took a

back seat to other more pressing affairs. For that I am also extremely grateful.

I would also like to acknowledge my committee members, especially Jim Guilkey

and Martin Berzins, whose unique perspectives kept Mike and myself in check when

our narrow view of the world at times lost sight of the big picture. In particular, Jim

brought an engineering viewpoint that was crucial in keeping our research grounded

and more fully applicable to the engineering community. The Utah MPM group,

including Philip Wallstedt, and Jeff Weiss also provided critical input that helped

direct our efforts.

There are countless Utah friends which added to the “well rounded” aspect of

my education. Though the time spent cycling, camping, canoeing, bowling, go-kart

racing, crosswording, barbecuing, fishing, sailing, and snowboarding was not itself

productive with respect to my research, it did provide sanity in a world otherwise

filled with Greek letters and equations, without which I would never had finished.

I have made some lifelong friends along the way that are vastly more important to

me than any degree.

I would never have reached this milestone if it were not for my family, espe-

cially my Mother, Father, and Sister. From financial assistance to loving support,

they were there every step of the way. No mere paragraph can do justice to the

appreciation I have for them. And to Kelly: Thank you. For everything.

This work was supported by the U.S. Department of Energy through the Center

for the Simulation of Accidental Fires and Explosions (C-SAFE), under grant W-

7405-ENG-48.

ix

CHAPTER 1

INTRODUCTION

The Material Point Method (MPM) [47, 50] is a particle method which repre-

sents a material as a collection of material points (hereafter referenced as particles)

whose deformation is determined by solving Newton’s laws of motion for the internal

force due to particle interaction. As with all methods of this form, the challenge

(and novelty) of the method often comes from the means by which one defines

approximations of differential and integral operators given particle data. Although

similar in nature to Smoothed Particle Hydrodynamics (SPH) as used in fluid

mechanics and to meshfree (or meshless) methods as used in solid mechanics, MPM

distinguishes itself as a mixed Lagrangian-Eulerian method which utilizes a regular

lattice “background” grid for solving the equations of motion. The material point

method attempts to marry the best of both worlds – use of Lagrangian particles

for representing material (and its corresponding kinematic and dynamic properties)

and use of an Eulerian grid upon which efficient numerical solvers can be built.

MPM and its variants have been shown to be extremely successful and robust

in simulating a large number of high-deformation and otherwise complicated engi-

neering problems such as densification of foam [7], compression of wood [35], sea ice

dynamics [49], and energetic device explosions [21], to name a few. The most well

known of these variants is the Generalized Interpolation Material Point (GIMP)

Method [8], of which traditional MPM is a special case. GIMP provides improved

accuracy, stability and robustness to simulations through the introduction of par-

ticle characteristic functions, which in most cases have the effect of smoothing the

grid basis functions. The ability to handle solid mechanics problems involving large

deformations and/or fragmentation of structures, which are sometimes problematic

2

for finite element methods, has lead, in part, to the method’s success.

While these simulations are impressive and have pushed the boundaries of

high-deformation simulation science where finite element methods often fail, there

has been a relative lack of basic error analysis of the method. It is our belief that this

lack of formal analysis has hindered the adoption of MPM by a larger audience. This

dissertation develops an analysis framework and uses that framework to provide

a better understanding of the error properties of the method. The results from

this analysis are used to drive improvements to the method. Aside from the

improvements detailed in this dissertation, this expanded understanding of the

method will provide further benefits, including assisting users of the method in

making well informed choices when implementing the method and helping MPM

become further accepted by the simulation community.

1.1 Contributions

The goal of this dissertation is to provide an analysis of errors of the Material

Point Method and to use knowledge gained from that analysis to drive improve-

ments of the method. In meeting the goal the following contributions have been

made:

• A spatial error analysis framework for the Material Point Method. By equat-

ing the quadrature errors in MPM to integration errors when using a compos-

ite midpoint rule with breaks in continuity of the integrand, a new analysis

framework is presented which helps understand spatial errors in MPM. This

analysis led us to the use of smoother basis functions to improve spatial

convergence of the method. These contributions are documented in Chapter

4 and reported in the published peer-reviewed journal article: “Analysis and

reduction of quadrature errors in the Material Point Method (MPM)”, M.

Steffen, R. M. Kirby, and M. Berzins, International Journal for Numerical

Methods in Engineering, Volume 76, Number 6, Copyright c© 2008, John

Wiley & Sons, Ltd.[44]

3

• An analysis and demonstration of how implementation details affect the error

properties of MPM. Previously undocumented and unexplored implementa-

tion details of MPM, such as boundary conditions and smoothing length

parameters within GIMP, can have a major impact on the order of accuracy of

the method. The previous analysis techniques were applied to the method to

better understand these impacts. This helps the practitioner understand the

numerical ramifications of their implementation choices. These contributions

are documented in Chapter 5 and reported in the published peer-reviewed

journal article: “Examination and Analysis of Implementation Choices within

the Material Point Method (MPM)”, M. Steffen, P. C. Wallstedt, J. E.

Guilkey, R. M. Kirby, and M. Berzins, Computer Modeling in Engineering &

Sciences, Volume 32, Number 2, Copyright c© 2008, Tech Science Press.[46]

• An understanding of the balance of errors in MPM through the decoupling of

space and time. The use of techniques in Chapters 4 and 5 combined with the

use of moving mesh MPM and measurement of local truncation errors allows a

detailed understand of both spatial and temporal errors and how these errors

are balanced. This aids practitioners in understanding and deciding where

to focus their refinement efforts–in space or in time. These contributions are

documented in Chapter 6 and reported in the submitted journal article [45].

• Improvement of spatial accuracy in the MPM framework. Until now, the most

successful improvements to the accuracy of MPM have come from the use

of smoother basis functions and centered difference time-stepping schemes.

Here, extrapolation techniques are used to further improve the spatial inte-

gration scheme accuracy which provides improvement to overall spatial errors

in MPM. These contributions are reported in Chapter 7.

1.2 Organization

This dissertation will proceed as follows: Chapter 2 will present background and

relevant work to help give context about where and how MPM fits into the family

of particle and meshfree methods. Chapter 3 will provide an overview of MPM,

4

starting with an explanation of the relevant solid mechanics, showing how MPM

discretizes the equations of motion, and finally presenting the variants of MPM and

many of the choices one has when implementing the algorithm. Chapter 4 will focus

on the spatial errors in MPM. Specifically an analysis of quadrature errors will show

how smoother basis functions can affect the spatial convergence rates of the method.

Chapter 5 will extend much of this analysis to various flavors of the GIMP algorithm

currently implemented in Uintah. An examination of many of the implementation

details will show how these choices can affect spatial errors in the method. Chapter

6 will take a close look at the details of the time-stepping algorithms currently

used within the MPM framework. An analysis of temporal errors will not only

provide a mathematical understanding of behaviors acknowledged in the literature,

but will also help practitioners select time-steps which not only satisfy stability

constraints, but also balance space and time errors. Chapter 7 will take our

enhanced understanding of errors in MPM and develop extrapolation techniques

to further improve spatial accuracy. Lastly, Chapter 8 will provide some extensions

to the current ideas and future work.

CHAPTER 2

RELEVANT WORK

This chapter provides some of the historic background supporting the Material

Point Method. Recently, Brackbill provided an overview of a number of related

particle methods [14] which is helpful in understanding where MPM fits in with the

particle community. The purpose of this section is not to provide an exhaustive

biography of MPM with comparison to all predecessors and methodological siblings.

Rather, an attempt will be made to hit the salient points of comparison and contrast

with respect to this work.

The Material Point Method (MPM) is a mixed Lagrangian-Eulerian method

with moving particles on a background grid. MPM [47, 50] descends from a long line

of Particle-in-Cell (PIC) methods, specifically as a solid mechanics extension to the

“full particle” formulation of PIC called FLIP [16, 15]. More recently, Bardenhagen

and Kober [8] generalized the development that gives rise to MPM and showed

that MPM can be considered a subset of their “Generalized Interpolation Material

Point” (GIMP) method. These methods use similar approaches to Smoothed

Particle Hydrodynamics (SPH), namely to use an integral representation of field

variables, or kernel approximation, when solving the governing equations. For

example, in SPH, the evaluation of a field variable at a position x involves a weighted

sum of particle data multiplied by a smoothing kernel function in the neighborhood

of x. The extent of the neighborhood, or influence domain, is determined by the

smoothing lengths of the particles. MPM similarly employs the idea of particles

and particle smoothing kernel functions. However, unlike some particle methods

where each particle represents a specific object, or collection of objects, such as

electrons or stars, MPM primarily uses particles and their associated volumes to

6

partition a continuum. In MPM, particles are used to represent the Lagrangian

state of a material. To solve the equations of motion, particle functions spread (or

project) information to a background grid on which the equations of motion are

solved. The background grid cells implicitly define influence domains, effectively

eliminating the need for neighbor searches when a fixed Cartesian mesh is used. As

mentioned earlier, the Generalized Interpolation Material Point method (GIMP) [8]

was developed as an extension to MPM that modifies the type of particle functions

used.

Although not derived directly from what are classically considered as meshfree

or meshless methods, MPM falls within a general class of meshfree methods and

is discussed within the meshfree community since it has both many of the same

advantages and many of the same challenges as other meshfree methods [31]. Like

many meshfree methods, the primary partitioning of the material does not involve

a polygonal tessellation (as in finite elements), but rather some alternative non-

mesh-based unstructured representation. However, unlike fully mesh-free methods,

such as the Meshless Local Petrov-Galerkin Method (MLPG) [4, 26, 25, 2, 3],

MPM utilizes a background mesh to perform differentiation, integration, and solve

the equations of motion. The use of a background mesh is still similar to other

meshfree methods such as the Element Free Galerkin Method (EFGM) [11]. While

the background mesh is formally free to take any form (such as in the Particle

Finite Element Method [36], where the mesh is created by a Delaunay triangu-

lation of particles), it is most often chosen for computational efficiency to be a

Cartesian lattice (i.e., segments, quadrilaterals and hexahedra in 1-D, 2-D and 3-D

respectively). These functions are used, in essence, as a means of discretizing the

continuum equations, with the domain of these functions being an alternative (in

the sense of versus particles) representation of the deformed configuration of the

material. Nodal integration based upon particle positions as is used in other particle

methods such as PIC methods [20] is employed during the solution process.

As was previously stated, these algorithms have enabled, from the engineering

perspective, complicated large-deformation simulations where finite element-type

7

methods often fail due to numerical issues such as mesh-entanglement. While the

broad applicability and robustness of these methods has been used to encourage

their adoption within the engineering community, the final critique consisting of a

detailed understanding of the basic error properties of the method is just starting

to form.

With all numerical methods, the accuracy of the method can depend highly

on the accuracy of the numerical quadrature used. For some methods, like the

finite element method, defining regions on which to perform integration and the

act of numerical integration itself are well established tasks. In meshfree methods,

however, information is often stored at seemingly “random” positions, and hence

the act of numerical integration becomes more difficult. The issue of numerical

integration within meshfree methods has received much attention and is well studied

(e.g., see Dolbow and Belytschko [19] where the effect of meshfree shape functions

on integration error is reviewed).

The difficulty of various quadrature schemes, especially when using background

grid cells as integration domains within Galerkin implementations, is one reason

that collocation methods and nodal integration have been explored [9, 17]. It is

these collocation schemes that particle methods such as PIC, SPH, and MPM most

resemble. Unfortunately, detailed analysis of numerical integration errors within

particle methods is limited in the literature. Vshivkov provides a detailed analysis

of the projection errors in PIC [52], showing that the error depends both on the grid

spacing and the mean number of particles in a cell. Recently, Quinlan et al. [38]

looked at the truncation error when approximating spatial derivatives within SPH,

showing that the error depends on smoothing length and the ratio of particle spacing

to smoothing length. Both the particle-centric nature of the shape functions in both

PIC and SPH, and the difference between shape functions in SPH and MPM, make

the straightforward application of these results to MPM difficult. It is because of

this that an analysis of integration errors specific to MPM is appropriate.

Spatial integration errors were quickly determined to be the limiting factor in the

accuracy and stability of MPM. One proposed way to ameliorate the convergence

8

problems found in MPM was to move away from the idea of nodal integration and

instead think of the particles as having extent within the quadrature scheme. Bar-

denhagen and Kober [8] accomplished this with GIMP by adding particle charac-

teristic functions. There were questions, however, on how to evolve these functions

in time within a multidimensional simulation. Since the deformation gradient is

only maintained at one point within a particle’s voxel, it is unclear that the use

of this information to deform particles’ voxels is sufficient to maintain a partition

of the deformed domain. And, if it were sufficient, it is even more unclear how

to accomplish the accurate spatial integration of these deformed voxels. Ma et al.

[34] proposed another approach for evolving the particle characteristic functions by

adding massless corner particles to explicitly track the deformation of a particle’s

voxel, or integration domain.

Temporal errors have also received little formal analysis directly applicable to

the original MPM method as described by Sulsky et al. Outside of some work by

Love and Sulsky [32, 33] analysing an energy consistent implementation of MPM

(the second of these papers showing an implicit implementation to be uncondi-

tionally stable and energy-momentum consistent), the most comprehensive look at

temporal errors in MPM thus far has been by Bardenhagen [6] and subsequently

Wallstedt and Guilkey [55] in which rigorous tests were performed comparing

various explicit time-stepping algorithms which have appeared in the literature.

Specifically “Update Stress First” (USF), “Update Stress Last” (USL), and centered

difference (CD) methods were compared, with USL and CD showing superiority

with respect to overall error magnitudes. While CD was shown to have the lowest

error of the time-stepping methods in their tests, the method showed no temporal

error convergence in the regions of time-step selection where their simulations were

stable. While the comparisons shed much light on expected behavior of the various

time-stepping schemes, a detailed analysis of the temporal errors withing the MPM

framework still did not exist, nor had the expected temporal convergence properties

of the methods been fully demonstrated.

9

Tran et al. [51] did analyze temporal errors in a variation of MPM developed for

the simulation of gas dynamics problems; however, their use of a particle volume

normalization procedure precludes the direct application of their conclusions to

the original MPM method. Many of their analysis techniques are applicable, and

Chapter 6 expands on their analysis to help understand these errors in the context

of the original MPM method.

CHAPTER 3

OVERVIEW OF THE MATERIAL POINT

METHOD

The Material Point Method is a mixed Lagrangian and Eulerian method with

particles representing the discrete Lagrangian state of a material. The history

dependent properties of a material are carried and updated on the particles. A

background mesh is also used, in part to solve the equations of motion. This

background mesh can be non-uniform and be comprised of elements of various

shapes; however for computational efficiency a uniform Cartesian grid is almost

always employed. Among other benefits, a uniform Cartesian grid eliminates the

need for computationally expensive neighborhood searches during particle-mesh

interaction. Particle information is projected to this background mesh, from which

gradients required for constitutive model evaluation (at the particles) are calculated

and the equations of motion are solved. Using the solution to the equations of

motion on the grid, the material state, minimally velocities and positions, is then

updated at the particles.

We will begin this chapter with a brief overview of the solid mechanics required

to understand the development of the method, including the Galerkin discretization

of equations of motion and the constitutive models used. Next, we will show

how various discretizations and approximations lead to what is known as MPM.

Standard MPM will be reviewed followed by moving-mesh MPM. Various choices for

grid basis functions will be reviewed since following chapters devote much attention

to the consequences of their use. The Generalized Interpolation Material Point

Method (GIMP), an extension to MPM, will then be reviewed. Lastly, various

options for implementing kinematic boundary conditions are presented.

11

3.1 Solid Mechanics Overview

This section provides a brief overview of the basic mechanics and governing

equations required to understand the development of the Material Point Method

with respect to solid mechanics problems. A basic Galerkin discretization of the

equation of motion is presented, followed by a brief explanation of the constitutive

model used for all of the problems in this work. A good overview of continuum

mechanics, including numerous constitutive equations, is provided by Spencer [43].

Galerkin discretizations are the basis for finite element methods and a full treatment

of these techniques can be found in most any finite element method text [57, 27].

3.1.1 Galerkin Discretization of Equation of Motion

The equation of motion for a continuum in the updated Lagrangian frame is

given by:

ρa = ∇ · σ + ρb. (3.1)

Here, ρ is the material density, a is acceleration, σ is Cauchy stress (assumed to

be symmetric in this work), and b is the acceleration due to body forces (such as

gravity). Next, we write acceleration as a linear combination of trial basis functions

{φi}, where a(x) =
∑N

i=1 aiφi(x). Substituting this into (3.1) and taking the inner

product of each term with a test function φj (φj is selected from the set of trial

basis functions above, and thus the range of j is also from 1 to N. From here on

out, the range of the indices are tacit so that the notation can be simplified) leaves

us with the Galerkin weak-form of the equation of motion:

(ρ
∑

i

aiφi, φj) = −(σ,∇φj) + (ρb, φj), (3.2)

where the notation (a, b) represents the inner product of the functions a and b over

our domain Ω, i.e., (a, b) =
∫

Ω
a · b dΩ. Equation (3.2) represents a linear system

written as the following matrix equation1:

Ma = f int + f ext, (3.3)

1When written as a linear system, it is tacitly understood that lower case terms are arrays of
values, as in (3.3).

12

where

Mij =

∫

Ω

ρφiφj dΩ, (3.4)

f int
i = −

∫

Ω

σ · ∇φi dΩ, (3.5)

and

f ext
i =

∫

Ω

ρbφi dΩ. (3.6)

One method for simplifying (3.3) such that solving a linear system is no longer

required is to lump the mass matrix M–that is, substitute M with a diagonal matrix

M̃. There are a number of methods to mass lump M [27]; however, we will only

consider mass lumping using the row-sum technique, as it is the most prevalent used

method employed in practice within the MPM community. The row-sum technique

is particularly simple: M̃ii = mi =
∑

j Mij. Once M has been mass lumped, the

solution to (3.3) reduces to:

ai = (f int
i + f ext

i)/mi. (3.7)

If the basis functions maintain a partition of unity within the domain, i.e.,
∑

i φi(x) = 1 for all x ∈ Ω, the diagonal term mi can be calculated directly and

efficiently, without generating all the terms in M, since

mi =
∑

j

Mij =

∫

Ω

ρφi

∑

j

φj dΩ =

∫

Ω

ρφi dΩ. (3.8)

The above gives us a procedure to solve for a. While not technically part of

a Galerkin discretization, another set of equations are required to describe the

behavior of the material in time. Simply put, the acceleration of the material is

equivalent to the second time derivative of the displacement of the material u. Or,

ü(x, t) = a(x, t). (3.9)

One could also solve the equivalent set of coupled first-order ODEs:

v̇(x, t) = a(x, t), (3.10)

u̇(x, t) = v(x, t). (3.11)

The temporal discretization of the above equations are referred to as the time-

stepping method and is discussed in future sections.

13

3.1.2 Constitutive Models

The above equations of motion in a continuum apply equally to all materials,

whether they be steel, plastic, or any other material. What makes various ma-

terials unique is their dependence of stress on various other kinematic properties

of the body, such as the strain tensor. A set of constitutive equations define this

dependence and will allow us to calculate the above stress σ given other material

properties. Constitutive models are themselves a voluminous subject and are not

a focus of this work. Numerous constitutive models can be found in continuum

mechanics texts (see [43] for example); however, linear-elastic and neo-Hookean

models are the only models considered here.

A multi-D linear elastic model can be given as

σ = λI trE + 2µE, (3.12)

where σ is the stress tensor, I is the identity matrix, λ is Lamé’s first parameter,

and µ is the shear modulus of the material. The strain tensor E can be calculated

as

E =
1

2
(F + FT) − I, (3.13)

where F is the deformation gradient Fij = ∂xi/∂Xj.

The material model most often used in this work is the 1-D neo-Hookean model

which better approximates elasticity with large deformations. This model is written

simply (assuming a Poisson’s ratio of zero) as

σ =
E

2
(F − F−1), (3.14)

where E is Young’s modulus.

3.2 MPM Discretization

The MPM procedure begins by discretizing the problem domain Ω with a

set of material points, or particles. These particles are assigned initial values of

position (in the reference or material frame), displacement, velocity, mass, volume,

and deformation gradient, denoted Xp, up, vp, mp, Vp, and Fp respectively. The

14

subscript index p is used to distinguish particle values versus an index of i for grid

node values. The current position of a particle in the deformed configuration can

easily be calculated as xp = Xp +up, where Xp is the initial position in the material

frame and up is the displacement vector. Alternatively, instead of velocity and mass,

momentum and mass density may be prescribed at the particle location, from which

mp and vp can be calculated. Depending on the simulation, other quantities may

be required at the material points as well, such as temperature. A computational

background mesh fully encompassing the simulated objects is constructed, which

for ease of computation is usually chosen to be a regular Cartesian lattice. Figure

3.1 depicts a representation of a typical 2-D MPM problem.

Ω

xi

xp

Figure 3.1. Typical 2-D MPM problem setup. The dotted line represents the
boundary of the simulated object Ω and each closed point represents a material
point used to discretize Ω. The square mesh represents the background grid. Each
square in the background grid is a grid cell and grid nodes are located at the corners
of grid cells.

15

3.2.1 Standard MPM

In order to advance from time-level tk to tk+1 (all of the following quantities

will be assumed to be at time-level tk unless otherwise noted), the first step in the

MPM computational algorithm involves projecting (or spreading) data from the

material points to the grid. An initial Galerkin projection of particle momentum

allows grid velocity to be calculated:

(ρ
∑

i

viφi, φj) = (ρv, φj). (3.15)

Solving (3.15) for all i and j is again equivalent to solving the following linear

system:

Mv = p, (3.16)

where vi is the velocity associated with node i, M is the mass matrix (3.4), and

pi =

∫

Ω

ρvφi dΩ. (3.17)

To avoid an expensive linear solve, we again mass lump our matrix M, in which

case vi is now found by solving

vi =
pi

mi

=

∫

Ω
ρvφi dΩ

∫

Ω
ρφi dΩ

. (3.18)

A defining feature of the MPM algorithm is the use of nodal integration to

approximate the integrals in equations such as (3.18). Given an initial undeformed

particle volume V 0
p and its current deformation gradient Fp, the current particle

volume is calculated as

Vp = det(Fp)V
0
p . (3.19)

Using this updated volume, (3.18) is approximated with nodal integration (a quasi-

midpoint rule) where field quantities are assumed to be sampled by particle values

as follows:

vi =
pi

mi

≈
∑

p ρpvpφipVp
∑

p ρpφipVp

=

∑

p
mp

Vp
vpφipVp

∑

p
mp

Vp
φipVp

=

∑

p mpvpφip
∑

p mpφip

, (3.20)

where φip = φi(xp) is the basis function centered at grid node i evaluated at the

particle position xp. We will define mi =
∑

p mpφip as nodal mass, which also

16

represents the mass-lumped version of what Sulsky and Kaul [48] describe as the

consistent mass matrix Mij =
∑

p φipφjpmp. Next, the internal force term (3.5)

is found by first calculating stress as a function of the constitutive model and the

deformation gradient stored with each particle, then by taking the divergence of

that stress. Again, nodal integration is used as a means of approximating the

integral in the expression:

f int
i = −

∫

Ω

σ · ∇φi dΩ ≈ −
∑

p

σp · ∇φipVp, (3.21)

where the stress is a function of the deformation gradient, σp = σ(Fp), and where

∇φip = ∇φi(xp). The external force term (3.6) is then calculated given any body

forces as follows:

f ext
i =

∫

Ω

ρbφi dΩ ≈
∑

p

mp

Vp

bpφipVp =
∑

p

mpbpφip. (3.22)

Using nodal mass mi and the internal and external forces from (3.21) and (3.22)

respectively, we can now calculate nodal accelerations ai using (3.7). Grid velocities

are then updated with an appropriate time-stepping scheme. Implicit time-stepping

schemes exist for MPM [23, 48, 33]; however, we choose to use the explicit Euler-

Forward time discretization presented within the original MPM algorithm, which

has the following expression for the update of velocity:

vk+1
i = vk

i + ai∆t. (3.23)

Velocity gradients are then calculated at the particle positions using the updated

grid velocities:

∇vk+1
p =

∑

i

∇φipv
k+1
i . (3.24)

Lastly, the history-dependent particle quantities are time-advanced. Particle de-

formation gradients, velocities, and displacements are updated using calculated

velocity gradients, grid accelerations, and grid velocities:

Fk+1
p = (I + ∇vk+1

p ∆t)Fk
p, (3.25)

17

vk+1
p = vk

p +
∑

i

φipai∆t, (3.26)

and

uk+1
p = uk

p +
∑

i

φipv
k+1
i ∆t. (3.27)

Equations (3.20)-(3.27) outline one time-step of MPM and assume initialization

of particle values at time t0: u0
p, v0

p, F0
p, and V 0

p . If possible, a simple change of

initializing particle velocities a half time-step earlier, i.e., v
−1/2
p , and using the same

MPM algorithmic procedure outlined above leads to the following set of staggered

central-difference update equations:

v
k+ 1

2

i = v
k− 1

2

i + ai∆t, (3.28)

∇v
k+ 1

2
p =

∑

i

∇φipv
k+ 1

2

i , (3.29)

Fk+1
p = (I + ∇v

k+ 1

2
p ∆t)Fk

p, (3.30)

v
k+ 1

2
p = v

k− 1

2
p +

∑

i

φipai∆t, (3.31)

and

uk+1
p = uk

p +
∑

i

φipv
k+ 1

2

i ∆t. (3.32)

A similar staggered central difference method is used for MPM by Sulsky et al. [49],

the benefits of which are reviewed in detail by Wallstedt and Guilkey [55].

The calculation of σp involves a constitutive model evaluation and is specific for

different material models. The neo-Hookean elastic constitutive model used most

often in this dissertation is more fully described in Section 3.1.2.

3.2.2 Moving Mesh MPM

The term “moving-mesh MPM” that we (and others) employ, denotes an MPM

method that is fully Lagrangian, where the mesh “moves” with the particles.

However, moving-mesh MPM is actually implemented by keeping both the mesh

and particles stationary in the reference configuration and keeping track of displace-

ments for the particles and grid nodes. This is similar to what is done in standard

18

FEM methods with the major difference being that particle locations essentially

define the quadrature point locations. Moving-mesh MPM may seem contrary to

the spirit of MPM, in that typical FEM difficulties such as mesh-entanglement

can occur. However, many of the benefits of standard MPM are still present in

moving-mesh MPM, such as ease of initial discretization of complex geometries

using techniques similar to those used by Brydon et al. in the simulation of foam

[7]. See Figure 3.2 for an illustration of the differences between standard and

moving-mesh MPM.

To help understand the mathematical and algorithmic differences between stan-

dard MPM and moving-mesh MPM, we start by examining the calculation of mass

at grid nodes within the standard MPM algorithm:

mi =

∫

Ω

ρ(x)φi(x) dx (3.33)

≈
∑

p

ρpφi(xp)Vp (3.34)

=
∑

p

mp

Vp

φipVp (3.35)

=
∑

p

mpφip, (3.36)

where ρp ≡ mp/Vp. If instead of the position of the particles, we keep track of

displacements u such that x = X + u(X), we can represent this as

(a) Reference (b) Standard MPM (c) Moving-mesh MPM

Figure 3.2. Standard MPM versus moving-mesh MPM. In moving-mesh MPM,
particles remain at their ideal positions within grid cells (in the reference configu-
ration). In standard MPM, particles change locations and cross grid cells leading
to larger quadrature errors.

19

mi =

∫

Ω0

ρ(X)Φi(X)det(J) dX (3.37)

≈
∑

p

ρpΦi(Xp)det(
∂x

∂X
)V 0

p (3.38)

=
∑

p

mp

Vp

Φipdet(I +
∂u

∂X
)V 0

p (3.39)

=
∑

p

mp

det(Fp)V 0
p

Φipdet(Fp)V
0
p (3.40)

=
∑

p

mpΦip. (3.41)

Here, J is the Jacobian of the mapping from Ω0 to Ω. Therefore, algorithmically,

mass and velocity projections in moving-mesh MPM are very similar to mass pro-

jections in standard MPM, except that Φi is evaluated in the reference configuration

at Xp instead of the deformed configuration at xp. The first algorithmic difference

between moving-mesh MPM and standard MPM then comes when calculating the

deformation gradients Fp. In standard MPM, deformation gradients are time-

integrated as in (3.25). However, the definition of the deformation gradient is

F = I + ∂u

∂X
and since displacements are maintained on the grid, Fp can be directly

calculated from ui:

Fp = I +
∑

i

∇0Φi(Xp)ui, (3.42)

where ∇0 denotes the gradient with respect to coordinates in the reference frame.

Stress can then be calculated from Fp.

The next departure from standard MPM is the calculation of internal force.

Using the relation between the 1st Piola-Kirkhhoff and Cauchy stress tensors: P =

JσF−T , and the appropriate transformation of test functions (via the deformation

gradient), one arrives at the equivalent force calculation and approximation (3.21)

in the reference frame:

f int
i = −

∫

Ω

σ(x) · ∇φi(x) dΩ = −
∫

Ω0

P(X) · ∇0Φi(X) dΩ0 ≈ −
∑

p

Pp · ∇0ΦipV
0
p .

(3.43)

This internal force calculation differs from standard MPM in that ∇0Φ is evaluated

at Xp in the reference configuration, the 1st Piola-Kirkhhoff stress is used instead

20

of the Cauchy stress, and the initial undeformed particle volume V 0
p is used instead

of the updated volume Vp.

The initialization of moving mesh MPM is similar to standard MPM, discretiz-

ing the problem domain with a set of material points and assigning those points

initial particles values, including displacement up = u0(Xp), with u0(X) the initial

displacement field. Particles should be equally-spaced and aligned with the grid

cell boundaries since the major benefits of moving-mesh MPM are only obtained

when particles are in these “ideal” positions.

Since grid displacements are maintained and used in (3.42), initialization also

requires a projection of u0 onto the grid. This is accomplished by initializing ui

through an approximate L2 projection of u0 onto {Φi}. Again, the full L2 projection

would come from solving the following equation:

Au = b, (3.44)

where Aij = (Φi, Φj) and bi =
∫

Ω0 Φi(X)u(X) dX. Continuing with the MPM

philosophy, we solve the above equation first by mass lumping A, then by nodal

integration. Thus we obtain

ui =
bi

∑

j Aij

(3.45)

=

∫

Ω0 Φi(X)u(X) dX
∫

Ω0 Φi dX
(3.46)

≈
∑

p ΦipupV
0
p

∑

p ΦipV 0
p

. (3.47)

A typical moving-mesh MPM algorithm would then proceed as follows: during

initialization, grid displacements are initialized from particle displacements:

ui =

∑

p ΦipupV
0
p

∑

p ΦipV 0
p

. (3.48)

Then, for each time-step, perform the following operations:

21

Solve for mass at grid mi =
∑

p

mpΦip (3.49)

Solve for grid velocity vk
i =

∑

p

mpv
k
pΦip/mi (3.50)

Solve for external forces f ext
i =

∑

p

mpbpΦip (3.51)

Solve for internal forces f int
i = −

∑

p

Pk
p · ∇ΦipV

0
p (3.52)

Solve for grid acceleration ak
i = (f int

i + f ext
i)/mi (3.53)

Time advance grid velocity vk+1
i = vk

i + ak
i ∆t (3.54)

Time advance grid displacements uk+1
i = uk

i + vk+1
i ∆t (3.55)

Time advance particle deformation gradient Fk+1
p = 1 +

∑

i

uk+1
i · ∇Φip (3.56)

Solve constitutive model Pk+1
p = P(Fk+1

p) (3.57)

Time advance particle velocities vk+1
p = vk

p + ∆t
∑

i

ak
i Φip (3.58)

Time advance particle displacements uk+1
p = uk

p + ∆t
∑

i

vk+1
i Φip.

(3.59)

Another significant difference between standard MPM and moving-mesh MPM

is how Fp is calculated. Standard MPM time integrates F as in (3.25), where

moving-mesh MPM calculates Fp directly from grid displacements in (3.56).

As in standard MPM, there are many options for implementation of a moving-

mesh MPM algorithm. Zhang [56], for example, utilizes a version of moving-mesh

MPM which does not re-project the velocity from particles to grid (3.50), but

instead uses the time-updated grid velocity from the previous step (3.54).

3.2.3 Choice of Grid Basis Functions

In the discussion above, we purposely did not define precisely what grid basis

functions one should use for MPM. In the MPM algorithm outlined above, the

choice of φ can be considered another option of the method.

22

Due to their compact support, ease of computation, and partition of unity

property, piecewise-linear basis functions are probably the most commonly used

choice (with their natural extensions to bi-linear and tri-linear basis functions in

two dimensions and three dimensions respectively). The one-dimensional form of

the piecewise-linear basis function, and its gradient are given by:

φ(x) =

{

1 − |x|/h : |x| < h

0 : otherwise,
(3.60)

∇φ(x) =











h : −h < x < 0

−h : 0 < x < h

0 : otherwise,

(3.61)

where h is the grid spacing. The basis function associated with grid node i at

position xi is then φi = φ(x − xi). The basis functions in multiple dimensions are

separable functions, constructed using (3.60) and (3.61) in each dimension. For

example, in three dimensions, we have:

φi(x) = φx
i (x)φy

i (y)φz
i (z) (3.62)

and

∇φi(x) = ∇φx
i (x)∇φy

i (y)∇φz
i (z). (3.63)

It is worth noting that while these piecewise linear basis functions are the same

as those used in many low-order finite element methods, the discontinuous nature

of ∇φ is important in the analysis of MPM since it is a mixed Lagrangian-Eulerian

method. Therefore, example versions of Equations (3.60) and (3.61) are explicitly

shown in Figure 3.3 (top). In finite element methods, integration over the domain

is decomposed into the sum of integrals over elements with quadrature points

remaining fixed within elements. In MPM, however, particles act as integration

points and are allowed to advect through the domain and across these discontinuities

in ∇φ. The consequences of using particles to integrate discontinuous functions will

be explored in Chapter 4.

Recently, the benefits of smoother basis functions have been explored within

the MPM framework. As Bardenhagen and Kober [8] described in the development

23

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

x

φ
(x

)

−L 0 L

−1/L

0

1/L

x

∇
φ
i(
x
)

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

x

φ
(x

)

−2L −L 0 L 2L
−1/L

0

1/L

x

∇
φ
i(

x
)

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

x

φ
(x

)

−2L −L 0 L 2L
−1/L

0

1/L

x

∇
φ
i (
x
)

Figure 3.3. Example set of six equally-spaced 1-D basis functions (left column) and
corresponding gradients for a selected grid node (right column) for piecewise-linear
(top row), quadratic B-spline (middle row), and cubic B-spline (bottom row) basis
functions.

of GIMP, lack of regularity in ∇φ is conjectured to be the root cause of what is

referred to as “grid cell crossing instabilities”. As can be seen in Figure 3.4(a),

piecewise-linear basis functions are only C0 continuous at cell boundaries. Tran et

al. [51] performed a detailed analysis concerning temporal errors within an MPM

fluids framework in which the grid crossing errors arising from use of piecewise-linear

basis functions were precisely determined. Chapter 4 will focus on how the lack of

smoothness of the standard piecewise-linear basis functions (3.60) causes significant

spatial quadrature errors, and how the use of smoother basis functions, such as

B-splines, significantly reduces these errors.

In one method to construct the quadratic B-spline basis function for grid node

i, the knot vector {xi−3/2, xi−1/2, xi+1/2, xi+3/2} is used, where xi is the position of

24

node i, and xi+1/2 = 1
2
(xi + xi+1). However, if node i = 1 is one node away from

the left boundary x0, the knot vector {x0, xi−1/2, xi+1/2, xi+3/2} is used. And lastly,

the basis function for the border node i = 0 is defined by adding two B-splines

defined by the knot vectors {xi, xi, xi+1/2, xi+3/2} and {xi, xi, xi, xi+1/2}. A similar

technique is used for the right boundary. As an example, an internal zero-centered

quadratic B-spline has the form

φ(x) =



















1
2h2 x

2 + 3
2h

x + 9
8

: −3
2
h ≤ x ≤ −1

2
h

− 1
h2 x

2 + 3
4

: −1
2
h ≤ x ≤ 1

2
h

1
2h2 x

2 − 3
2h

x + 9
8

: 1
2
h ≤ x ≤ 3

2
h

0 : otherwise.

(3.64)

This method of constructing quadratic B-spline basis functions not only guaran-

tees the peak of the basis functions to be centered over the grid nodes when nodes

are equally spaced, but also guarantees the partition of unity property,
∑

i φi(x) = 1

for any x ∈ Ω, required for the form of the implicit mass lumping often used in

MPM. This method also generates interior basis functions that are zero on the

boundary, i.e., φi6=0(x0) = 0. This boundary property combined with the partition

of unity property combine such that a boundary basis function evaluates exactly to

1 on the boundary, allowing for easier application of boundary conditions. As with

the standard piecewise-linear basis functions, multidimensional basis functions can

be created by tensor products of the 1-D constructs.

It is worth noting that a set of these quadratic B-spline basis functions maintain

the partition of unity property required by the mass-lumping implicit in the MPM

projection functions such as is (3.20). An example set of these basis functions is

shown in Figure 3.4(b).

Cubic B-splines may also be used and are, perhaps, somewhat more intuitive

since the nodal positions are the values used in the knot vectors. Cubic B-splines

are C2 continuous and span four grid cells in each dimension. The knot vector

{xi−2, xi−1, xi, xi+1, xi+2} is used for internal nodes. When node i is one node away

from the left boundary, the vector {xi−1, xi−1, xi, xi+1, xi+2} is used. And when

node i is the left boundary, the basis function is defined by adding the two B-

splines defined by the vectors {xi, xi, xi, xi+1, xi+2} and {xi, xi, xi, xi, xi+1}. Again,

25

(a) Piecewise-Linear (b) Quadratic B-Spline

(c) GIMP

Figure 3.4. Example sets of 1-D basis functions used in MPM. Each set of basis
functions shows an accompanying set of particles (with height representing velocity)
and the corresponding velocity field on the grid after projecting particle values using
(3.20). Piecewise-linear basis functions result in piecewise-linear velocity fields with
a discontinuity of velocity gradients occurring at grid node locations. Both B-spline
and GIMP basis functions result in smoother fields.

construction of right boundary basis functions are similar. An internal zero-centered

cubic B-spline has the following form:

φ(x) =































1
6h3 x

3 + 1
h2 x

2 + 2
h
x + 4

3
: −2h ≤ x ≤ −h

− 1
2h3 x

3 − 1
h2 x

2 + 2
3

: −h ≤ x ≤ 0
1

2h3 x
3 − 1

h2 x
2 + 2

3
: 0 ≤ x ≤ h

− 1
6h3 x

3 + 1
h2 x

2 − 2
h
x + 4

3
: h ≤ x ≤ 2h

0 : otherwise.

(3.65)

Figure 3.3 (bottom) shows an example set of cubic B-spline basis functions for

six equally spaced grid nodes (left) and their derivative functions (right). Multi-

dimensional B-spline basis functions are created by taking the tensor product of 1-D

basis functions. These multidimensional spline basis functions will have a rectilinear

footprint on the grid and are not the same as the radial spline basis functions used

in other mesh-free methods, such as SPH.

26

The above methods for constructing quadratic and cubic B-splines are used

primarily in Chapter 4. One downside to these “boundary” B-spline functions is

they do not allow the representation of nonzero slope solutions at the boundary.

Another method for constructing B-spline basis functions used in Chapters 5 and

beyond is by convolving piecewise-constant basis functions with themselves:

φ = χ ∗ χ ∗ χ/(|χ|)2, (3.66)

where χ is the piecewise constant basis function:

χ(x) =

{

1 : |x| < 1
2
l

0 : otherwise,
(3.67)

and l is the width of χ. A separable 3-D B-spline basis function can then be

constructed using (3.62).

If we depart from the idea that each grid node corresponds to a single basis

function, we can discretize our 1-D domain of length L with n knots, and construct

quadratic B-spline basis functions from the open knot vector:

[x0, x0, x1, . . . , xi, . . . , xn−2, xn−1, xn−1], (3.68)

where xi = x0 + i · h, and the knot spacing h = L/(n − 1). For a k-order B-splines

(for quadratic B-splines, k = 3), there will be n + k − 2 basis functions, which are

calculated recursively as

φi,k = φi,k−1
x − xi

xi+k−1 − xi

+ φi+1,k−1
xi+k − x

xi+k − xi+1

, (3.69)

φi,1 =

{

1 : xi ≤ x < xi+1

0 : otherwise.
(3.70)

This is more akin to high-order finite elements, where the number of degrees of

freedom remain constant within each grid cell. However, unlike high-order finite

elements, these B-spline basis functions maintain the partition of unity property

required for the simple mass-lumping implicit in the MPM algorithm. These B-

spline basis functions are also C1 continuous at grid node boundaries, allowing for

reduced quadrature and grid crossing errors [44]. Figure 3.5 shows examples of

these modified boundary B-spline basis functions.

27

1

0
 0 1 2 3 4 5

(a) Quadratic B-Spline (k = 3)

1

0
 0 1 2 3 4 5

(b) Cubic B-Spline (k = 4)

Figure 3.5. Example sets of modified boundary 1-D B-spline basis functions used
in MPM.

3.2.4 Generalized Interpolation Material Point
Method (GIMP)

The Generalized Interpolation Material Point (GIMP) Method [8] is an exten-

sion to MPM, which takes advantage of the fact that integral equations in MPM

take the form:

gi =
∑

p

gpφip =
∑

p

gp

∫

Ω
φi(x)δ(x − xp) dΩ
∫

Ω
δ(x − xp) dΩ

, (3.71)

with δ the Dirac delta. GIMP then replaces δ with a general particle characteristic

function χp(x) centered at the particle position xp. This results in new projection

equations of the form:

gi =
∑

p

gpφip, (3.72)

where φip is the weighting function given by

φip =
1

∫

Ω
χp(x) dΩ

∫

Ω

φi(x)χp(x) dΩ. (3.73)

Equations using ∇φip, such as (3.21) are similarly modified to use a gradient

weighting function:

∇φip =
1

∫

Ω
χp(x) dΩ

∫

Ω

∇φi(x)χp(x) dΩ. (3.74)

28

GIMP is often implemented using standard piecewise-linear grid basis functions

(3.60) and piecewise-constant particle characteristic functions:

χp =

{

1 : |x| < 1
2
lp

0 : otherwise,
(3.75)

in which case the 1-D MPM and GIMP weighting functions can be grouped together

in the following general form:

φ =























1 − (4x2 + l2p)/(4hlp) : |x| < lp
2

1 − |x|/h : lp
2
≤ |x| < h − lp

2
(

h + lp
2
− |x|

)2

/(2hlp) : h − lp
2
≤ |x| < h + lp

2

0 : otherwise,

(3.76)

where lp is the width of the particle characteristic function χp. Again, the basis

function associated with node i located at position xi is φi(x) = φ(x − xi) and

the multi-D weighting function is constructed as the tensor product of the 1-D

weighting functions in each direction.

Since a particle moves and its voxel deforms in time, the question then becomes

how to handle lp, the vector of widths of particle p’s voxel in a multi-D simulation.

Ideally, we would like the particles’ voxels to deform and tile space for all time. In

1-D, this was accomplished by setting lp equal to the particle’s time-updated volume

Vp. This scheme results in particle specific, time-dependent weighting functions φip

and was referred to as contiguous-particle GIMP (cpGIMP). For general multi-D

simulations, however, the use of rectilinear χp will not allow a perfect tiling to

occur.

One choice for handling lp in a multi-D simulation, and what we will refer to as

standard GIMP, is to leave the particle lengths unchanged for all time, i.e., lp = l0p,

where the superscript indicates initial particle size. Standard GIMP weighting

functions are then particle specific, but not time-dependent. Another option is

uniform GIMP (uGIMP), where a single smoothing length l is used for all particles,

for all time. Note that in the case where the initial discretization was performed

using uniform particles, standard GIMP would be the same as uGIMP. And lastly,

while space can not be tiled in a general multi-D simulation using rectilinear χp,

29

updating lp in time to give a rough approximation to the particle’s deformed voxel

will still be referred to as cpGIMP. The cpGIMP approximation used in this work

is lp = l0p ·diag(F), such that the particle size varies through time as dictated by the

appropriate diagonal term of the deformation gradient F. Note that lp here refers

to the full particle width, and not the half-width as used in the original GIMP

formulation.

Figure 3.6 shows an example 1-D GIMP weighting function φip and gradient

weighting function ∇φip for a piecewise-constant χp with a characteristic length of

l. Notice that that while φip looks smooth in Figure 3.6(a), the dashed lines show

locations of breaks in continuity which become apparent in ∇φip in Figure 3.6(b).

These breaks in continuity will become important in later analysis.

−h − l/2 −h −h + l/2 −l/2 0 l/2 h − l/2 h h + l/2
0

0.2

0.4

0.6

0.8

1

x
p

φ i (
x p)

(a) GIMP Weighting Function

−h − l/2−h−h + l/2 −l/2 0 l/2 h − l/2 h h + l/2

−1/h

0

1/h

x
p

∇
 φ

i(x
p)

(b) GIMP Gradient Weighting Function

Figure 3.6. Example GIMP weighting function φip, and gradient weighting

function ∇φip centered at zero using piecewise linear grid basis functions and
piecewise constant particle characteristic functions χp. Dotted lines denote breaks
in the continuity of the functions.

30

3.2.5 Kinematic Boundary Conditions

One of the conveniences afforded by the use of a Cartesian background grid

is the ease of application of kinematic boundary conditions. That is, Dirichlet or

Neumann conditions, or a combination, on the velocity field. Note that if no treat-

ment is given to the boundary nodes, then particles are able to freely advect from

the computational domain in what could be considered a zero gradient Neumann

condition. This important part of the algorithm has received scant treatment in the

literature (although it is very relevant when one is actually implementing MPM),

so we turn attention to it here.

In traditional MPM, boundary conditions only need be applied on those nodes

which coincide with the extents of the computational domain. As illustrated

in Figure 3.4(a) nodes beyond those boundaries are not influenced by particles

within the domain. This can be considered a result of the zero width of the

Dirac delta characteristic functions. Boundary conditions must be applied to the

velocity that has been projected to the nodes (3.20), the time advanced velocity

(3.23), and the acceleration (3.7). For Dirichlet conditions, this simply means

overwriting the calculated values for the velocities with the prescribed values. For

the acceleration, some debate exists regarding the proper means of treatment. The

usual approach has been to assume that a Dirichlet condition for velocity implies

that the acceleration should be zero on those boundary nodes. However, it is also

possible that if (3.23) were solved for acceleration:

ai = (vk+1
i − vk

i)/∆t, (3.77)

the proper value for the acceleration at the boundary nodes would be computed

based on the difference between the time advanced velocity (after application of

boundary conditions) and the projected velocity (without the application of bound-

ary conditions). Put another way, acceleration on the boundary nodes can be

considered to reflect the force required to bring the velocity at those nodes from

the projected value to the prescribed value.

While these two approaches to the acceleration seem substantially different, the

difference in simulation results is very subtle. Indeed, when both approaches are

31

tested with the manufactured solution described in Section 5.2.1, the superiority of

either is not apparent. Currently, the implementation in Uintah uses the boundary

treatment given in (3.77).

In addition to prescribed velocity boundary conditions, “symmetry” boundary

conditions are also frequently useful. Symmetry BCs are used to represent a plane of

symmetry, which allows the use of a reduced computational domain, or a frictionless

surface. They are achieved by simply applying a zero velocity Dirichlet condition

on the component of velocity normal to a boundary, while allowing the other

components to remain at their computed values. Acceleration is handled in the

same manner, with the normal component either zeroed out, or computed as in

(3.77).

When using GIMP or B-Spline MPM, there are additional considerations in

the applications of the boundary conditions. Namely, because of their increased

extents, it is possible for particles to influence, and be influenced by, nodes that lie

outside of the simulation domain, (see Figures 3.4(b) and 3.4(c)). In Uintah, these

are referred to as “extra” nodes, but may also be called “ghost” nodes by other

investigators. Boundary condition treatment of these nodes for Dirichlet conditions

is the same as for the regular boundary nodes, namely, their computed values are

replaced by prescribed values as described above.

In treating symmetry boundaries, the extra nodes require special care. In

particular, the normal component of velocity for these nodes is no longer set to

zero, but rather should be set to the negative of the value of the node opposite the

boundary. The need to do so is apparent if one considers two objects approaching

a collision plane symmetrically. The normal component of velocity on the opposite

sides of that plane will have opposing signs.

CHAPTER 4

ANALYSIS AND REDUCTION OF

QUADRATURE ERRORS IN THE

MATERIAL POINT METHOD

While MPM and GIMP have been shown to be extremely robust, detailed

analysis of the errors in MPM, even for simple problems, is lacking. This is not

surprising, as MPM suffers the same challenges as experienced in almost all particle

and meshfree methods – finding a common framework or point of reference from

which to define quantities like truncation error and quadrature error. Such analysis

is not only needed as part of the classic numerical verification process advocated in

the engineering sciences, but also for driving improvements of the methodology.

Consider particle grid crossing – one of the motivations given for the devel-

opment of GIMP. Bardenhagen et al. [8] demonstrate numerically that particles

crossing grid cell boundaries cause unexpected computational artifacts, especially in

the computation of internal forces. In a similar fashion as is often done in the SPH

literature, the problem was ascribed to the choice of particle representation. Not

based upon direct analysis of MPM but upon exploiting the analogies between

MPM and other particle methodologies, GIMP introduces the idea of particle

characteristic functions which have the effect of smoothing the impact of a particle’s

information on the underlying grid. The hope was that through this generalization

one could eliminate these grid crossing artifacts. Although GIMP greatly reduced

the impact of grid crossing, it did not eliminate it. The improved computational

results of GIMP merit further investigation to explain why it provided tremendous

benefit or to postulate why it did not completely solve the problem.

We believe that many of the numerical artifacts seen when employing MPM

33

can be understood as being the result of the nature of the quadrature rules built

into the methodology. This chapter will examine the errors in internal force due

to quadrature errors in the MPM framework. Detailed analysis will be performed

using the standard piecewise-linear basis functions often used in MPM simulations.

The hypothesis of smoother grid basis functions eliminating internal force errors

will be tested by extending the analysis to both quadratic and cubic B-spline

basis functions within the original MPM framework, showing that they do indeed

reduce errors in internal forces. Lastly, we will perform full dynamic simulations,

showing that MPM with B-spline basis functions provide convergence properties

not achievable with the standard piecewise-linear basis functions.

4.1 Interpretation of Particle Volume

It is our contention that understanding how particle volumes are handled in

MPM is necessary for developing a coherent analysis of the method. Every MPM

simulation is initialized by discretizing the problem domain Ω with a set of parti-

cles. The exact method of discretization can vary depending on the situation, but

normally consists of placing particles so that one obtains coverage of the material

configuration. One example of a variation might be whether particles reside on the

trace of the material configuration or not (which might be preferable for handling

boundary conditions).

It is often convenient to imagine partitioning the material frame Ω into a set

of initial voxels Ω0
p (we use the term voxel to denote the volumetric subset of

the domain and reserve the use of the term volume to denote the scalar quantity

describing the integral over a voxel) such that Ω =
⋃

p Ω0
p. The superscript is used

to emphasize that this occurs at time level zero (i.e., in the material or reference

configuration). The concept of a “particle” in MPM is that of one of these voxels;

however, the geometric information of the voxel itself is normally not maintained.

A position xp ∈ Ω0
p (usually, but not always, consisting of the geometric centroid of

the voxel) and volume V 0
p =

∫

Ω0
p

dΩ are held by each particle. With each time-step

of the MPM algorithm presented in Section 3.2.1, a particle’s position and volume

34

are updated. As the material deforms, the voxels tacitly deform as denoted in

Figure 4.1. It is assumed that at any time level, the deformed configuration of the

material is represented by the union of the deformed voxels and that the sum of

the volumes equals the volume of the deformed material.

Integration within MPM relies upon a particle’s position and volume; it is used

directly in calculating fp
i in (3.21) and is used tacitly in the mass projection since

the mass at a grid node i is given by the following relation:

mi =

∫

Ω

ρ(x)φi(x) dΩ ≈
∑

p

ρpφipVp ≈
∑

p

1

Vp

mpφipVp =
∑

p

mpφip. (4.1)

It is important to appreciate that the choice within MPM to only maintain a

particle’s volume and a single sample point (particle position) dictates the quadra-

ture approximation properties of the method. MPM effectively employs, in the

worst case, first-order Riemann integration of field quantities. In the 1-D case

where the voxel consists of a line segment of length L and the sample point can

be maintained at the center of the interval, the form of the integration reduces to

the familiar midpoint rule. In the multi-dimensional case, it is more difficult to

show that one can do better than first-order if one only monitors volume and a

single position, as the general shape of the voxel is only constrained by the laws of

motion and the sampling point is not required to be maintained at the geometric

x

Xp
xp

u
X

Figure 4.1. Reference (left) and deformed (right) configurations. The dotted lines
represent the voxel associated with a particle in both the reference and deformed
configurations. Note that the voxel of a particle does not maintain its shape in the
deformed configuration, but space can still be tiled.

35

centroid. Much of the anomalous behavior exhibited by MPM can be attributed to the

quadrature approximation properties of the method. In fact, many of the proposed

improvements to MPM either explicitly or tacitly attempt to control and improve

MPM’s quadrature behavior.

For example, Bardenhagen et al. [8] try to address the problem of tracing

deformed particle voxels with contiguous particle GIMP by using updated volumes

in the weighting function Sip. This is only used in 1-D and assumes space remains

tiled with the updated set of Ωp, xp is in the center of the update voxel Ωp, and the

width of Ωp is given by the updated particle volume Vp. This technique still uses

information at the particle position to approximate the deformed shape of Ωp.

Recently, Ma et al. [34] have modified GIMP to approximate the deformed state

of each Ωp, solving the problem of tiling space by placing massless tracking particles

at the corner of the initial square voxels. These particles are advected with the grid

velocity and are used to define the deformed voxel shape.

One interpretation of both of these previous efforts is that both have focused

on improving the means of computing (or maintaining) the measure of integration

– that is, attempting to more faithfully represent the voxel. Both, however, accom-

plish this at a computational cost which degrades the raw efficiency one can gain

from the algorithm as presented in Section 3.2.1. In this work, we have taken an

alternative view – to acknowledge the errors introduced by the quadrature employed

in the current MPM algorithm, to attempt to understand the different contributing

factors in that error, and to modify the integrand to help minimize the impact

of the error. In particular, our focus is on the impact of changing the grid basis

functions used within MPM in a way that reduces the quadrature error and provides

consistent convergence results. In the next section, we will present our analysis and

our suggested improvements based on our findings.

4.2 Analysis

Most of the grid values in MPM are calculated as approximations to the mass-

lumped L2 projections of data onto the grid basis functions or the gradients of the

36

basis functions as in (3.20). For example, if a field function g(x) existed over the

domain Ω, the values of gi and ∇gi at grid node i would be calculated as:

gi =

∫

Ω

g(x)φi(x) dΩ ≈
∑

p

gpφipVp (4.2)

∇gi = −
∫

Ω

g(x)∇φi(x) dΩ ≈ −
∑

p

gp∇φipVp, (4.3)

where gp is a sample of g(x) at the particle position xp and Vp is the particle volume.

The function g may be of the form g(x) = f(x)ρ(x), with ρ the density, leading

to a mass weighted projection of f as in (3.20) with fi = gi/mi. If g(x) was a

vector valued function, the divergence of g(x) at a grid node would be calculated

as follows:

(∇ · g)i = −
∫

Ω

g(x) · ∇φi(x) dΩ ≈ −
∑

p

gp · ∇φipVp. (4.4)

Note that 1-D Equations (4.2) - (4.4) all have the form
∫

Ω
f(x) dx ≈ ∑

p f(xp)Vp –

that is, they represent quadrature approximations of the integral. In this section,

we will discuss the case of 1-D MPM in which we track the interval length L and

maintain the sample point (particle position) at the centroid of the voxel. In this

case, the quadrature in MPM reduces to the midpoint rule.

As a review, the midpoint rule for approximating the integral of f(x) is typically

written as
∫

Ω
f(x) dx ≈ h

∑N
i=1 f(xi) where the domain Ω has been subdivided into

N regions of size h and xi is located in the center of region i. The midpoint rule,

however, does not require each region to be the same size. If the domain is divided

into N regions with individual sizes hi, the midpoint rule with uneven spacing is

written as
∫

Ω
f(x) dx ≈ ∑N

i=1 f(xi)hi where again, xi is located in the center of

region i.

It should be clear that if xp is located in the center of the voxel defined by the

volume Vp, and if the set of particle voxels tile the domain (or at least tile the

non-zero regions of the function being integrated), that the MPM approximation

to the integrals in Equations (4.2) - (4.4) are equivalent to a midpoint rule with

uneven spacing. There is a problem, however, with applying the standard midpoint

rule error analysis to this problem. The standard error analysis assumes continuity

37

of f in each interval i. Depending on the choice of basis functions φi, the functions

being integrated will not satisfy this continuity condition over the entire domain

Ω. Integrating discontinuous functions with the midpoint rule is valid when the

division of Ω into regions respects these discontinuities. In finite elements, for

example, discontinuities occur at element boundaries, however integration is always

performed over individual elements, thus these discontinuities are respected in FEM

integration schemes. In MPM, however, the particle voxels will not, in general,

respect these discontinuities for all time as particles advect through the domain.

Figure 4.2 shows how a particle configuration may respect spatial discontinuities

caused by the gradient of basis functions at time t, but will not at time t+∆t once

the particles have advected through the domain. Therefore, one way to understand

the integration errors in MPM is to understand the errors in using the midpoint

rule when integrating across discontinuities.

In this section, we will first lay out the simple test problem presented in [8] for

understanding errors in internal force computation of MPM. We will then examine

the interplay between the midpoint rule nature of MPM quadrature and the choice

of the grid basis functions – in particular, examining the commonly used piecewise-

linear functions as well as the B-splines we introduced in Section 3.2.3.

Figure 4.2. Particle configuration at time t (left) respects discontinuities in the
gradients of piecewise-linear basis functions, allowing for exact integration using
the midpoint rule. Advected particles at time t + ∆t (right) no longer respect the
discontinuities, leading to quadrature errors.

38

4.2.1 Uniformly Stressed Body in MPM

In MPM, the internal force calculated by (3.21) is an approximation to

f int
i = −

∫

Ω

σ(x) · ∇φi(x) dΩ ≈ −
∑

p

σp · ∇φipVp, (4.5)

which is similar in form to (4.4). The stress field σ(x) can in general take any form,

making error analysis difficult. One form of σ(x) that allows for easy analysis is the

case of a uniformly stressed body with constant particle spacing ∆x, where σp = σ

for all particles. Bardenhagen et al. [8] note that force imbalances can develop with

uniformly stressed bodies when different numbers of particles are in adjacent cells.

Since MPM can be thought of as using a midpoint-rule approximation to expressions

such as (4.5), the errors in the internal force calculation can be analyzed by looking

at errors in midpoint integration when integrating across discontinuities.

For this uniformly stressed body problem, the error in internal force can be

evaluated as

Ef =

∫

Ω

σ(x) · ∇φi dΩ −
∑

p

σp · ∇φipVp = σ ·
[

∫

Ω

∇φi dΩ − ∆x
∑

p

∇φip

]

. (4.6)

The bracketed term in (4.6) not only corresponds to the error in internal force,

but also represents the error in integrating ∇φi using the midpoint rule. Since we

are using piecewise polynomial basis functions, ∇φi is also a piecewise polynomial

and the internal force errors can be analyzed by looking at the midpoint integration

errors present in (4.6). We will now examine those errors for the three basis function

choices presented in Section 3.2.3.

4.2.2 Piecewise-linear Basis Functions

Consider the scenario depicted in Figure 4.2 where the particle configuration

does not respect discontinuities in the underlying integrand. Figure 4.3 shows this

scenario in more detail, focusing on the particle overlapping the discontinuity. When

a background grid with cell width of h is discretized using piecewise-linear basis

functions, ∇φ is piecewise constant, and discontinuities in ∇φ occur at −h, 0, and h,

with jumps in the polynomial’s leading coefficient (see Equation 3.61) of 1/h, −2/h,

39

Figure 4.3. Piecewise constant function with a midpoint region spanning a
discontinuity at x = 0. This is representative of a particle of width ∆x centered at
ξ whose voxel, Ωp, crosses a grid cell boundary.

and 1/h, respectively. The midpoint integration error from integrating across a

discontinuity in a piecewise-constant function is shown in detail in the Appendix for

the case of the uniformly stressed body above. As is shown by (A.6), the maximum

error due to integrating over a discontinuity is given by Ejump = C1[[φ
′

(0)]]∆x,

where [[·]] denotes the jump condition, ∆x is the particle width, and C1 is a constant

depending on the polynomial. With piecewise-linear basis functions used in MPM,

the coefficient C1 for integrating ∇φ is 1/2.

For particles not crossing over a discontinuity, there will be no error contribution

since the midpoint rule can integrate constant functions exactly. Therefore, the

only integration intervals contributing to the total error are those which cross the

discontinuities. Substituting these individual Ejump errors into the bracketed term

in (4.6) leads to an upper bound on the total force error Ef of:

Etotal = σ

[

1

2

(

1

h
+

2

h
+

1

h

)

∆x

]

= 2σ
∆x

h
. (4.7)

The previous analysis only considered the magnitude of the jump when calcu-

lating an upper bound on the error. If the sign of the jump is taken into account,

the maximum positive error occurs when integration over the discontinuity at 0 is

respected by the particle distribution (i.e., no particles cross the discontinuity at 0),

but the discontinuities at −h and h are not. Similarly, the maximum negative error

occurs when the discontinuities at −h and h are respected, but the discontinuity

at 0 is not. These cases lead to errors of

40

Etotal = ±σ
∆x

h
. (4.8)

4.2.3 Quadratic B-spline Basis Functions

Consider the scenario depicted in Figure 4.4. For quadratic B-spline basis func-

tions, ∇φ is piecewise-linear and discontinuities in ∇2φ at −3h/2, −h/2, h/2, and

3h/2, with jumps in second derivative (from Equation 3.64) of 1/h2, −3/h2, 3/h2,

and −1/h2, respectively. The midpoint integration error from integrating across a

discontinuity in a piecewise-linear function is shown in detail in the Appendix. As

is shown by (A.14) the maximum error due to integrating over a discontinuity is

given by Ejump = C2[[φ
′′

(0)]]∆x2, where [[·]] denotes the jump, ∆x is the particle

width, and C2 is a constant depending on the polynomial. With the quadratic

B-spline basis functions used in MPM, the coefficient C2 for integrating ∇φ is 1/8.

Again, for particles not crossing over a discontinuity, there will be no error

contribution since the midpoint rule can integrate linear functions exactly. There-

fore, the only integration intervals contributing to the total error are those crossing

discontinuities. Substituting these individual Ejump errors into the bracketed term

in (4.6) leads to an upper bound on the total force error Ef of

Etotal = σ

[

1

8

(

1

h2
+

3

h2
+

3

h2
+

1

h2

)

∆x2

]

= σ
∆x2

h2
. (4.9)

Taking the signs of the jump in second derivatives into consideration, the

Figure 4.4. Piecewise-linear function with a midpoint region spanning a disconti-
nuity in y′ at x = 0. This is representative of a particle of width ∆x centered at ξ
whose voxel, Ωp, crosses a grid cell boundary.

41

maximum positive error occurs when the particle distribution is respectful of dis-

continuities when integrating over the discontinuities at −h/2 and 3h/2 (those

corresponding to a negative a∗), but not respectful at −3h/2 and h/2. The maxi-

mum negative error occurs when the opposite is true. Once again, these cases lead

to errors which are half of the maximum error calculated using the magnitude of

the jump, and are given by:

Etotal = ±σ
∆x2

2h2
. (4.10)

4.2.4 Cubic B-spline Basis Functions

Consider the scenario depicted in Figure 4.5. For cubic B-splines, ∇φ is piecewise-

quadratic and discontinuities in ∇3φ occur at −2h,−h, 0, h, 2h, with jumps in the

third derivative (see Equation 3.65) of 1/2h3, −2/h3, 3/h3, −2/h3, and 1/2h3,

respectively. The midpoint integration error from integrating across a discontinuity

in a piecewise-quadratic function is shown in detail in the Appendix. As can be

seen by (A.3), the maximum error due to integrating over a discontinuity is given

by Ejump = C3[[φ
′′′

(0)]]∆x3, where [[·]] denotes the jump, ∆x is the particle width,

and C3 is a constant depending on the polynomial. With the cubic B-spline basis

functions used in MPM, the coefficient C3 for integrating ∇φ is 1/24.

The total maximum error from integrating across discontinuities is then given

by:

Etotal = σ

[

1

24

(

1

2h3
+

2

h3
+

3

h3
+

2

h3
+

1

2h3

)

∆x3

]

= σ
∆x3

3h3
. (4.11)

Figure 4.5. Piecewise-quadratic function with a midpoint region spanning a
discontinuity in y′′ at x = 0.

42

However, ∇φi is quadratic between the discontinuities and the midpoint rule can

not exactly integrate quadratic functions. As a review, if f ∈ C2[a, b], then for

some µ in (a, b), the composite midpoint error with sub intervals of size ∆x is given

by [39]

E =
(b − a)

24
∆x2f ′′(µ). (4.12)

For our piecewise-cubic φi, the value of midpoint error for integrating ∇φi in the

four separate regions (see Equation 3.65) is given by

E =
1

24
∆x2 [h1φ

′′′(µ1) + h2φ
′′′(µ2) + h3φ

′′′(µ3) + h4φ
′′′(µ4)]

=
1

24
∆x2

[

h1
1

h3
− h2

3

h3
+ h3

3

h3
− h4

1

h3

]

, (4.13)

where h1, h2, etc. are the size of the integration intervals in the different regions

after sub intervals crossing the discontinuities have been removed. There exist many

arrangements of particles such that h1 = h2 = h3 = h4 in which case the bracketed

term in (4.13) goes to zero, leaving (4.11) as the only source of error. In general,

however, the total error from integrating ∇φi is the sum of (4.11) and (4.13) and

since h1, h2, h3, and h4 are O(h) the total error is O(σ∆x2/h2).

We see the internal force error improves when using quadratic B-spline basis

functions instead of standard piecewise-linear basis functions. The quadratic B-

splines show an error which is O(∆x2/h2), while the piecewise-linear basis functions

have an error of O(∆x/h). Using even higher order splines, such as cubic B-

splines, may give further improvement for some special particle configurations, but

in general the composite midpoint integration error limits the error to the same

order as with quadratic B-splines.

Brackbill[14] makes a similar observation concerning PIC methods when, build-

ing upon theoretical results presented by Vshivkov [52], he states the error of the

PIC method is bounded by:

ε ≤ C1

(

δ

h

)2

+ C2h
2, (4.14)

43

where δ is the particle spacing, h is the mesh spacing, and C1 and C2 are constants

depending only on the smoothness of the data. Here, the quantity δ/h is a measure

of the inverse of the number of particles-per-cell (PPC).

This result follows from Vshivkov’s earlier analysis [52] where he calculates

the error, δk, in the charge density at node k as calculated with PIC. One would

expect this error to be analogous to measuring the error in the projection of particle

information to the grid in MPM (such as the projection of mass) since the piecewise-

linear mesh kernel functions Vshivkov assumes in his analysis are the same as the

grid basis functions used in standard MPM. His result states that the error is

bounded by:

δk ≤
(

3ρ2
av

2ρmin
+ h

ρ2
avρmax

6ρ3
min

∣

∣

∣

∣

∂ρ

∂x

∣

∣

∣

∣

max

)

1

N2
+

h2

12

∣

∣

∣

∣

∂2ρ

∂x2

∣

∣

∣

∣

max,
(4.15)

where N is the average number of particles in a cell. The first term on the right-

hand-side relates to the “quadrature” error as a consequence of number of particles

and grid spacing and the second term relates to the “approximation” error as a

consequence of grid spacing (and tacitly the choice of basis functions).

These results for PIC demonstrate the interplay between approximation error

(based upon the choice of the basis functions) and the quadrature error – results

that are consistent with and indeed motivated the current work.

4.3 Results

In this section we now attempt to use the perspective provided in Section 4.1

and analysis provide in Section 4.2 to explain common test cases presented in the

MPM literature.

4.3.1 Uniformly Stressed Body

We first begin by revisiting the uniformly stressed example mentioned in the

previous section. First, we must present a algorithmic way of setting up the

problem. Consider the diagram given in Figure 4.6. To describe any arrangement of

uniformly spaced particles surrounding a grid cell, we start by selecting a particle

spacing ∆x less than the cell width h, with b = ∆x/h. Here, b is a fractional

44

2h−2h −h 0 h

α
∆x∆x

Figure 4.6. Example grid and particle arrangements used for the uniformly
stressed body test.

measure of the inverse of the number of particles-per-cell (PPC). Next, place a

particle at a location of α ∈ [0, ∆x]. Define a = α/∆x (a percentage shift). Next,

fill the region [−2h, 2h] with particles, maintaining the particle spacing ∆x. Let

the grid span the region [−2h, 2h] with five grid nodes, thus the grid locations will

be xi = −2h,−h, 0, h, 2h. Now, give all the particles constant stress, σp = σ, and

volume Vp = ∆x. We will consider calculation of f int
i on grid node i = 2 (the center

node). Since stress and volume are constant, we would expect f int
2 = 0.

The internal force in MPM is calculated as follows:

f int
i =

∑

p

σp · ∇φi(xp)Vp. (4.16)

For piecewise-linear basis functions, this becomes:

f int
2 =

∑

p∈[−h,0]

σ
−1

h
∆x +

∑

p∈[0,h]

σ
1

h
∆x (4.17)

= N2σ
1

h
∆x − N1σ

1

h
∆x, (4.18)

where N1 is the number of particles in the region [−h, 0], and N2 is the number of

particles in the region [0, h]. With this problem setup, there will either be equal

number of particles on both sides of the grid nodes, or N2 − N1 = ±1. Thus,

f int
2 takes on one of three values: σ 1

h
∆x, 0, or −σ 1

h
∆x, depending on particle

arrangement. This can be seen in the contour plot shown in Figure 4.7 (top). Note

that the error of σ 1
h
∆x is half of the maximum analytical error shown in (4.7) which

only considered the magnitudes of errors when particles overlapped discontinuities

in ∇φi. If signs of errors were taken into account the maximum error would be

σ 1
h
∆x.

45

Fractional Offset

1/
P

P
C

0 0.5 1

0.2

0.4

0.6

0.8

1

−0.5

0

0.5

Fractional Offset

1/
P

P
C

0 0.5 1

0.2

0.4

0.6

0.8

1

−0.1

0

0.1

Fractional Offset

1/
P

P
C

0 0.5 1

0.2

0.4

0.6

0.8

1

−0.02

0

0.02

Figure 4.7. Plots of internal force error |f int
2 | for a uniformly stressed body

discretized with evenly spaced particles. Various particle spacings, b, and offsets,
a, are shown using standard piecewise-linear (top), quadratic B-spline (middle)
and cubic B-spline (bottom) basis functions. The figures show the maximum error
decreases and the convergence rate of the error improves as the continuity of the
basis functions is increased. All plots use a consistent color scale.

Several things can be observed in Figure 4.7. First, note that there are com-

binations of fractional offset a and inverse particles-per-cell b which yield zero

error. These combinations consist of two things: (1) when voxel boundaries line

up with element boundaries such that there is no jump error term (like in the

case of fractional offset a = 0.5 where there is a line of zero error for all choices

of inverse particles-per-cell b) and (2) when symmetries in the particle positions

cause cancellations in the error due to signs of the jumps. The second observation

that can be seen in Figure 4.7 is that when quadratic B-spline basis functions

are used, the magnitude of the maximum error (on the order of .25) is much

less than with piecewise-constant basis functions (on the order of 1.0), and the

error approaches zero much faster as the measure of particle spacing b decreases

and the number of particles-per-cell (PPC) increases. When cubic B-spline basis

46

functions are used, the magnitude of the maximum error is again much lower

(on the order of .04) and the error approaches zero faster than with quadratic

B-splines or piecewise-linear basis functions. This suggests that the maximum

error decreases and the convergence rate of the error improves as the continuity of

the basis functions is increased.

To better understand the convergence of f int
2 , for each b value in Figure 4.7 the

maximum error over the fractional offset a was tabulated and plotted in Figure 4.8

on log-log graphs. The top plot shows the error for evenly-spaced particles while

the bottom plot shows particles in the same configuration, but randomly perturbed

up to 40% of the measure of particle spacing b to the left or right from their nominal

positions. Errors which are O(∆x) for piecewise-linear and O(∆x2) for quadratic

B-splines agree with the analysis from the previous section. The cubic B-splines

demonstrates errors of O(∆x3).

The O(∆x3) behavior of the cubic B-splines are due to the globally uniform

spacing of particles in the test, even when the particles are perturbed. This uniform

spacing of particles exploits the symmetry in φ and the O(∆x2) error from (4.13)

cancels out. Another random test was run where particles were randomized in a

global sense (the left half of the domain might have more particles than the right

half of the domain) and the results are shown in Figure 4.9. Here, for larger values

of b (that is, fewer particles-per-cell (PPC)), the internal force has O(x2) behavior.

As b decreases, however, there exist more particles contributing to the integration

and the O(x3) behavior returns.

4.3.2 Test Problem With Dynamic Traction
Boundary Conditions

Previous analysis of the spatial convergence properties of MPM has been per-

formed using quasi-static computations and comparisons with analytical solutions

[8]. Since MPM is often used for dynamics problems, a 1-D test case with an

analytic transient solution was developed.

Given a bar of length l, fixed at x = 0, free at x = l, with a Young’s modulus

of E, density of ρ = E (wave-speed of 1.0), driven by a forcing function of

47

10
−2

10
−1

10
−5

10
0

1/PPC
E

rr
or

Linear
Quadratic B−spline
Cubic B−spline

10
−2

10
−1

10
−2

10
0

1/PPC

E
rr

or

Linear

Quadratic B−spline

Cubic B−spline

c
1
 * (∆ x

max
)/h

c
2
 * (∆ x

max
)2/h2

c
3
 * (∆ x

max
)3/h3

Figure 4.8. Errors in internal force vs. particle spacing b (or the inverse of the
number of particles-per-cell) for constant σ = 1 and grid spacing h = 0.1. The top
plot uses evenly spaced particles where each sample point is the maximum error over
various offsets a. The bottom plot uses randomly spaced particles. The constants
on the error bounds are c1 = 2, c2 = 1, and c3 = 1/4. A tighter error bound may
be possible for the evenly spaced particles due to symmetries. The ∆xmax in the
bottom plot is 1.6 times the ∆x in the top plot due to the random spacing of the
particles. This leads to higher error bounds for the randomly spaced particles than
the evenly-spaced particles.

q(x, t) = δ(x − l)H(t)τ sin(xt/l), (4.19)

where H(t) is the Heaviside step function, and initial conditions of u(x, 0) = 0,

v(x, 0) = 0, has an analytical displacement function derived by wave propagation

of the form:

48

10
−1

10
−1

10
0

10
1

1/PPC

E
rr

or

c
1
 * (∆ x

max
)2

c
2
 * (∆ x

max
)3

Cubic B−spline

Figure 4.9. Errors in internal force vs. particle spacing for constant σ = 1 and
grid spacing h = 0.1. Here particles were globally randomly spaced (the left half
of the domain can have more particles than the right half of the domain). This is
opposed to the previous figure where particles were only locally randomly spaced
and overall particle density remained constant throughout the domain. Instead
of perturbing particles from a nominal even spacing, the globally random spacing
is accomplished by filling the domain from one side to the other with randomly
sized particles, while still using the same overall number of particles as the locally
random case.

u(x, t) =































0 : t ∈ [0, l − x)

α[1 + cos(ω(t + x))] : t ∈ [l − x, l + x)

α[cos(ω(t + x)) − cos(ω(t − x))] : t ∈ [l + x, 3l − x)

α[−1 − cos(ω(t − x))] : t ∈ [3l − x, 3l + x)

0 : t ∈ [3l + x, 4l]

(4.20)

on x ∈ [0, l] and t ≥ 0, where α = lτ/(ρπ) and ω = π/l. The stress is given by:

σ(x, t) =































0 : t ∈ [0, l − x)

τ sin(ω(t + x)) : t ∈ [l − x, l + x)

τ [sin(ω(t + x)) + sin(ω(t − x))] : t ∈ [l + x, 3l − x)

τ sin(ω(t − x)) : t ∈ [3l − x, 3l + x)

0 : t ∈ [3l + x, 4l].

(4.21)

As was stated before, the traction for this problem occurs on the free end of

the bar, however the bar end position is time dependent. The analytic end bar

49

position at any time t can be found by calculating u(l, t) from (4.20). Interpolating

the traction force, the external grid forces can then be calculated as

f ext
i = φi(l + u(l, t))q(l, t). (4.22)

Since there is only one traction force, a maximum of two grid nodes will have

non-zero external forces.

The parameters used were, ρ = E = 100, τ = 1, and l = 1. The uniform

MPM grid spanned the region [0, 1.15]. The number of grid cells was varied to

understand the spatial convergence of the methods. The bar was discretized using

np = 3ng number of particles, where ng is the number of MPM grid nodes. This

ends up being slightly more than three particles-per-cell (PPC) since the bar is only

of length 1. The problem setup is illustrated in Figure 4.10.

The maximum extension of the bar occurs first at time T = 1 which results in

an end-bar displacement of u(l, 1) = π/50 ≈ .06283. The simulations were thus run

to a time of 1 and the RMS errors in displacement were calculated as

eRMS =

√

1

np

∑

p

(u(xp, 1) − up)2, (4.23)

with up = xp − x0
p, the difference between the current and original position of

particle p.

A number of important questions can be asked regarding the convergence prop-

erties of MPM. Recent studies by Wallstedt and Guilkey [53] looked at convergence

l
xi

xp

q(x,t)

Figure 4.10. One-dimensional bar with traction and corresponding MPM dis-
cretization.

50

with respect to the number of particles-per-cell (PPC). Tran et al. [51] provided

an analysis framework for a modified version of MPM used for gas dynamics and

showed first order convergence of the method. Bardenhagen et al. [8] performed grid

resolution studies with MPM and GIMP in the context of a quasi-static compression

problem. For classic MPM, these tests showed convergence for a few data points

corresponding to very low grid resolutions (between roughly 5 and 20 grid cells).

However, as resolutions increased, the errors started to increase, showing a lack

of convergence. In our studies, we fix the number of particles-per-cell (PPC)

at approximately 3.5 and focus our attention on the convergence properties with

respect to grid resolution for a full dynamic test of the expansion of our fixed-free

elastic bar. The results for the simulation with various basis functions are shown

in Figure 4.11.

Similar to the Bardenhagen tests [8], standard MPM using piecewise-linear basis

functions shows a lack of convergence for 20 grid cells and higher. Simply substi-

tuting smoother basis functions for the standard piecewise-linear basis functions

traditionally used in MPM drastically improves spatial convergence, with conver-

10
1

10
2

10
3

10
−6

10
−4

10
−2

Number of Grid Nodes

R
M

S
 E

rr
or

MPM − PW Linear
MPM − Quadratic B−spline
MPM − Cubic B−spline

Figure 4.11. Convergence test for a 1-D fixed free elastic bar with sinusoidal
traction. The RMS error in displacements are calculated at time T = 1, when bar
is at maximum extension.

51

gence rates nearing 2 for both quadratic B-splines and cubic B-splines. Significant

integration errors will always exist when using nodal integration such as in MPM,

especially when particles are free to move through the domain. Error plateaus can

be seen in the simulation when B-spline basis functions are used, however positive

convergence results can be obtained out to many thousands of grid cells.

The level of improvement due to increasing the basis function regularity is

greater than might be anticipated based solely on the quadrature results seen in the

previous section. The benefit of increased regularity goes beyond just improving

quadrature as seen in Figure 4.8. In future chapters, we will investigate the

other parts of the MPM algorithm which might benefit from the increased level

of smoothness of the grid basis functions.

4.4 Summary and Conclusions

In this chapter we have considered the impact of the Material Point Method’s

choice of maintaining only particle position and volume information when approx-

imating integrals of particle voxels. The nodal integration of equations within

MPM was shown to be similar to using midpoint approximations to the integrals.

However, the underlying equations being integrated have discontinuities and the

partitioning of the domain specified by the particle configuration does not respect

these discontinuities, leading to quadrature errors containing information about the

jumps in the integrand. Errors in using the midpoint rule across discontinuities were

analyzed and applied to the MPM force calculation, the results showing that simply

using smoother basis functions such as quadratic and cubic B-splines drastically

reduce integration errors.

Grid resolution tests with quadratic B-spline basis functions showed positive

spatial convergence up to about 120 grid cells, allowing much lower errors than

MPM with piecewise-linear basis functions while only increasing the basis function

span by one extra grid cell width. After 120 grid cells, the error plateaus and

remains effectively the same up 2560 grid cells. The same test was run with cubic

B-splines where positive spatial convergence was demonstrated out to 2560 grid

52

cells, although the convergence rate starts to drop dramatically after 1280 grid cells.

These results are in stark contrast to those obtained using standard (piecewise-

linear) MPM in which a lack of convergence is observed.

The analysis and corresponding convergence studies suggest that basis functions

smoother than piecewise-linear should be used for moderate grid resolutions. B-

spline basis functions are simple to construct and are easily extendable to multiple

dimensions. We have implemented these multidimensional B-spline basis functions

in Uintah, a massively parallel problem solving environment from the University of

Utah [18], which provides a framework for large scale MPM simulations.

CHAPTER 5

EXAMINATION AND ANALYSIS OF

IMPLEMENTATION CHOICES

WITHIN THE MATERIAL

POINT METHOD

MPM, and later, GIMP, were chosen as the solid mechanics component for fluid-

structure interaction simulations within the Center for the Simulation of Accidental

Fires and Explosions (C-SAFE). The goal of C-SAFE has been the development

of a capability to simulate the response of a metal container filled with explosives

to a large hydrocarbon pool fire, including heat up, ignition and rupture of the

container. The pioneering work of Kashiwa and co-workers [28] inspired this choice

as they had demonstrated many of the capabilities that would be required for such

simulations, including material failure and solid-to-gas phase transition. To achieve

the required level of parallelization and to provide a platform for Adaptive Mesh

Refinement, C-SAFE investigators created the Uintah Computational Framework

(UCF) [37]. It is within this software environment that the implementations of

MPM and GIMP under consideration here exist, along with components for fire

simulation, compressible reacting flow, and fluid-structure interaction.

This chapter will examine some of the implementation choices within GIMP

in a multi-dimensional simulation setting and to understand the algorithmic and

numerical ramifications of those choices. Specifically, we will focus on the smoothing

length parameter (or the particle characteristic function) and examine a few choices

for evolving the smoothing length in time which have been implemented within the

UCF. We will perform analysis and carry out simulations in both 1-D and 3-D in

order to shed light on the error and stability properties that result from the various

54

choices.

This chapter is organized as follows. Section 5.1 provides an analysis and inter-

pretation of some of the spatial errors present in MPM and GIMP, building on the

work in Chapter 4. In the process, we investigate the relationship between GIMP

as implemented in the UCF and MPM using B-spline basis functions. Section 5.2

overviews the process for developing interesting problems with analytical solutions

which can be used to test our methods and measure errors in our solutions. In

Section 5.3 we present numerical results and discuss the differences that result

from the aforementioned choices. Lastly, Section 5.4 is a summary of our findings

and our conclusions.

5.1 Analysis and Interpretation

In the previous chapter, we performed an analysis on some of the spatial inte-

gration errors present within MPM. Other recent work has also focused on formal

analysis of errors in the method. Bardenhagen [6], who looked at energy conser-

vation errors in MPM, focusing on the effects of the choice of two time-stepping

algorithms. Recently, Wallstedt and Guilkey [55] expanded on the analysis of those

time-stepping algorithms. Love and Sulsky [32, 33] analyze an energy consistent

implementation of MPM, the second of these showing an implicit implementation to

be unconditionally stable and energy-momentum consistent. Wallstedt and Gulikey

[53] focus on velocity projection errors and present a scheme which helps ameliorate

these errors.

In this section, we continue adding a few more pieces to the error analysis

of MPM. Specifically we will look at integration errors which are affected by the

smoothing of the piecewise-linear basis functions.

5.1.1 The Relationship Between GIMP and B-Splines

Taking a closer look at the weighting function (3.73), we see that the con-

struction is essentially a convolution of the grid basis functions φi and the particle

basis function χp. Since a standard piecewise-linear φi can also be represented as

the convolution of piecewise-constant basis functions, we can rewrite the GIMP

55

weighting function as:

φ = χg ∗ χg ∗ χp/(|χg||χp|), (5.1)

where the width of χg is h (the grid spacing), and the width of χp is lp, as described

in the GIMP methods. The equivalent GIMP basis function would then come from

evaluating (5.1):

φi(x) = φ(x − xi), (5.2)

with the GIMP weighting function equivalent to evaluating (5.2) at the particle

position, xp. The reason for rewriting the GIMP basis functions in this way is

to demonstrate the similarities between the construction of GIMP basis functions

and the construction of B-spline basis functions as in (5.1). Both basis functions

are constructed by convolving piecewise-constant basis functions with themselves;

however all of the χ in the B-spline basis are of width h while one of the χ functions

used in the GIMP method has width lp.

In cpGIMP, the particle characteristic length lp (of which there may be different

lengths for different directions) is updated in time, meaning the cpGIMP weighting

function (3.76) is time dependent, and is different for each particle p. The ideal case

would be that the updating of lp in time will cause the set of particle characteristic

functions χp to perfectly tile space, but due to the rectilinear constraints of χp,

this is not possible in general multi-D simulations. Because of this inability to

tile space, and the recognition that the major benefit of GIMP is the smoother

equivalent basis functions, a simplified standard GIMP is used in which lp = l0p

for all time. Furthermore, if lp = l is constant for all particles p in a simulation

(uGIMP), the effect is truly equivalent to using standard MPM with a smoother

set of basis functions. In fact, if one were to disassociate the smoothing length, l,

from the particles in a uGIMP formulation and instead leave l as a free parameter,

the effect is to create quadratic B-spline-like basis functions, with l determining

the maximum extent of the functions. Choosing l = l0p would give standard GIMP.

Choosing l = h would give quadratic B-spline basis functions. Choosing l = 0

would lead to the degenerate case of χp = δ(x − xp), leaving us with the standard

piecewise-linear basis functions.

56

It has been our decision to leave the smoothing length l as a free parameter

the UCF, allowing for various options when running simulations. We will explore

various choices of l in the sections to follow.

5.1.2 Smoothing Length Dependent Integration Errors

Spatial integrals within MPM are performed using nodal integration – an ap-

proximation which takes the form:

∫

Ω

f(x) dΩ ≈
∑

p

f(xp)Vp. (5.3)

We performed an analysis of errors in the above approximation within the MPM

framework in the previous chapter. There, the nodal integration approximations

in MPM were equated to non-uniformly-spaced midpoint integration of functions

with discontinuities in various derivatives. In particular, the analysis focused on

the errors when calculating the internal force (3.21), which involves the following

approximation:

f int
i = −

∫

Ω

σ(x) · ∇φi(x) dΩ ≈ −
∑

p

σp · ∇φipVp. (5.4)

The main result from that analysis showed that if the particle arrangements did

not respect the discontinuities which arise from the basis functions (i.e., a particle’s

voxel overhangs node boundaries), an extra integration, or “jump” error can arise in

the above approximation which is of the order C[[f (p+1)]]∆xp+2, where the function,

f , being integrated is Cp continuous (with p = −1 for discontinuous functions).

Here, [[·]] represents the jump in the p + 1 derivative of f at the discontinuity and

∆x is the particle spacing. Note that the function ∇φi in (5.4) is discontinuous,

thus a jump error of O(∆x) can arise in MPM when using standard piecewise-linear

basis functions, depending on particle spacing. Numerical examples of this error

were shown in Chapter 4.

The jump error for a single particle is calculated as Ejump =
∫

Ωp
f(x) dx −

f(xp)∆x, where Ωp spans a discontinuity, or jump, and ∆x is the width of the

particle. This consists of measuring the midpoint integration error for the single

57

interval spanning the jumps. Integration approximations, such as in (5.3), involve

integration over the whole domain, using multiple intervals, leading to a composite

midpoint rule integration error which is O(∆x2). These two errors are additive,

giving a total error of the form

Etotal =

∫

Ω

f(x) dΩ −
∑

p

f(xp)Vp = EMP + Ejump, (5.5)

where EMP is the composite midpoint error and Ejump is any errors arising from

integrating across jumps. Note that if we assume particles are nonoverlapping and

fill space, this equation can also be written as

Etotal =
∑

p

[

∫

Ωp

f(x) dΩ − f(xp)Vp]. (5.6)

Since the errors are additive and since EMP is always O(∆x2), C0 and higher

continuous functions exhibit an overall integration error which is O(∆x2), while

discontinuous functions have an error which is O(∆x). Again, this is important

because the nodal integration for the internal force calculation in (3.21) involves

the gradients of the basis functions, which are discontinuous at grid cell boundaries

when the standard piecewise-linear basis functions are used.

In uGIMP, we have the choice of a smoothing parameter l (the width of our

general particle characteristic function χ), independent of the individual particle

sizes, which ensures us C1 continuous basis functions but leads to a situation which

was not analyzed in Chapter 4 – the case where the width of the particle is greater

than the smoothing length. In such cases (as illustrated in Figure 5.1), a particle

can span two jumps in the continuity of the basis functions.

Consider a general case from (5.6) where a single particle, or Ωp, spans three

regions of a piecewise linear function. The first region (R1) is defined by the

equation y1 = a1x + b1, the second (R2) will be y2 = a2x + b2, and the third

(R3) is y3 = a3x + b3 with the particle located a distance δ (here, δ is a distance,

not the same as the Dirac delta function presented with respect to basis functions

58

y2 = a2x + b2
y3 = a3x + b3

y1 = a1x + b1

∆x/2-δ l-δδ ∆x/2-l+δ

(a) General Two-Jump Function

a1 = 0

a2 = -2/(hl)

a3 = 0

∆x/2-δ l-δδ ∆x/2-l+δ

(b) GIMP Specific Two-Jump Situation

Figure 5.1. Example cases of a particle’s volume (the area between the square
brackets) spanning two jumps in a piecewise-linear function: (a) shows a particle
spanning two jumps in a general piecewise-linear function with ai and bi, i = 1, 2, 3
the parameters describing the linear segments, while (b) shows the specific piece-
wise-linear uGIMP gradient function ∇φ and a situation where the particle size ∆x
is greater than the smoothing length l.

in GIMP) inside the second region (see Figure 5.1). For this case, the integration

error is given by:

Ejump =

∫

Ωp

f(x) dx − f(xp)Vp (5.7)

=

∫

Ωp∩R1

y1 dx +

∫

Ωp∩R2

y2 dx+

∫

Ωp∩R3

y3 dx − y2(xp)∆x (5.8)

=
1

2
(a3 − a2)l

2 +
1

2
(a2 − a3)l∆x+

(a2 − a3)lδ +
1

2
(a3 − a1)δ

2+

1

2
(a1 − 2a2 + a3)δ∆x +

1

8
(a3 − a1)∆x2, (5.9)

where l is the width of the center region and δ is the particle offset into the center

region. Since l and δ are both less than ∆x, this whole expression appears to be

O(∆x2). However, when we consider the specific case of measuring the integration

error in internal force (5.4) with σ = 1) when a particle spans the center region

59

of ∇φ as in uGIMP (see Figure 3.6(b) and Figure 5.1(b)), the slopes of the left

and right regions in Figure 5.1(b) are zero, while the slope of the center region is

dependent on the smoothing length l and the grid spacing h. Specifically, for these

regions, a1 = 0, a3 = 0 and a2 = −2/(hl). When we substitute these parameters

into (5.9), we are left with

Ejump =
−1

h

[

∆x − l + 2

(

1 − ∆x

l

)

δ

]

. (5.10)

Here, it is clear that the jump error in this case is O(∆x). If instead, ∆x < l

and the particle only spans one of the uGIMP jumps, the error then takes the form:

Ejump =
−1

hl
[δ2 − δ∆x +

1

4
∆x2]. (5.11)

Since l no longer depends on ∆x, this is now O(∆x2).

To test this analysis, we calculate the force on a single node for a set of particles

with constant stress σ. This is the same test performed in Chapter 4 when looking

at a particle spanning a single jump instead of the two-jumps analyzed above. In

this case, the internal force on a node is calculated as

f int
i = −

∑

p

∇φip · σpVp = −σ
∑

p

∇φi(xp)Vp. (5.12)

For a constant stress, internal force should be zero, so any errors are from integrating

∇φi. Figure 5.2 shows the errors for various particle spacings when the smoothing

length l = 1/10. As expected, when ∆x < l the error converges as O(∆x2). When

∆x becomes greater than l, the error tends towards O(∆x).

Here, we have shown errors in the internal force which are either O(∆x) or

O(∆x2), depending on the relationship between the smoothing length l and the

particle widths ∆x. For stability, in addition to the typical CFL constraints one

needs when smooth forces exist, we need to consider further time-step restrictions

when force kicks arise from these integration errors. These time-step restrictions

would be similar to those required, as shown by Tran et al. [51], due to force

kicks arising from grid crossing errors. While a time-step of ∆t1 may be sufficient

when we are in the O(∆x2) error region, a smaller ∆t2 may be required to control

stability when we are in the O(∆x) error region.

60

10
−2

10
−1

10
010

−4

10
−2

10
0

10
2

1/PPC

E
rr

or

UGIMP
C

1
 x

C
2
 x2

Figure 5.2. Errors in internal force vs. particle spacing for constant σ = 1, grid
spacing h = 1.0, and smoothing length l = 1/10. The particles have a global
uniform density, however they have a locally non-uniform spacing. Otherwise,
super-convergent results are observed. Note that when particle spacing is less than
the smoothing length l, the error converges as second-order. As the particle spacing
becomes greater than the smoothing length, the error tends towards first-order.

5.1.3 Impact of Boundary Treatments

In MPM, the union of the particles’ voxels are assumed to fill space and define

the material of interest. However, many calculations are not performed directly on

the particles, but rather on the background grid to which the particle information

is projected. This projection of particle information leads to a set of “active” basis

functions and grid cells (those which have particles in their support) which, in

general, will differ geometrically than the union of particles’ voxels. This can, and

does, lead to a further errors in many MPM simulations.

In standard MPM with piecewise-linear basis functions, the active grid cells are

those which contain a particle. One could argue that a grid cell which contains no

particles but still overlaps with a particle voxel (from a particle in a neighboring

cell) should also be active, but is not considered so in the current MPM framework.

In either case, when considering active cells on the grid, there may be a geometric

error of up to h in each direction. When moving to uGIMP, or B-splines, this

geometric error can become worse since the support of these basis functions are

larger. Cubic B-splines, quadratic B-splines, and uGIMP can experience geometric

61

errors of up to 2h, 3h/2 and h + l/2, respectively. All of these errors are O(h);

however it is important to note that these geometric errors are not only a function

of how well the object of interest is aligned with grid cells, but they are also a

function of basis function choice.

Some work has been performed on MPM background grids which more closely

represent the material of interest. For example, [54] has worked on an MLS

representation of a material boundary and incorporates this boundary into the

MPM integration routines. Here, we sidestep part of the issue by developing

test problems in Section 5.2 whose boundaries are perfectly aligned with the grid

boundaries (such as a fixed-fixed elastic bar). Even with these aligned test problems,

geometric errors can still exist since information is projected to extra nodes outside

the domain, as is shown in Figure 3.4(b) and Figure 3.4(c); information which is

still used in standard kinematic boundary treatments.

To illustrate this geometric error, Figure 5.3 shows an example of the density

field resulting from projecting particles with constant mass (a discretization of

a constant density field) to the grid. The density field is calculated as ρ(x) =
∑

i ρiφi(x) with ρi = mi/(
∑

p φipVp). In this example, the constant density field

spans the region [0, 1] which is embedded in a grid covering the region [−0.2, 1.2].

Since the deformed configuration of the material with respect to the grid is ef-

fectively the support of the fields of interest, we can see from Figure 5.3 how

implementing boundary conditions and modeling contact can present a challenge

when wider basis functions are used.

We postulate that, in general, all of the methods here can suffer from O(h)

geometric errors. In the special case of boundary aligned problems, methods where

information is projected to extra nodes, such as uGIMP and standard B-splines, will

still be affected by this O(h) geometric error when Neumann or Dirichlet boundary

conditions are applied. These methods should not be affected by this error when

periodic boundary conditions are used. Methods which do not require the use of

extra nodes, such as standard MPM with piecewise-linear basis functions (Figure

3.4(a)), modified boundary B-splines (Figure 3.5), and cpGIMP will not be affected

62

−0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

x

D
en

si
ty

True Density
Piecewise−Linear Basis
Quadratic B−spline Basis
Particle Locations

Figure 5.3. Density fields resulting from projecting particle mass to the back-
ground grid. The true density field is shown, along with density fields calculated
with piecewise-linear and quadratic B-spline basis functions. Here we observe that
the geometric extent of information projected to the grid not only depends on which
grid cells contain material, but also on basis function choice.

by this geometric error.

It is worth noting that while cpGIMP is implemented in the UCF using extra

boundary nodes, information is not projected to these extra nodes in well-behaved

boundary aligned simulations. This is because the particle p that is closest to the

boundary has width lp, and is located at a position of lp/2 to the inside of the

boundary, and the closest extra node is at a distance of h+ lp/2, which is the exact

location where the extra node’s basis function goes to zero (see Figure 3.6).

5.2 Test Problem Development

Code verification has gained renewed importance in recent decades as costly

projects rely more heavily on computer simulations. Full time-dependent test

problems with analytical solutions are desired so that simulation errors can be

assessed. The Method of Manufactured solutions [42, 29, 5] begins with an assumed

solution to the model equations and analytically determines the external force

required to achieve that solution. This allows the user to verify the accuracy

of numerical implementations, understand the effects of parameter choices within

the code, and to find where bugs may exist or improvements can be made. The

critical advantage afforded by MMS is the ability to test codes with boundaries or

nonlinearities for which exact solutions will never be known. It is argued [29] that

MMS is sufficient to verify a code, not merely necessary.

63

Since full transient mechanics solutions are often difficult to find in the literature,

we will first present an overview of the method of manufactured solutions with which

we will then develop both 1-D and 3-D test problems.

5.2.1 Method of Manufactured Solutions Overview

In this chapter we define several non-linear dynamic manufactured solutions

and use them for subsequent testing. The solutions exercise the mathematical and

numerical capabilities of the code and provide reliable test problems for ascertaining

a simulation’s accuracy and stability properties.

Finite element method texts often present total Lagrange and updated Lagrange

forms of the equations of motion. The total Lagrange form is written in terms of

the reference configuration of the material whereas the updated Lagrange form is

written in terms of the current configuration. Either form can be used successfully

in a FEM algorithm, and solutions from updated and total Lagrange formulations

are equivalent [10].

However, within GIMP it is necessary to manufacture solutions in the total

Lagrange formulation so that zero normal stress can be applied to free surfaces as a

boundary condition. This might at first appear to conflict with the fact that GIMP

is always implemented in the updated Lagrange form. The equivalence of the two

forms and the ability to map back and forth between them allows a manufactured

solution in the total Lagrange form to be validly compared to a numerical solution

in the updated Lagrange form.

The equations of motion are presented in total and updated Lagrangian forms,

respectively:

∇P + ρ0b = ρ0a, (5.13)

∇σ + ρb = ρa, (5.14)

where P is the first Piola-Kirchoff Stress, σ is Cauchy Stress, ρ is density, b is

acceleration due to body forces, and a is acceleration.

Many complicated constitutive models are used successfully with GIMP, but for

our purposes the simple neo-Hookean is sufficient to test the nonlinear capabilities

64

of the algorithm. The stress is related in total and updated Lagrangian forms,

respectively:

P = λ ln JF−1 + µF−1
(

FFT − I
)

, (5.15)

σ =
λ ln J

J
I +

µ

J

(

FFT − I
)

, (5.16)

where u is displacement, X is position in the reference configuration, F = I + ∂u

∂X

denotes the deformation gradient, J = |F| is the Jacobian, µ is shear modulus, and

λ is the Lamé constant.

The acceleration b due to body forces is used as the MMS source term. The

source term is “manufactured” in such a fashion that the equations of motion are

satisfied for the particular input fields. We select as an ansatz the displacement

field, such as a sine function, and then apply a special body force throughout the

object that causes the displacement to occur.

5.2.2 One-Dimensional Periodic Bar

To understand the effect of smoothing length on errors within MPM, we start by

simulating a 1-D periodic bar on the domain [0, 1]. The problem we are considering

has an assumed analytical displacement and resultant deformation gradient of:

u(X, t) = A sin(2πX) cos(Cπt), (5.17)

F (X, t) = 1 + 2Aπ cos(2πX) cos(Cπt), (5.18)

where X is the material position in the reference configuration, A is the maximum

deformation percentage, and C =
√

E/ρ0 is the wave speed. The bar is subjected

to a body force of

b(X, t) = C2π2u(X, t)(2F (X, t)−2 + 1). (5.19)

The functions u and F are included in (5.19) only to simplify notation. The

constitutive model is drawn from (5.16) in 1-D with zero Poisson’s ratio:

σ =
E

2

(

F − 1

F

)

. (5.20)

This constitutive model, when combined with the body force given by (5.19) will

lead to the analytical displacement solution in (5.17).

65

While this 1-D bar has a periodic solution, the manufactured solution was chosen

such that the velocity and displacements are both zero on the boundaries of our

simulation domain [0, 1]. This allows us to test our simulation with both Dirichlet

and periodic boundary treatments on the same problem.

5.2.3 Axis-Aligned Displacement in a Unit Cube

Displacement in a unit cube is prescribed with normal components such that

the corners and edges of GIMP particles are coincident and collinear. This choice

allows direct demonstration that GIMP can achieve the same spatial accuracy

characteristics in multiple dimensions that have been shown in a single dimension.

It is not, however, representative of general material deformations usually found in

most realistic engineering scenarios.

The displacement field is chosen to be:

u =





A sin(2πX) sin(Cπt)
A sin(2πY) sin(2

3
π + Cπt)

A sin(2πZ) sin(4
3
π + Cπt)



 (5.21)

where X, Y , and Z are the scalar components of position in the reference configu-

ration, t is time, A is the maximum amplitude of displacement, and C =
√

E/ρ0

is the wave speed, where E is Young’s modulus. The factors of two are chosen so

that a periodic boundary condition can be used if desired.

The deformation gradient tensor is found by taking derivatives with respect to

position, but for the axis-aligned problem only the diagonal terms are non-zero.

Therefore:
FXX = 1 + 2Aπ cos(2πX) sin(Cπt)

FY Y = 1 + 2Aπ cos(2πY) sin(2
3
π + Cπt)

FZZ = 1 + 2Aπ cos(2πZ) sin(4
3
π + Cπt)

(5.22)

Acceleration is found by twice differentiating displacement (5.21) in time. Then

substituting stress P into (5.13) and solving for the body force b (used as the MMS

source term) it is found that:

b = π2











uX

(

4µ
ρ0

− C2 − 4λ(K−1)−µ

ρ0F 2

XX

)

uY

(

4µ
ρ0

− C2 − 4λ(K−1)−µ

ρ0F 2

Y Y

)

uZ

(

4µ
ρ0

− C2 − 4λ(K−1)−µ

ρ0F 2

ZZ

)











, (5.23)

66

where K = ln(FXXFY Y FZZ) and the subscripts on u and F indicate individual

terms of displacement and deformation gradient equations.

5.3 Results

5.3.1 One-Dimensional Smoothing Length Experiments

We simulated the 1-D periodic bar developed in Section 5.2.2 on the domain

[0, 1] to understand the effect of smoothing length on errors within MPM.

The bar is initially discretized with an even sampling of points with initial

positions X0
p . The particle positions are then adjusted to xp = X0

p + u(X0
p , 0), and

deformation gradients set to Fp = F (X0
p , 0). The simulation is run to a final time

T and errors in the particle positions are calculated as

Error = |xT
p − X0

p − u(X0
p , T)|. (5.24)

This simulation was run with the parameters A = 0.02, E = 104, and ρ0 = 1.0

to a final time T = 2/C (one full period of oscillation) using uGIMP with various

numbers of particles-per-cell (PPC) and various smoothing lengths. Figure 5.4

shows how errors depend on smoothing length for different numbers of particles-

per-cell (PPC) when we run at a relatively large time-step corresponding to a

Courant-Friedrichs-Levy (CFL) number of 0.8. We see that the simulations go

unstable when the smoothing length is close to, or less than the initial width of the

particles. The two particles-per-cell (PPC) simulation goes unstable for L < h/2,

the three particles-per-cell (PPC) simulation goes unstable for L < h/3, etc.

This observation of a region of instability when using uGIMP helps explain

anomalies observed when implementing the quasi-static 1-D bar under gravity from

Bardenhagen and Kober’s original paper on GIMP [8]. In practice, results match

the paper when the bar is under compression but go unstable when under extension.

This is understandable in light of our results since the bar under compression

will have particles smaller than the smoothing length L at finial time T , while

the bar under extension will have particles larger than the smoothing length L

at final time T . This later scenario is a good demonstration of the region of

instability. Furthermore, since the simulation is a quasi-static problem, the solution

67

0 0.2 0.4 0.6 0.8 1
10

−6

10
−4

10
−2

10
0

Smoothing Length (fraction of h)

R
M

S
 E

rr
or

8ppc
4ppc
3ppc
2ppc

Figure 5.4. Stability analysis for uGIMP showing errors vs. uGIMP smoothing
length. The simulations were run with a fixed time-step of ∆t = 0.02, corresponding
to a CFL number of 0.8.

is dominated by internal forces (instead of inertial forces) and we would expect to see

the same ringing instabilities described by Brackbill [13] which have been observed

in PIC codes with low-speed flow calculations.

Figure 5.5 shows the effect of smoothing length on the time-step stability re-

strictions. Figure 5.5(a) shows larger smoothing lengths are stable for a wider range

of CFL values when the problem is discretized with four particles-per-cell (PPC).

While the simulation using a smoothing length of h/8 goes unstable at a CFL

number of approximately 0.75, the same simulation with a smoothing length of h

(equivalent to quadratic B-spline basis functions) is stable up to a CFL number of

approximately 1.2. Figure 5.5(b) shows similar behaviors for eight particles-per-cell

(PPC). Furthermore, the time-step stability restrictions do not change significantly

between the four particles-per-cell (PPC) and eight particles-per-cell (PPC) sim-

ulations, suggesting that the stability is more dependent on the smoothing length

than the number of particles-per-cell (PPC).

5.3.2 One-Dimensional Spatial Convergence Results

To investigate the spatial convergence properties of the various MPM methods,

we start by simulating the same 1-D periodic bar from Section 5.2.2, now focusing

on the behavior of the error with respect to grid resolution and how that error

68

0.7 0.8 0.9 1 1.1 1.2
10

−6

10
−4

10
−2

CFL

R
M

S
 E

rr
or

L = h/8
L = h/4
L = h/3
L = h/2
L = h/1

(a) Four Particles-Per-Cell (PPC)

0.7 0.8 0.9 1 1.1 1.2
10

−6

10
−4

10
−2

CFL

R
M

S
 E

rr
or

L = h/8
L = h/4
L = h/3
L = h/2
L = h/1

(b) Eight Particles-Per-Cell (PPC)

Figure 5.5. Examination of stability for uGIMP showing errors versus CFL
number for various choices of smoothing length.

may differ using different choices of basis functions and boundary treatments. The

simulations were run with the parameters A = 0.05 (5% maximum displacement),

E = 104, and ρ0 = 1.0 to a final time T = 1/C (one-half period of oscillation). All

simulations were run with a time-step of ∆t = 4 · 10−6, corresponding to a CFL

number of approximately 0.2 for 512 grid cells–the highest resolution test case.

Figure 5.6 shows results from simulations with both the standard MPM piece-

wise linear basis functions and quadratic B-splines. With an initial discretization of

four particles-per-cell (PPC), we see the standard MPM piecewise linear basis func-

tions showing no significant convergence beyond a modest 16 grid cells. Quadratic

69

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Grid Cells

R
M

S
 E

rr
or

4PPC, Linear, Dirichlet BCs
4PPC, Splines, Periodic BCs
4PPC, Splines (MB), Dirchlet BCs
6PPC, Quad. Splines (MB), Dirichlet BCs
2nd Order

Figure 5.6. Spatial convergence on a 1-D bar manufactured solution problem.

B-splines show a significant improvement, demonstrating O(h2) convergence, with

an error plateau occurring past 128 grid cells. The four particles-per-cell (PPC)

quadratic B-spline simulation was run with both periodic boundary conditions using

standard splines (see Figure 3.4(b)) and Dirichlet boundary conditions using the

modified boundary splines (Figure 3.5(a)). The results from the two boundary

treatments are nearly identical. As was shown previously, using smoother basis

functions greatly improves numerical quadrature errors and stability issues, however

nodal integration will always give some quadrature error which can explain the error

plateaus starting at 128 grid cells. The last set of simulations in Figure 5.6 shows

the same quadratic B-spline simulation with Dirichlet boundary conditions, except

this time the problem has been discretized using six particles-per-cell (PPC). The

extra particles helps lower the quadrature error and lower the error plateau.

To further illustrate errors stemming from boundary treatments, Figure 5.7

shows errors for the same problem simulated with B-splines, using three distinct

70

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Grid Cells

R
M

S
 E

rr
or

Dirichlet BCs, Ghost Nodes
Dirichlet BCs, Boundary Splines
Periodic BCs
1st Order
2nd Order

Figure 5.7. Spatial convergence on a 1-D bar manufactured solution using
quadratic B-splines with various boundary treatments.

boundary treatments. Similar to Figure 5.6, the Dirichlet boundary conditions with

modified boundary B-splines and the periodic boundary conditions with standard

B-splines show nearly identical results and demonstrate O(h2) convergence. Also

shown are results for standard B-splines with Dirichlet boundary conditions. This

technique requires handling of the extra or “ghost” boundary nodes as explained

in Section 3.2.5. As was discussed previously, this can lead to a geometric error on

the grid which is O(h) and the results show that the error convergence is in fact

reduced to O(h).

5.3.3 Verification with the Method of Manufactured
Solutions in Multi-D

The full 3-D axis-aligned problem from Section 5.2.3 was implemented in the

UCF to both demonstrate the validity of the multi-D manufactured solution and

show that many of the 1-D convergence results from the previous section are also

71

valid in 3-D. The simulation was run with the parameters A = 0.05 (5% maximum

displacement), ρ0 = 1.0, E = 104 and a Poisson’s ratio of 0.3. The problem was

discretized using four particles-per-cell (PPC) in each dimension (64 total particles-

per-cell). Both B-spline basis functions (with symmetric and periodic boundary

conditions) and cpGIMP were used in the simulations. The study consisted of grid

resolutions from 8×8×8 cells (32768 particles) up to 64×64×64 cells (16.8 million

particles).

The results in Figure 5.8 clearly show O(h2) convergence with cpGIMP for

all grid resolutions in the study. Using B-spline basis functions with periodic

boundary conditions did nearly as well, with convergence rates trailing off at higher

grid resolutions. Similar to the 1-D results, errors when using standard B-splines

with the extra, or “ghost” boundary nodes (this time with symmetric boundary

conditions) demonstrate the O(h) convergence we expect due to the geometric

errors on the grid.

It is not surprising that cpGIMP outperforms other methods, as this problem

is well suited for cpGIMP since particles remain axis-aligned and their voxels area

a true partition of the domain. Figure 5.9 is a visualization of a representative

2-D slice of the actual solution, showing the axis-aligned particle voxels and how

they partition the domain. B-splines when using extra boundary nodes performed

as expected, demonstrating the same O(h) error as the 1-D results. There is an

obvious benefit to using periodic boundary conditions over symmetric boundary

conditions for this problem since the errors are significantly lower. It is still unclear,

however, why the convergence rate for the periodic boundary conditions trails off

from the O(h2) behavior we would expect from the 1-D results. There are a number

of possibilities, including a more complicated quadrature error behavior in multi-D,

or the buildup of grid crossing errors (similar to those analyzed by Tran et al. [51]),

which may be more significant in multi-D since many more grid crossing events

occur than in 1-D simulations using similar resolutions.

72

10
1

10
2

10
−4

10
−3

10
−2

10
−1

Grid Cells (each dimension)

M
ax

 E
rr

or

B−spline, Symetric BCs
B−spline, Periodic BCs
cpGIMP
1st Order
2nd Order

Figure 5.8. Spatial convergence on the 3-D axis-aligned manufactured solution
problem.

5.4 Summary and Conclusions

In this chapter we have considered some of the many choices one must consider

when implementing the Material Point Method. Two of the design choices that have

significant impact on error properties of the method are which grid basis functions

to use and how to implement boundary conditions. We explored and analyzed the

numerical impact of these algorithmic choices.

A number of basis functions were explored, including: standard piecewise-linear

basis functions, B-spline basis functions, uniform GIMP (uGIMP), and contiguous

particle GIMP (cpGIMP). All these functions were shown to be connected through

a similar construction technique–the convolution of piecewise-constant functions

of various lengths. Analysis of the uGIMP functions showed an integration, or

quadrature error which was second order with respect to particle spacing when

the basis function smoothing length is larger than the particle widths. When the

73

Figure 5.9. Visualization of a representative 2-D slice of the exact solution
(5.21) at time t = 0.005, showing deformed particle positions (black dots) and a
conceptualization of the axis aligned particle voxels. The voxels have been rounded
and their sizes slightly reduced for visual clarity.

smoothing length is smaller than the particle widths, this integration error becomes

first order. The effects of this relationship between particle widths and smoothing

lengths were demonstrated in simulations where instabilities occurred when the

smoothing length was set smaller than the particle widths.

Boundary condition implementation also had an effect on the overall errors in

the method. The geometric errors present in the grid representation of the deformed

material can result in first order spatial errors when standard kinematic boundary

conditions are applied. These geometric errors are exacerbated when smoother, and

necessarily wider, basis functions are used, such as uGIMP, or B-splines. We were

able to eliminate these first order errors when using periodic boundary treatments.

Relaxing the requirement that each grid node correspond to a single basis function

led us to a set of modified boundary B-spline basis functions which eliminated the

geometric errors for our problem and allowed second order spatial convergence with

standard Dirichlet boundary conditions.

CHAPTER 6

DECOUPLING AND BALANCING SPACE

AND TIME ERRORS IN THE MATERIAL

POINT METHOD

Chapters 4 and 5 looked at various errors in MPM, however most of the focus has

thus far been on spatial errors. Time-stepping algorithms and their associated errors

within the method have received little attention. While the centered difference

time-stepping scheme often used for advancing velocities and displacements is well

explained within the ODE literature, the complicated interconnection between

spatial and temporal errors in MPM makes quantifying the error behavior more

complex. In particular, the motivation of this chapter is to reconcile through anal-

ysis and numerical experimentation statements that the time-stepping method used

in MPM is “formally second-order” [49] with the recent and detailed convergence

tests showing “zero-order” temporal convergence [55].

In this chapter we give a detailed explanation of both standard MPM and a

variant of MPM to which we refer to as “moving-mesh MPM” and provide an

analysis and demonstration of spatial and temporal errors of the method. Moving-

mesh MPM is a fully Lagrangian method which helps control some of the more

complicated sources of errors within MPM – quadrature and grid crossing er-

rors – thereby allowing us to construct computational experiments which help

ferret out the mathematical and algorithmic choices within MPM which violate

the mathematical assumptions upon which time-stepping algorithms are based. A

simplified nonphysical mathematical problem with similar error characteristics to

MPM helps us to both analyze and demonstrate expected error behaviors in MPM

type simulations.

75

We then extend this work to provide intuition and guidelines by which the

MPM practitioner can select time-step sizes which balance space and time errors.

In particular, we help the practitioner understand the trade-offs between increasing

spatial resolution through increasing grid spacing and number of particles and

the corresponding impact on temporal errors. In the case in which explicit time-

stepping algorithms are used (as are often the case in the MPM community and

as are analyzed in this paper), the practitioner can also further appreciate the

trade-offs between temporal accuracy and stability as dictated by their time-step

choice.

This chapter is organized as follows: Section 6.1 provides background and

reviews previous temporal error analysis performed in MPM. Section 6.2 outlines

an explanation of the coupling of spatial and temporal errors within MPM.

Section 6.3 provides three studies of various error behaviors for both a simplified

nonphysical problem with MPM type characteristics and a single step standard and

moving-mesh MPM. Section 6.4 shows a demonstration of the errors analyzed in

Section 6.3, this time in the full MPM framework. Section 6.5 provides some

guidelines to the practitioner on how algorithm parameters affect various errors.

Lastly, Section 6.6 is a summary of our findings, our conclusions, and future work.

6.1 Background

One main theme in previous chapters is understanding the impact of quadrature

choices within the MPM framework. It is well acknowledged that within almost all

numerical methods, the accuracy of the method can depend highly on the accuracy

of the numerical quadrature used. In Chapter 4 we performed an analysis of the

spatial quadrature errors in MPM, equating the quadrature errors in MPM to

integration errors when using a composite midpoint rule with breaks in continuity of

the integrand. This analysis helped explain why second-order spatial convergence,

as one would expect in finite element methods, is not possible when piecewise-linear

basis functions are used for represented field quantities on the Eulerian mesh within

MPM. The simple adaptation to quadratic B-spline basis functions (also detailed

76

in Chapter 5) allowed the demonstration of second-order spatial convergence of full

MPM simulations. Midpoint integration errors are also second-order and therefore,

while higher-order basis functions may improve the overall error further, spatial

convergence rates will not improve with current integration strategies. For higher

than second-order spatial convergence, more advanced techniques than nodal inte-

gration as currently employed would be required.

The analysis in previous chapters assumed the use of a fixed background grid–a

grid that “resets” back to the starting position after each time-step. While parti-

cles may start in ideal positions with particle voxel boundaries aligned with grid

cell boundaries, any motion will quickly lead to an arrangement where particles

overlap grid cell boundaries. It is this overlap that leads to the largest quadrature

errors. Another option is to use moving-mesh MPM, where the background mesh

moves with the particles and is never reset. The particles will remain at their

ideal positions, eliminating the errors associated with particle voxel and grid cell

boundary overlap. While this technique may seem contrary to the spirit of MPM,

it remains effective for small deformation problems and completely eliminates grid-

crossing errors, allowing for simpler analysis and demonstration of temporal errors.

Moving-mesh MPM has previously been used to model the biological mechanics of

cells [22] and in studying texture evolution in polycrystalline nickel [56].

This chapter seeks to use and extend the perspective on spatial errors gained

in previous chapters to understand the lack of temporal convergence demonstrated

in [55]. The inspiration for connecting the spatial error characteristics with the

temporal error characteristics lies outside the MPM literature. Lawson et al. [30]

demonstrate a method of error control in solving parabolic equations, and is the

basis on which we formulate our analysis. In this work, we do not go as far as

attempting to control errors in MPM, but as in the work of Lawson et al., we

model our time-update equation for an ODE of the form v̇ = a as,

vk+1 = vk + (ak + c1h
p)∆t + c2∆tq (6.1)

where the spatial errors in a are assumed to be O(hp) and the time-stepping method

has temporal errors of O(∆tq). Here, h represents our spatial discretization spacing

77

and ∆t is our time-step size. Constants c1 and c2 are problem dependent, but once

determined can be used to find the location where spatial and temporal errors are

balanced (i.e., where c1h
p∆t = c2∆tq). The confluence of these perspectives allow

us to both appreciate and explain why MPM exhibits the temporal convergence

behavior as reported in the literature, and more importantly, allows us to provide

guidelines to the practitioner concerning the interplay between space and time

errors.

6.2 Interpreting the Coupling of Lagrangian
and Eulerian Simulations

Although MPM involves numerous discretization and approximation choices in

the simulation of physical and mathematical problems, many of the errors previ-

ously observed in MPM, including grid crossing errors, can be viewed as quadrature

errors in integrating spatial quantities. Specifically, Chapter 4 shows how nodal

integration in MPM is essentially a midpoint integration type scheme, where dis-

continuities in spatial quantities (at the grid nodes, in particular) are not respected

within the integration scheme, as one would normally do when integrating discon-

tinuous functions with the midpoint rule. This occurs because particle voxels may

not be aligned with grid cells. It is this overhanging of particle voxels with grid

cell boundaries that result in errors greater than what would normally be expected

with the midpoint integration rule.

Quadrature errors are unique in MPM, in that they are fairly low order and time-

dependent, or coupled, in standard Eulerian MPM. In standard MPM, a simulation

may be initially discretized with particle voxels aligned with grid cells; however, as

the simulation progresses, particles move with respect to the grid (or in an alternate

view, the grid is reset, which still causes the particles to be displaced with respect

to their original grid positions), and these particle voxel overlaps with grid cell

boundaries begin to develop. Furthermore, this quadrature error will generate

errors in acceleration, and in turn cause errors in velocity and position, changing

again the particle positions with respect to grid cells, and thus influencing future

quadrature errors. This is to say, quadrature errors have a compounding effect in

78

MPM.

One time-stepping algorithm currently employed in MPM to solve the two

coupled first-order ODEs:

v̇(x, t) = a(x, t) (6.2)

u̇(x, t) = v(x, t), (6.3)

is the centered difference time integration method:

vk+1/2 = vk−1/2 + ak∆t (6.4)

uk+1 = uk + vk+1/2∆t. (6.5)

As has been pointed out in the MPM literature [49], this method is “formally”

second-order in time. However, this formal analysis carries with it assumptions

regarding smoothness and accuracy of a, assumptions which do not hold within

the MPM framework. In particular, the acceleration calculated using the MPM

algorithm may have significant quadrature errors in space and discontinuities in

time [51], both of which make second-order temporal convergence unrealizable to

the MPM practitioner. Figure 6.1 shows a sample of a typical grid acceleration

field a(x) =
∑

i φi(x)ai encountered in standard MPM when piecewise-linear basis

functions are used when solving the 1-D bar introduced in Section 5.2.2. The

jump in acceleration occurs when a particle’s position in space crosses a grid cell

boundary. The calculated acceleration is obviously not smooth in this case, the

impact of which has repercussions on the updated velocity and displacement of the

particle.

One way to decouple and alleviate these errors is to employ Lagrangian, or

moving-mesh MPM, as outlined in Section 3.2.2. As can be seen in Figure 3.2,

particles will remain fixed with respect to the grid for all time. Since particles do

not move with respect to the grid, quadrature errors, while still present, are not

time-dependent. Furthermore, if particles are initially grid-cell aligned, they will

remain so as the simulation progresses, allowing for decreased quadrature errors

since no particle-voxel and grid cell boundary overlap occurs.

79

0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Normalized Time

N
or

m
al

iz
ed

 A
cc

el
er

at
io

n

Grid Crossing Event

Jump in Acceleration

Figure 6.1. Grid acceleration field over time sampled by following the displacement
of one particle. Standard MPM and piecewise-linear basis functions were used. The
jump in acceleration occurs when a particle crosses a grid cell.

Moving-mesh MPM is very similar to standard FEM methods and thus suffers

from many of the same problems. In particular, moving-mesh MPM is not well

suited for large deformation problems and can experience mesh entanglement issues.

The use of moving-mesh MPM may seem counter intuitive as large deformation

problems are one of the main strengths of MPM; however, our use of moving-mesh

MPM will allow for the decoupling of spatial and temporal errors and aid in analysis

and demonstration of these errors in following sections.

6.3 Studies of Simplified Decoupled Problems

The entire MPM algorithm, whether we consider standard MPM or moving

mesh MPM as outlined in Equations (3.48)-(3.59), involves many steps and many

approximations. Furthermore, as argued in Section 6.2, spatial and temporal errors

are interconnected and exhibit compounding behavior, making analysis of full MPM

80

simulations difficult. In this section, we start by presenting our decoupling strategy,

which allows us to study and analyze simpler problems which still demonstrate

many of the numerical errors present in a full MPM simulation. Next, we will study

the impact of spatial discontinuities on time-stepping by performing an analysis and

showing demonstrations of the time-stepping jump error, where we look at the error

associated with time-integrating past discontinuities in the velocity field. A study

on the impact of quadrature errors on time-stepping follows. We conclude this

section by examining the balance between spatial and temporal errors.

6.3.1 Decoupling Strategy

If we consider the MPM algorithm in a reverse order of operations, our final

goal is to time-integrate particle information, including the particle position:

dxp

dt
= v(xp(t)). (6.6)

MPM most often uses a Forward-Euler, or centered difference scheme to integrate

the above equation, and again, the errors associated with these schemes are well

understood [24]. Most previous analysis, however, assumes some level of continuity

of the function v(x). In standard MPM, the velocity field v is generated as a linear

combination of piecewise-linear basis functions, giving rise to a piecewise-linear

velocity field v. The integration of particle position (or displacement) in stan-

dard MPM is akin to performing streamline integration through a time-dependent

piecewise-linear field in which the velocity field v is created from information on the

particles. The errors arising in this situation will be illustrated in Section 6.3.2 by

fixing a piecewise-linear velocity field v(x), and performing streamline integration

through this fixed velocity field to demonstrate the resulting jump errors.

In standard MPM, the velocity field is also time-integrated using an acceleration

field a, which is also calculated using information from the particles:

dvp

dt
= a(xp(t)) (6.7)

ap = a(xp) =
∑

i

aiφi(xp) (6.8)

81

ai = fi/mi =
1

mi

∫

Ω

∇φi(x)σ(x) dΩ ≈ 1

mi

∑

p

∇φipσ(xp)Vp. (6.9)

Our next decoupling strategy which will allow us to look at the impact of the

spatial quadrature errors in (6.9) on time-stepping is to specify a discontinuous field

g(x) (since ∇φi(x)σ(x) is discontinuous when piecewise-linear basis functions are

used) and define acceleration as a =
∫

Ω
g(x) dΩ. This integral will be approximated

in a similar fashion to the approximations in MPM. The resulting acceleration will

not be the same as the acceleration calculated in standard MPM, however the

integration will be over a similarly discontinuous function, and thus we will see

similar error behaviors. To help avoid confusion, we will refer to ae as “external

acceleration.” Employing this strategy will lead us to global error approximations

in position resulting from spatial quadrature errors at each time-step. Analysis and

results for this problem follow in Section 6.3.3.

And finally, in Section 6.3.4 we will consider all errors in the problem. With

better understanding of both spatial and temporal error behaviors, we will be able

to predict and demonstrate where these spatial and temporal errors are balanced.

6.3.2 Impact of Spatial Discontinuities on Time-Stepping

Recent work by Tran et al. [51] analyzed errors in an MPM algorithm with

respect to a gas dynamics problem. One feature of their MPM implementation

which differs from most other implementations is a volume normalization step.

While most implementations of MPM for solid mechanics define particle volume

at time tk as V k
p = det(Fk

p)V
0
p , the algorithm used in Tran et al. defines particle

volume (in 1-D) as V k
p = h/nk

i , where h is the grid spacing and nk
i is the number

of particles in grid cell i (of which particle p also belongs to). Therefore, much of

their analysis relating to spatial errors is not directly applicable to the variants of

MPM presented here. They do, however, consider temporal errors when integrating

past a jump in continuity of the velocity field. This error is present in the standard

MPM algorithm and we will consider it here.

6.3.2.1 Simplified problem. Before we proceed with an analysis, we wish

to devise a simplified nonphysical problem which exhibits many of the same math-

82

ematical approximations and traits as the full MPM algorithm. The errors in this

simplified problem will display similar characteristics to errors in the full MPM

algorithm, but will be easier to analyze and will provide us insight into expected

error behavior in MPM.

The main mathematical features we wish to preserve from the full MPM al-

gorithm is the evaluation of a piecewise-linear velocity field when time-integrating

particle positions, and the integration of a discontinuous field in the acceleration

calculation. In doing so, we will consider a single particle p, starting at x = 0

at time t = 0. We will fix a piecewise-linear velocity field v(x) on the domain

Ω = [0, 1], as shown in Figure 6.2(a). This velocity field is not time-dependent and

is defined by:

v(x) =



















3x + 1 : x ∈ [0, 1/3]

6x : x ∈ [1/3, 2/3]

12x − 4 : x ∈ [2/3, 5/6]

18x − 9 : x ∈ [5/6, 1].

(6.10)

With a particle initiating at x = 0, the particle position can be determined by

solving the following equation for x(t):

∂x

∂t
= v(x(t)). (6.11)

Since our velocity field is piecewise-linear, this function can be solved analytically.

For a linear velocity field v(x) = ax + b, the solution to this equation is

x(t) =
b + ax0

aeat0
eat − b

a
. (6.12)

The solution for x ∈ [0, 1/3], with a = 3, b = 1, t0 = 0, and x0 = 0, is then

x(t) =
1

3
e3t − 1

3
. (6.13)

This solution is valid only for x ∈ [0, 1/3]. We can find which times these are valid

by solving the inverse equation with x = xcross
1 = 1/3 for tcross

1 :

tcross
1 =

1

a
ln

[

xcross
1 + b/a

b + ax0

aeat0

]

. (6.14)

Therefore, (6.13) is valid for t = [0, tcross
1]. The second segment, valid for x ∈

[1/3, 2/3], is calculated in a similar manner, with a = 6, b = 0, t0 = tcross
1 , and

83

x0 = 1/3. The second crossing time tcross
2 is calculated in a similar manner to (6.14),

with x = xcross
2 = 2/3. The resulting piecewise-exponential position function x(t)

is shown in Figure 6.2(b).

We can see the error behavior of this system by performing the following Forward-

Euler time-integration strategy:

xk+1
p = xk

p + v(xk
p)∆t. (6.15)

The full MPM algorithm exhibits similar jump errors as the above problem due

to the similarities in the piecewise-linear velocity fields.

0 0.2 0.4 0.6 0.8 1

2

4

6

8

x

v(
x)

v = 3x + 1
v = 6x

v = 12x − 4

v = 18x − 9

(a) Velocity Field

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

t

x(
t)

x(t)
crossing points

(b) Particle Position

Figure 6.2. Fixed piecewise-linear velocity field and resulting x(t) for our simpli-
fied problem.

84

6.3.2.2 Analysis. Figure 6.3 demonstrates a situation where a particle p

samples a piecewise-linear velocity field v(x) at time tk. The particle position

is then time-integrated to tk+1 using the standard forward Euler scheme xk+1
p =

xk
p + ∆tv(xk

p). In this scenario, a grid crossing has occurred, i.e., xk
p < xi < xk+1

p .

Since the velocity field v(x) has a jump in continuity at xi, standard ODE error

bounds do not necessarily apply.

One method for handling this situation is to perform a two-step time-integration

strategy, where a time-step of ∆t1 is determined, which will bring the particle to

the discontinuity, then a second time-step of ∆t2 = ∆t−∆t1 is taken, reevaluating

the velocity field for the second time-step.

The algorithm would then be to calculate xk+1
p = xk

p + ∆tv(xk
p) as normal. If

a grid crossing has occurred where xk
p < xk+1

i < xk+1
p , calculate the first time-step

∆t1 = (xi − xk
p)/v(xk

p) which will advance the particle to the grid node xi. Next,

calculate an adjusted two-step particle position as x̄k+1
p = xi + ∆t2v(xi).

The difference between the two-step and one-step particle positions, x̄k+1
p −xk+1

p ,

or the time-stepping jump error, was calculated in [51]. They showed this difference

to be:

Figure 6.3. One-step versus two-step method for crossing a discontinuity in a
velocity field.

85

x̄n+1
p −xn+1

p = (vn+1
i −vn+1

i−1)

[

xi − xn
p

xi − xi−1

]

∆t2+

[

an
i−1 +

xn
p − xi−1

xi − xi−1

(an
i − an

i−1)

]

∆t1∆t2.

(6.16)

Here, we continue to expand on the analysis in [51] to help understand the relation-

ship between decreasing ∆t and the expected behavior of the difference x̄n+1
p −xn+1

p

in (6.16).

To simplify, the second term (in the square brackets) is merely the projection

of grid acceleration onto the particle at time n: an
p . Therefore, we can rewrite this

as:

x̄n+1
p − xn+1

p = (vn+1
i − vn+1

i−1)

[

xi − xn
p

xi − xi−1

]

∆t2 + an
p∆t1∆t2. (6.17)

Rearranging the first term gives:

vn+1
i − vn+1

i−1

xi − xi−1

(xi − xn
p)∆t2 ≈

∂v

∂x
(xi − xn

p)∆t2. (6.18)

To arrive at this point, we have assumed that the particle has crossed the grid

node xi during a full time-step, i.e., xn
p < xi < xn+1

p . Furthermore, we know that

xi = xn
p +vp∆t1, where vp is the projection of grid velocities to the particle position.

Therefore, xi−xn
p = vp∆t1. Plugging this into the above, we see the first term looks

like:
∂v

∂x
vp∆t1∆t2. (6.19)

Thus, we get an error in position of the form:

x̄n+1
p − xn+1

p =

[

∂v

∂x
vp + an

p

]

∆t1∆t2. (6.20)

Since ∆t2 = ∆t−∆t1 with ∆t1 < ∆t, we can rewrite these time-steps as ∆t1 = α∆t

with 0 < α < 1 and ∆t2 = (1 − α)∆t. Thus

∆t1∆t2 = α(1 − α)∆t2. (6.21)

The term α(1− α) has a maximum of 1/4 at α = 1/2, thus the error in position is

bounded by

x̄n+1
p − xn+1

p ≤ 1

4

[

∂v

∂x
vp + an

p

]

∆t2. (6.22)

Therefore, the time-stepping jump error, or the error between the two-step and

one-step methods, is O(∆t2). The following section will show results demonstrating

this second-order error behavior.

86

6.3.2.3 Results. The following is a test with a piecewise-linear velocity field

(arising from piecewise-linear basis functions). Given a time-step ∆t, the equation

xi = xp + ∆t1v(xp) (6.23)

was solved for xp with ∆t1 = ∆t/2. This gives us a starting position, such that the

velocity field will move the particle such that xi is halfway between xn
p and x̄n+1

p .

Next, xn+1
p is calculated in the two-step method, i.e.:

xn+1
p = xn

p + vp∆t1 + vi∆t2 = xi +
∆t

2
vi. (6.24)

The difference x̄n+1
p − xn+1

p is calculated and plotted in Figure 6.4. Here, we can

see the O(∆t2) convergence we expect.

Our estimate for the jump error in Section 6.3.2.2 was

εjump =
1

4

[

∂v

∂x−

vp + an
p

]

∆t2. (6.25)

10
−4

10
−3

10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

∆ t

x 2n+
1 −

 x
1n+

1

Jump Error
2nd order

Figure 6.4. Convergence of the jump error (x̄n+1
p − xn+1

p) when xi is half the

distance between xn
p and xn+1

p .

87

The terms ∂v/∂x, vp, and ap are easily calculated for the simplified problem in

Section 6.3.2.1. Using an initial time-step (before refinement) of ∆t0 = 0.01, we

can measure the jump errors and compare against our estimates. The jump error

is estimated using (6.25) and calculated as the difference between performing the

time integration strategy in the standard fashion (giving xp) and performing the

time-integration utilizing the two-step strategy to obtain x̄p:

εk
jump = xk

p − x̄k
p. (6.26)

Figures 6.5(a) and 6.5(b) show the calculated jump errors for various time-step

selections. Table 6.1 shows the estimated and calculated jump errors for a particular

time-step, demonstrating the error bounds are tight.

0.2 0.25 0.3 0.35 0.4

0

1

2

3x 10
−5

t

P
os

iti
on

 E
rr

or

∆t
0

∆t
0
 / 2

∆t
0
 / 4

∆t
0
 / 8

Decreasing ∆t

Jump 1 Jump 2 Jump 3

(a) Multiple Time-Step Sizes

0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

x 10
−7

t

P
os

iti
on

 E
rr

or

∆t
0
 / 8

(b) Single Time-Step Size

Figure 6.5. Measured jump errors for simplified problem.

Table 6.1. Estimated and calculated values for all three jumps in the simplified
problem, showing tight bounds for the estimated jump error.

Jump Estimated Jump Calculated Jump

1 2.34 × 10−8 1.81 × 10−8

2 9.36 × 10−8 7.60 × 10−8

3 2.81 × 10−7 1.84 × 10−7

88

6.3.3 Impact of Spatial Quadrature Errors on Time-Stepping

Chapter 4 analyzed quadrature errors in the MPM framework but did not extend

to take into account the feedback that occurs between spatial and temporal errors

as a simulation progresses. In this section we will introduce a modification to our

simplified problem which will exhibit similar quadrature errors as found in standard

MPM. We will follow this with an analysis and demonstration of these errors.

6.3.3.1 Simplified problem. We will use the same prescribed velocity field

v as developed in Section (6.3.2.1), however, we will also define an external accel-

eration ae(t), defined by integrating a given function g(x) over the domain Ω. The

function g(x), shown in Figure 6.6, is not time-dependent and is defined as:

g(x) =



















−J : x ∈ [0, 1/3]

0 : x ∈ [1/3, 2/3]

J : x ∈ [2/3, 5/6]

3J/2 : x ∈ [5/6, 1].

(6.27)

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

x

g(
x)

g(x) = −J x ∈ [0,1/3]

g(x) = 0 x ∈ [1/3,2/3]

g(x) = J x ∈ [2/3,5/6]

g(x) = 3J/2 x ∈ [5/6,1]

Figure 6.6. Function g(x) used in calculating external acceleration for a simplified
problem.

89

The function g(x) was chosen such that
∫

Ω
g(x) dx = 0. However, similar to

the nodal integration in MPM, we will approximate this integral with midpoint

quadrature over the particle domain Ωp = [xp −∆x/2, xp +∆x/2], i.e., acceleration

is approximated as

ae(t) =

∫

Ω

g(x) dx ≈
∫

Ω−Ωp(t)

g(x) dx + g(xp)∆x. (6.28)

Again, the inclusion of ae is not meant to be physical, but to include a forcing

term which exhibits quadrature errors similar to those which occur when calculating

acceleration in MPM. This is accomplished since the integrands in the calculation

of our simplified external acceleration ae and the full MPM acceleration (when

piecewise-linear basis functions are used) are both discontinuous.

If the calculation of ae(t) can be carried out exactly, external acceleration should

be zero for all time and the behavior of the particle should be the same as in Figure

6.2(b). Any error in integration will result in nonzero external accelerations. The

errors in integration result from errors in the above midpoint approximation. The

particle position xp changes with time, and thus this error is time-dependent, hence

ae(t) is time-dependent, even though g(x) is not.

Finally, we can see the behavior of this system by performing the following

Forward-Euler time-integration strategy:

ak
e =

∫

Ω−Ωp

g(x) dx + g(xk
p)∆x (6.29)

vk+1
e = vk

e + ak
e∆t (6.30)

vk+1 = v(xk
p) + vk+1

e (6.31)

xk+1
p = xk

p + vk+1∆t. (6.32)

The MPM algorithm exhibits similar behavior as seen in this simplified problem

due to quadrature errors in calculating internal forces (3.21). This complicated

interplay between spatial and temporal errors is one reason why analysis of MPM

is not straightforward.

90

6.3.3.2 Analysis. Analysis of quadrature errors in Chapter 4 calculated

errors in internal force when evenly spaced particles sample a material with constant

stress:

Ef =

∫

Ω

σ(x) · ∇φi dΩ−
∑

p

σp · ∇φipVp = σ ·
[

∫

Ω

∇φi dΩ − ∆x
∑

p

∇φip

]

, (6.33)

where ∆x is the particle spacing, or volume. Here, ∇φi is either piecewise-constant

or piecewise-linear depending on if piecewise-linear or quadratic B-spline basis

functions are used. The bracketed term is equivalent to the error in integrating

a piecewise-constant or piecewise-linear function using a composite midpoint rule.

This error should be zero if particle voxels align with breaks in continuity of the

integrand; however, in general this is not the case with MPM. Figure 6.7 shows an

example of a particle spanning breaks in continuity.

The maximum internal force error from (6.33) when using piecewise-linear basis

functions is due to integrating over breaks in continuity of the piecewise-constant

function ∇φ, as can be seen in Figure 6.7(a). This error looks like Ejump =

C1[[φ
′(0)]]∆x, where [[·]] denotes the jump condition, and C1 is a constant depend-

ing on the integrand. For the case of piecewise-linear basis functions, C1 = 1/2.

Evaluating the entire integral in (6.33), taking into account each continuity jump,

the upper bound on the total force error Ef (denoted as Etotal) is

Ef ≤ Etotal = 2σ
∆x

h
. (6.34)

Performing the same analysis when using quadratic B-splines leads to a jump

error of the form Ejump = C2[[φ
′′[0]]]∆x2. For our quadratic B-splines, C2 when

integrating ∇φ is 1/8. This leads to an upper bound on the total force error Ef of

Ef ≤ Etotal = σ
∆x2

h2
. (6.35)

This leads to an acceleration error for piecewise-linear on each time-step that looks

like

ε = Cαγ(t), (6.36)

91

(a) Piecewise-constant integrand

(b) Piecewise-linear integrand

Figure 6.7. Examples of particles spanning breaks in continuity. Here (a) shows
a piecewise-constant integrand, which occurs when integrating ∇φ with piecewise–
linear basis functions, where (b) shows a piecewise-linear integrand, arising from
integrating ∇φ with quadratic B-spline basis functions.

where C is a constant, α is ∆x/h, or the inverse of the number of particles-per-cell

(PPC), and γ(t) is a function between −1 and 1, specifying how much of the

maximum quadrature error is added. The time-update equation is then

vk+1 = vk + (ak + Cαγ(tk))∆t, (6.37)

xk+1 = xk + vk+1∆t (6.38)

= xk + vk∆t + ak∆t2 + Cαγ(tk)∆t2, (6.39)

where the term Cαγ(t)∆t2 is the error term. Continuing, assuming another error

in acceleration on the next time-step, we get the following:

92

vk+2 = vk+1 + (ak+1 + Cαγ(tk+1))∆t (6.40)

= vk + ak∆t + Cαγ(tk)∆t + ak+1∆t + Cαγ(tk+1)∆t. (6.41)

Now, let us assume γ(t) is the worst possible case for all t, that is |γ(t)| = 1.

Then

vk+2 = vk + ak∆t + ak+1∆t + 2Cα∆t, (6.42)

xk+2 = xk+1 + vk+2∆t (6.43)

= xk + vk∆t + ak∆t2 + Cα∆t2 + vk∆t + ak∆t2 + ak+1∆t2 + 2Cα∆t2 (6.44)

= xk + 2vk∆t + 2ak∆t2 + 3Cα∆t2. (6.45)

If we continue our time-steps inductively, we get the following after N steps:

vN = v0 +
N

∑

i=1

ai∆t + NCα∆t, (6.46)

xN = x0 +
N

∑

j=1

vj∆t (6.47)

= x0 + Nv0∆t +
N

∑

j=1

[

(

j
∑

i=1

ai∆t) + jCα∆t

]

∆t (6.48)

= x0 + Tv0 +
N

∑

j=1

j
∑

i=1

ai∆t2 +
N

∑

j=1

jCα∆t2 (6.49)

= x0 + Tv0 +
N

∑

i=1

(N − i + 1)ai∆t2 +
N(N + 1)

2
Cα∆t2 (6.50)

= x0 + Tv0 +
N

∑

i=1

(N − i + 1)ai∆t2 +
1

2
TCα∆t +

1

2
T 2Cα, (6.51)

where T is the final time T = t0+N∆t. The global quadrature errors with piecewise-

constant g(x) is then

Eq =
1

2
TCα∆t +

1

2
T 2Cα. (6.52)

When piecewise-quadratic basis functions are used, such as B-splines or GIMP

functions, the analysis is similar, leading to global quadrature errors of the form

Eq =
1

2
TCα2∆t +

1

2
T 2Cα2. (6.53)

93

Our simplified problem with piecewise-linear f will exhibit similar error behavior

as the analysis above for MPM with piecewise-linear basis functions. The following

section will show a demonstration of these errors in the simplified problem.

6.3.3.3 Results. In Section 6.3.3, the global error for our simplified problem

at final time T = t0 + N∆t, including the effect of quadrature errors, is given by:

xN = x0 + Tv0 +
N

∑

i=1

(N − i + 1)ai∆t2 +
1

2
TC∆x∆t +

1

2
T 2C∆x. (6.54)

The first three terms represent the standard Forward-Euler time-stepping method,

and the last two terms represent the estimate of quadrature errors on the global

position error:

ε =
1

2
TC∆x∆t +

1

2
T 2C∆x. (6.55)

From this estimate, we would expect global errors to decrease with decreasing

time-step ∆t, but to be limited by the last term, which has no dependence on

time-step. We also expect global quadrature errors to increase quadratically with

final time T and to decrease with decreasing particle spacing ∆x as seen in Figure

6.8.

While the error estimate in (6.55) shows the error growing quadratically as the

final time T increases, and while the simplified problem was designed to demonstrate

this behavior and the results in Figure 6.8 exhibit this unbounded error, it is worth

noting that the global error in many simulations oscillate around the true solution.

0 0.1 0.2 0.3 0.4
0

0.005

0.01

0.015

t

|P
os

iti
on

 E
rr

or
|

∆t
0
 / 2

∆t
0
 / 4

∆t
0
 / 8

∆t
0
 / 16

(a) ∆x = 1/4

0 0.1 0.2 0.3 0.4
0

0.005

0.01

0.015

t

|P
os

iti
on

 E
rr

or
|

∆t
0
 / 2

∆t
0
 / 4

∆t
0
 / 8

∆t
0
 / 16

(b) ∆x = 1/8

Figure 6.8. Global errors for two values of ∆x and numerous values of ∆t plotted
on the same axes.

94

6.3.4 Balancing Space and Time Errors

Until now, we have focused on analysis of errors in simplified problems which

demonstrate similar error behaviors as full MPM. Through a better understanding

of these component errors, and through numerical demonstrations, we can gain

insight concerning the spatial and temporal convergence properties of the method.

In this section we will eliminate the compounding of errors in MPM by focusing on

single time-step, local truncation errors in the full MPM framework. Using models

for the expected behavior of spatial and temporal errors, we will be able to estimate

the balancing point (a particular time-step ∆t) where these two errors are equal.

6.3.4.1 Moving-mesh MPM. The velocity update equation in Equation

(6.4) is a straightforward second-order discretization of v̇ = a. This can be seen by

performing Taylor series expansions of v about time tk:

vk+1/2 =vk + v̇k(∆t/2) +
1

2
v̈k(∆t/2)2 +

1

6

...
v k(∆t/2)3 + O(∆t)4, (6.56)

vk−1/2 =vk − v̇k(∆t/2) +
1

2
v̈k(∆t/2)2 − 1

6

...
v k(∆t/2)3 + O(∆t)4. (6.57)

Subtracting (6.57) from (6.56) yields:

vk+1/2 − vk−1/2 = ∆tv̇k +
1

24
∆t3

...
v k + · · · . (6.58)

Rearranging terms elucidates to us how this discretization is second-order in time,

assuming a is sufficiently smooth:

ak = v̇k =
vk+1/2 − vk−1/2

∆t
+ O(∆t2). (6.59)

And lastly, if we measure local truncation errors, we would expect to see third-order

behavior:

vk+1/2 = vk−1/2 + ∆tak + O(∆t3). (6.60)

Again, these are standard ODE theory results and assume a is known and

sufficiently smooth [24]. However, as was shown above, significant spatial errors

95

can exist in MPM. In fact, assuming second-order spatial errors, acceleration will

take the form

ak = ãk + c1h
2, (6.61)

where ã is our calculated acceleration and c1 is a constant not dependent on h.

Substituting (6.61) into (6.60) gives us our MPM time-update equation for the

centered difference velocity update scheme:

vk+1/2 = vk−1/2 + ∆t(ãk + c1h
2) + c2∆t3. (6.62)

Here, the term c1h
2∆t represents the spatial contribution to the local truncation

error. The term c2∆t3 is the temporal contribution to the local truncation error.

Thus, we would expect a transition point between spatial and temporal errors

dominating when

c1h
2 = c2∆t2, (6.63)

which occurs when

∆t = Ch, (6.64)

with C =
√

c1/c2.

6.3.4.2 Standard MPM. When using standard MPM with piecewise-linear

basis functions, we expect first-order spatial errors. Therefore, instead of (6.61),

acceleration will now be:

ak = ãk + c1h, (6.65)

where ã is the calculated acceleration. Substituting (6.65) into (6.60) gives us

our MPM time-update equation for the centered difference velocity update scheme

within the standard MPM framework:

vk+1/2 = vk−1/2 + ∆t(ãk + c1h) + c2∆t3. (6.66)

This differs from (6.62) in that the spatial error term is first-order, rather than

second-order. We would now expect the transition point between spatial and

temporal errors dominating at

c1h = c2∆t2, (6.67)

96

which occurs when

∆t = C
√

h, (6.68)

with C =
√

c1/c2.

Quadratic B-spline basis functions, however, still exhibit second-order spatial

errors for this problem, even with standard MPM. Therefore, instead of (6.68), the

transition point for standard MPM with B-spline basis functions should still occur

when ∆t = Ch, as in (6.64).

Demonstrations of these transition, or balancing points will be shown in Section

6.4.3 for both moving-mesh and standard MPM.

6.4 Results for Full MPM Simulations

In Section 6.3, we studied, analyzed, and demonstrated various errors on sim-

plified and decoupled problems. These problems were chosen due to their relative

ease of analysis and because they exhibit similar errors to those that exist in a

full MPM simulation. In this section, we demonstrate that these same errors exist

when simulating the 1-D periodic bar in Section 5.2.2 and show similar behaviors

as in the simplified problems.

6.4.1 Impact of Spatial Discontinuities on Time-Stepping

In an attempt to reduce spatial quadrature errors to a point where the jump

error from Section 6.3.2 can be seen, the 1-D periodic bar was solved using 64

grid cells and 100 particles-per-cell (PPC). The parameters used were A = 0.05

(five percent maximum displacement), E = 104, ρ0 = 1.0, and a time-step which

corresponds to a CFL of 0.1. The problem was solved with a periodic MPM using

standard piecewise-linear basis functions.

Standard one-step Forward-Euler time-stepping was used to update particle

positions xk+1
p , but on each step, the two-step method for handling grid crossings

(outlined in Section 6.3.2.2) was used to calculate the two-step particle position

x̄k+1
p . The single-step jump error was then calculated as εk

jump = xk
p − x̄k

p. These

jump errors were then accumulated to obtain the global jump error Ek
jump =

∑

k εk
jump.

97

Figure 6.9 shows the result of this simulation. Both the global displacement

error and the global jump error were plotted over time. As can be seen in the

figure, the global jump error is a relatively small percentage of the overall error,

even with 100 particles-per-cell (PPC).

6.4.2 Impact of Spatial Quadrature Errors on
Time-Stepping

The 1-D periodic bar was simulated again, this time with a more realistic choice

for the numbers of particles-per-cell (PPC). Figure 6.10 shows an example of the

acceleration ap =
∑

i aiφi(xp) felt by a typical particle p for both piecewise-linear

and B-spline basis functions when the domain was discretized with four particles-

per-cell (PPC). The particle acceleration ap is clearly discontinuous for piecewise-

linear basis functions and continuous for B-spline basis functions. Close inspection

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

0

10

20
x 10

−5

t

|E
rr

or
|

Displacement Error
Global Jump Error

Figure 6.9. Displacement error and cumulative jump error (calculated as the sum
of the difference between single-step and two-step time integration) for a single
typical particle in a simulation with 64 grid cells and 100 particles-per-cell (PPC).

98

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−3

−6000

−5500

−5000

−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

t

a

Linear
Quadratic B−spline
True

Figure 6.10. Acceleration felt by a particle for both piecewise-linear and B-spline
basis functions in standard MPM. Discontinuities in accelerations occur at grid
crossings with piecewise-linear basis functions. With B-spline basis functions,
acceleration remains continuous when particles cross grid nodes.

shows that ai is only C0 continuous for quadratic B-spline basis functions. This

behavior is mainly due to the quadrature errors generated as particles cross grid

nodes. This jump in acceleration is unaffected by time-step selection.

Spatial convergence studies were then performed on the 1-D bar with various

numbers of particles-per-cell (PPC), and the RMS displacement error was calcu-

lated after one full period of oscillation. When the number of particles-per-cell

(PPC) is held constant, standard MPM initially converges at as O(h2), as would

be expected in standard finite elements with piecewise-linear basis functions, but

soon reaches a point where quadrature error starts to dominate, and convergence

is lost. Increasing the number of particles-per-cell (PPC) lowers the point at which

quadrature errors start to dominate. Figure 6.11(a) shows these results.

Figure 6.11(b) shows the results of increasing the number of particles-per-cell

99

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

Grid Cells

E
rr

or

2ppc
4ppc
8ppc
16ppc
32ppc
64ppc
first−order
second−order

(a) Various PPC

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Grid Cells

E
rr

or

increasing ppc
first−order

(b) Increasing PPC

Figure 6.11. Displacement error with various numbers of particles using standard
MPM with piecewise-linear basis functions. Figure (a) shows standard convergence
plots with the number of particles-per-cell (PPC) held constant in each convergence
test. Figure (b) shows a convergence test where the number of particles-per-cell
(PPC) is increased along with the number of grid cells. In this case, the number of
particles-per-cell (PPC) was set to one-fourth the number of grid cells, resulting in
a total of N2/4 particles.

100

(PPC) at the same rate as the number of grid cells. In this case, the number

of particles-per-cell (PPC) was set to one-quarter the number of grid cells. This

ever increasing number of particles-per-cell (PPC) results in a seemingly consistent

first-order method. This, however, may be prohibitive in practice since the total

number of particles is increasing quadratically with the number of grid cells. In

other words, the total number of particles in the simulation is O(N2), where N is

the number of grid cells.

6.4.3 Balancing Space and Time Errors

Temporal convergence studies thus far have not demonstrated second order

convergence as we would expect [6, 55]. The assumption has been that spatial

errors are dominating in the regimes being tested. One limitation on previous

studies has been stability of the solution, requiring the CFL number to be less

than unity. Global errors have been reported at given times T , which include the

accumulation of errors up to that point. If a simulation fails due to stability reasons,

the global error cannot be measured and no information can be gained.

To help further understand the convergence properties of the scheme, we focus

our attention on errors after one time-step–a measure of the local truncation errors.

Since overall stability of the simulation is not required when looking at a single

time-step, we are free to operate in regimes we could not previously test.

The term c1h
2 in (6.61) assumes a second-order spatial error when calculating

acceleration. To understand the constant associated with this term, we measure

the L2 error of the calculated acceleration on the grid:

ε2
a =

∫

Ω

(ã(x) − a(x))2 dx, (6.69)

where a is the true acceleration field from our manufactured solution and ã is the

calculated field:

ã(x) =
∑

i

aiφi(x). (6.70)

Figure 6.12 shows the spatial convergence of these acceleration errors with both

piecewise-linear and quadratic B-spline basis functions at a time corresponding to

101

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Grid Cells

E
rr

or

Piecewise−Linear
Quadratic B−spline
Second Order

Figure 6.12. Spatial convergence of grid acceleration L2 errors at time
t = 0.2122 ·C, with moving-mesh MPM, four particles-per-cell (PPC), and periodic
boundary conditions for the 1-D axis aligned problem.

approximately 1/10 the period of oscillation (specifically at time t = 0.2122 · C).

This time was chosen such that particles will have non-zero displacements and

velocities.

Again, assuming the acceleration error takes the form εa = c1h
2, and since the

data in Figure 6.12 is clearly second order, we can choose one point to calculate

the value of c1 for our test case. For example, the acceleration error at 1024 grid

cells with piecewise-linear basis functions is calculated to be 1.7895 × 10−2. Thus,

the constant c1 (since our domain is of length L = 1) is

c1 =
εa

h2
= 1.8764 × 104. (6.71)

Next, to measure the constant c2, we measured the L2 errors in grid velocity after a

single time-step. The data in Figure 6.13 show third-order temporal convergence for

the local truncation error as expected from (6.62). Knowing that the local velocity

102

10
−7

10
−6

10
−5

10
−4

10
−3

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

∆t

E
rr

or

Piecewise−Linear
Quadratic B−spline
Third Order

Figure 6.13. Temporal convergence of local truncation errors in grid velocity
with moving-mesh MPM, 220 grid cells, four particles-per-cell (PPC), and periodic
boundary conditions for the 1-D axis aligned problem.

truncation error takes the form εv = c2∆t3, we can choose one point to calculate

the value of c2 for our test case. With piecewise-linear basis functions, the velocity

error corresponding to a time-step of ∆t = 1.0 × 10−4 is 1.1277 × 10−5. This leads

to a value for c2 of

c2 =
εv

∆t3
= 1.1277 × 107. (6.72)

Running a single time-step with 2048 grid cells, (h = 4.88 × 10−4), we would

expect the transition to occur from (6.64) at ∆t = 1.9917 × 10−5. Figure 6.14

shows this experiment and the transition occurs precisely where we expect. Using

the same techniques above with the data in Figures 6.12 and 6.13, we calculate

the transition to occur at ∆t = 2.3908× 10−5 with B-spline basis functions. These

transition points are very similar, which should not be surprising since the errors

for piecewise-linear and quadratic B-splines are comparable.

103

10
−7

10
−6

10
−5

10
−4

10
−3

10
−15

10
−10

10
−5

∆t

E
rr

or

Linear Basis
B−spline basis
First Order
Third Order

Figure 6.14. Temporal convergence for local truncation errors in grid velocity
with moving-mesh MPM, 2048 grid cells, four particles-per-cell (PPC), and periodic
boundary conditions for the 1-D axis aligned problem.

6.4.3.1 Standard MPM. Figure 6.15 shows the spatial convergence of

acceleration errors with standard MPM. Here, piecewise-linear basis functions ini-

tially exhibit second-order spatial convergence with smaller numbers of grid cells

when approximation, or mass-lumping errors are dominating. However, the asymp-

totic O(h) quadrature errors eventually dominate when enough grid cells are used.

Quadratic B-spline basis functions still exhibit the expected second-order spatial

convergence with standard MPM.

Since the acceleration error for piecewise-linear basis functions now takes the

form εa = c1h in the asymptotic region, and since the data in Figure 6.15 demon-

strates that behavior, we can choose one point to calculate the value of c1 for our

test case. For the four particle-per-cell case, the acceleration error at 1024 grid cells

is calculated to be 5.9119 × 10−2. Therefore, the constant c1 is

104

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Grid Cells

E
rr

or

Piecewise−Linear 2ppc
Piecewise−Linear 4ppc
Piecewise−Linear 6ppc
Quadratic B−spline 4ppc
First−Order
Second−Order

Figure 6.15. Spatial convergence of grid acceleration L2 errors with standard
MPM and periodic boundary conditions for the 1-D axis aligned problem. Piece-
wise-linear basis functions with various numbers of particles-per-cell (PPC), and
quadratic B-spline basis functions with four particles-per-cell (PPC) are shown.

c1 =
εa

h
= 6.0538 × 101. (6.73)

Next, we again measure the constant c2 using the errors in grid velocity after a

single time-step. The data in Figure 6.16 show strong third-order local truncation

error convergence with larger ∆t, as expected from (6.66). With smaller ∆t, a

convergence plateau is reached, where the larger spatial errors in standard MPM

are starting to dominate. Since the local velocity truncation error takes the form

εv = c2∆t3 in the convergent region, we choose one point to calculate the value

of c2. The velocity error corresponding to a time-step of ∆t = 1.0 × 10−4 is εv =

1.1278 × 10−5. This gives a value for c2 of

c2 =
εv

∆t3
= 1.1278 × 107. (6.74)

105

10
−7

10
−6

10
−5

10
−4

10
−3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

∆t

E
rr

or

Piecewise−Linear
Quadratic B−spline
Third Order

Figure 6.16. Temporal convergence of local truncation errors in grid velocity with
standard MPM, 220 grid cells, four particles-per-cell (PPC), and periodic boundary
conditions for the 1-D axis aligned problem.

Using the calculated constants c1 and c2 for a reasonable grid resolution of

2048 grid cells, our expected transition point between spatial and temporal errors

dominating (6.68) when piecewise-linear basis functions are used (6.68) is at ∆t =

5.1196 × 10−5. Figure 6.17 shows the results of this test. The transition point

between spatial and temporal errors dominating occurs precisely at our estimate.

Using a similar procedure as above, the data from Figures 6.15 and 6.16, along

with (6.64), the transition point for standard MPM using quadratic B-splines is

calculated as ∆t = 2.6507 × 10−5.

6.5 Guidelines

As with most numerical methods, there are numerous errors in MPM of which

the practitioner must be aware. These errors include the interpolation errors,

mass lumping errors, quadrature errors, standard time integration errors, and time

106

10
−7

10
−6

10
−5

10
−4

10
−3

10
−15

10
−10

10
−5

∆ t

E
rr

or

Linear Basis
B−spline basis
First Order
Third Order

Figure 6.17. Temporal convergence for local truncation errors in grid velocity
with standard MPM, 2048 grid cells, four particles-per-cell (PPC), and periodic
boundary conditions for the 1-D axis aligned problem.

integration jump errors. There are also a number of parameters that a practitioner

must chose when discretizing a problem with MPM, and many of these parameter

choices directly affect the above errors. These parameters include the choice of

basis function φi, the grid resolution h, the particle widths ∆x, and the time-step

∆t.

The interpolation error can be thought of as the finite element type error -

the error associated with what function space V our set of basis functions {φi}
spans. This error is well understood in the context of finite element methods and

received little treatment in this chapter. Generally, this error is O(hk) where h

is some measure of grid spacing, and k is some measure of the order of the basis

functions. Thus, both the choice of basis functions and the grid spacing affect this

error. However, even with the simplest piecewise-linear basis functions, this error

is O(h2). Increasing the order of basis functions will decrease this error, however

107

the spatial error in MPM is already limited to O(h2) due to other approximations.

Therefore the interpolation error is rarely the limiting factor.

The mass lumping error is also well understood in the context of finite element

frameworks [27]. The type of mass lumping employed in MPM is generally consid-

ered to provide a O(h2) approximation to the complete (unlumped) mass matrix

and is therefore rarely the limiting error in our simulations. It is important to note

that mass lumping can provide positive benefits with respect to stabilization and

monotonicity of the MPM method – ideas not explored in this work.

Temporal errors also exist in MPM. The standard time-stepping errors are

affected by the choice of time-step ∆t. In Section 6.3.2, we focused heavily on

the time-stepping jump error – also a function of ∆t, but the smoothness of which

is also a function of the basis function choice. Smoother basis functions will change

the order of this jump error since smoother basis functions result in smoother

velocity fields that particles travel through.

In Section 6.3.3 we examined the impact of spatial quadrature errors on time-

stepping. Here, the global displacement errors were a function of αk, where α =

∆x/h, and k is again a measure relating to the smoothness of the basis functions.

Increasing the smoothness of the basis functions from piecewise-linear to piecewise-

quadratic (as is the case with the quadratic B-splines used in this chapter) increases

k from 1 to 2, and since α is typically much less than 1, this significantly reduces

the overall effect of quadrature errors on the final global displacement error. The

choice of ∆t does not affect these quadrature errors.

One interesting result is when quadrature errors are dominating (as is often

the case when using piecewise-linear basis functions), the global displacement error

looks like αk. If the number of particles-per-cell (PPC) remains constant, α also

remains constant, and the global displacement error will not be reduced as grid

resolution is increased. To have a consistent method, α must be reduced as grid

resolution is increased, meaning the number of particles-per-cell (PPC) must in-

crease as the number of grid cells is increased. A demonstration of this is shown in

Section 6.4.2.

108

The local truncation error results in Section 6.4.3 suggest that the time-step, ∆t,

where spatial and temporal errors are balanced is much higher than the stability

limit when the explicit centered difference time-stepping scheme is used on this

type of problem. This explains why previous researchers [55] were not able to

demonstrate the second-order temporal convergence expected from the method in

full MPM simulations. Therefore, with a proper implementation of the centered

difference time-stepping scheme, time-stepping errors will have generally converged

to remaining spatial errors by the stability limit, and thus running with a time-step

significantly lower than the stability limit has no effect on reducing temporal errors

further.

To demonstrate the effects of following these guidelines while solving an engi-

neering problem, the 1-D periodic bar from Section 5.2.2 was simulated with two

different sets of parameters. In a naive attempt at reducing errors, the problem was

simulated with piecewise-linear basis functions, 128 grid cells, four particles-per-cell

(PPC), and a relatively small time-step corresponding to a CFL of 0.1. A second

simulation used more expensive quadratic B-spline basis functions, 64 grid cells, the

same four particles-per-cell (PPC), and a larger time-step corresponding to a CFL

of 0.9. The RMS error of particle positions and corresponding run-times are shown

in Table 6.2. Here, we see that a selection of parameters based upon the guidelines

provided above results in a much lower error with less computational effort.

6.6 Summary and Conclusions

In this chapter we performed three studies on various errors present in the

Material Point Method. These studies, which included analysis and demonstrations,

Table 6.2. RMS error and run-time for two simulations of a 1-D periodic bar. The
second simulation more closely follows the guidelines in this section, resulting in
lower error and lower run-time.

RMS Error Run-Time (seconds)

Simulation 1 2.21 × 10−2 9.62
Simulation 2 8.39 × 10−5 0.50

109

were performed on simplified problems which exhibit similar error characteristics to

the full MPM framework. We also demonstrated these errors in a full MPM simu-

lation. In the process, we have outlined and demonstrated the moving-mesh MPM

algorithm–a fully Lagrangian method which helps control some of the complexities

of MPM error analysis, mainly quadrature and grid crossing errors.

The first major error in consideration was the time-stepping jump error, and

how spatial discontinuities impact these time-stepping errors. We showed that

this jump error is second-order with respect to time-step size, and was not a large

contributor to the overall global errors. The second study focused on the impact of

spatial quadrature errors on time-stepping. Building on work in previous chapters,

we were able to develop an estimate for global errors arising from the compounding

effects of the quadrature errors. Lastly, using a model for the error behavior in the

method, we were able to estimate a time-step inflection point where spatial and

temporal errors are balanced. Time-steps larger than the inflection point result in

solutions dominated by temporal errors, while smaller time-steps lead to spatial

error dominated solutions.

These studies allowed us to formulate guidelines for the practitioner when

implementing a similar variant of MPM as used in this paper. The two main

guidelines are that the use of smoother basis functions (such as quadratic b-splines)

greatly reduce the quadrature errors and therefore reduce global errors in the

method, and that time-steps near the stability limit are sufficient in most cases since

time-steps near the stability limit already lead to solutions which are dominated

by spatial errors. This helps more fully explain results showing zero-order global

temporal convergence demonstrated by previous researchers [55]. Further guidelines

were given, helping the practitioner understand which algorithm parameters can be

expected to affect the various errors in the method.

The analysis in Chapter 4 showed that the nodal integration and the implicit

mass lumping in MPM currently restricts the method to second-order in space. To

further reduce errors in the method, more advanced error control techniques beyond

simple grid refinement may be required. Therefore, a detailed understanding of the

110

balance of space and time errors in the method is key in driving these types of

improvements.

CHAPTER 7

IMPROVING SPATIAL ERRORS IN THE

MATERIAL POINT METHOD USING

EXTRAPOLATION TECHNIQUES

Thus far our attempts to improve the order of accuracy of the Material Point

Method have, for the most part, stayed within the standard MPM framework. The

most successful of these have included the use of smoother basis functions (Chapter

4), careful use of the centered difference time-stepping scheme (Chapters 5 and 6)

and careful implementation of boundary conditions (Chapter 5).

We anticipate that careful use of this previous knowledge will allow us to move

beyond simple time and space refinement strategies for error improvement, and in-

stead use more advanced error control techniques such as Richardson extrapolation

to improve the error convergence properties of the method.

7.1 Richardson Extrapolation

Richardson extrapolation [41] is a technique originally developed to increase the

order of accuracy in finite difference solutions. The basic technique relies on apply-

ing Taylor’s theorem to analyze the error of a finite difference formula, calculating

two solution approximations at different spatial resolutions, and combining those

approximations in a way which cancels leading error terms in the finite difference

approximation, resulting in a higher-order solution. These techniques typically fail

for non-smooth problems, such as shock problems and simulations of cracks, but are

often useful for smooth problems. In this section, we will show how a Richardson

extrapolation formula can be developed for a centered difference approximation

of a first derivative operator. We will also show how Richardson extrapolation

techniques can be used in numerical integration to increase order of accuracy.

112

7.1.1 Standard Extrapolation

As an example, we will develop a Richardson extrapolation formula which can

be applied to a centered finite difference approximation to f ′(x):

f ′
k ≈ fk+1 − fk−1

2h
, (7.1)

where fk = f(xk) and xk = x0+kh. To begin developing our Richardson extrapola-

tion scheme, we start by performing Taylor series analysis of the centered difference

scheme. The Taylor series of f in the neighborhood of a is given by:

f(x) = f(a) +
f ′(a)

1!
(x − a) +

f ′′(a)

2!
(x − a)2 +

f (3)(a)

3!
(x − a)3 + · · · . (7.2)

Expanding this about xk and evaluating at xk+1 gives

fk+1 = fk + f ′
kh +

1

2
f ′′

k h2 +
1

6
f

(3)
k h3 +

1

24
f

(4)
k h4 + O(h5). (7.3)

Performing the same expansion, but evaluating at xk−1 gives

fk−1 = fk − f ′
kh +

1

2
f ′′

k h2 − 1

6
f

(3)
k h3 +

1

24
f

(4)
k h4 −O(h5). (7.4)

Subtracting (7.4) from (7.3) gives

fk+1 − fk−1 = 2f ′
kh +

1

3
f

(3)
k h3 + O(h5). (7.5)

Rearranging terms gives us our centered difference formula and error term:

A(xk, h) =
fk+1 − fk−1

2h
= f ′

k +
1

6
f

(3)
k h2 + O(h4). (7.6)

The Richardson extrapolated solution comes from applying (7.6) with two dif-

ferent resolutions, h and h/2, giving the following for h/2:

A(xk, h/2) = f ′
k +

1

6
f

(3)
k

h2

4
+ O(h4/16). (7.7)

Our Richardson extrapolation formula then comes from combining (7.6) and (7.7)

to eliminate the h2 term:

4A(xk, h/2) − A(xk, h)

3
=

4f ′
k + 1

6
f

(3)
k h2 − f ′

k − 1
6
f

(3)
k h2

3
+ O(h4) (7.8)

= f ′
k + O(h4). (7.9)

113

In general, if our approximation A(h) is of order p, then the Richardson extrap-

olation formula is given by [24]:

A =
mpA(h/m) − A(h)

mp − 1
+ O(hq) (7.10)

where q > p.

To demonstrate the above Richardson extrapolation formula, Figure 7.1 shows

results of performing the extrapolation techniques in (7.9) when estimating f ′(x)

at x = π/4 when f(x) = sin(x). Errors between the estimated f ′(x) and the

actual solution are plotted for various values of h. The standard centered difference

estimates show second-order convergence rates, as expected by error analysis of

the method. The Richardson extrapolation solution demonstrates fourth-order

convergence, also as expected.

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0.1 1

|E
rr

or
|

h

h
h/2

Richardson
Second Order
Fourth Order

Figure 7.1. Example of Richardson extrapolation when estimating f ′(x) when
f(x) = sin(x). The standard centered difference estimates demonstrate sec-
ond-order convergence rates while the Richardson extrapolation solution demon-
strates fourth-order behavior.

114

The true power of Richardson extrapolation is apparent when discretizing and

solving a problem domain with N = L/h points, where L is the size of the

domain, and h is the spacing of the discretization points. To achieve a particular

accuracy with a standard finite-difference method, one might need to use many

more discretization samples, and require much longer run-times, than if one were

to use Richardson extrapolation techniques.

7.1.2 Extrapolation Techniques in Numerical Quadrature

While the above technique shows how to use Richardson extrapolation when

numerically estimating derivatives, similar ideas can be implemented for numerous

numerical schemes, as long as the Taylor expansion of the scheme’s error is well

behaved. As was discussed in Chapter 4, if f ∈ C2[a, b], then for some µ in (a, b),

the composite midpoint error with sub intervals of size ∆x is given by

E =
(b − a)

24
∆x2f ′′(µ). (7.11)

While the constant f ′′(µ) is not guaranteed to be the same for different choices

of ∆x, in practice it is generally well behaved. With an expected second-order

behavior, we can perform a similar extrapolation technique as in the previous

section, that is our new extrapolated solution M is given by:

M =
4M(f, ∆x/2) − M(f, ∆x)

3
, (7.12)

where M(f, h) is the solution of the composite midpoint rule applied to the function

f with a spacing of size h:

M(f, h) =
N

∑

i=1

f(xi)h, (7.13)

with h = (b − a)/N and N being the number of sub-intervals.

To demonstrate this extrapolation technique, Figure 7.2 shows results of per-

forming the extrapolation scheme in (7.12) on the function f(x) = sin(x) on the

interval [0, π/2]. Errors between the approximated integral and the actual solution

are plotted for various numbers of midpoint samples. The composite midpoint

115

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 1 10 100 1000 10000

|E
rr

or
|

N

N
N/2

Richardson
Second Order
Fourth Order

Figure 7.2. Example of Richardson extrapolation in numerical quadrature when
integrating f(x) = sin(x) over the interval [0, π/2]. Standard composite midpoint
integration is shown to exhibit second-order convergence while a Richardson ex-
trapolation based solution is shown to exhibit fourth-order behavior.

rule shows second-order convergence rates, as expected by the above error formula.

The Richardson extrapolation scheme does indeed improve convergence rates, with

demonstrated rates being fourth-order in this case.

It is in cases like this, where numerous samples are required in a numerical

scheme, that extrapolation techniques can provide tremendous advantages. For

example, if one wanted to estimate the above integral with an error less than 10−6,

the first of our data points which satisfy that requirement is with 512 samples,

for an error of 3.921 × 10−7. The extrapolated solution with 8 samples (using

a second calculation with 16 samples) provides an error of 4.522 × 10−7 with a

total of 24 function evaluations. In other words, to achieve our required accuracy,

standard composite midpoint integration requires 24 times the number of samples

as does the Richardson extrapolation solution. This factor only increases as our

116

error requirements become more stringent.

7.1.3 Extrapolation Techniques in Finite Element Methods

There exists a large volume of literature where Richardson extrapolation tech-

niques are applied to finite element methods. Early work where these techniques

were derived and applied can be found in Blum, Lin, and Rannacher [12]. A survey

of various techniques can be found in Rannacher [40]. Work in this area continues

with recent techniques developed by Asadzadeh, Schatz and Wendland [1]. Most of

these techniques are based on so-called h-refinement of a triangle mesh to achieve

extrapolated super convergent results. There are two main difficulties in applying

these techniques to the Material Point Method. For one, the success of convergence

improving extrapolation techniques when applied to finite element type methods

depends on the presence of asymptotic error expansions of the type

uh(x) = u(x) +
n

∑

k=1

h2ke(k)(x) + O(h2n), (7.14)

where uh(x) is the approximated solution at point x, u(x) is the true solution, and

e(k)(x) are coefficients independent of the mesh size parameter h [12]. Determining

the coefficients e(h)(x) is required when developing the extrapolation techniques.

These coefficients are nontrivial to obtain for even fairly simple problems. We are

unaware of results where extrapolation techniques have been employed when solving

mechanics problems, such as the equation of motion (3.1).

The second difficulty is that most of the extrapolation techniques in the above

literature only exhibit super convergent results in the infinity norm at specific

points–most often the shared grid nodes between the coarse and refined meshes. A

difficulty then arises when applying these techniques to MPM since the method

requires evaluating field variables at particle positions at various times in the

solution procedure, which does not result in super convergent results.

As has been discussed in previous chapters, quadrature errors seems to be the

dominant error in MPM, therefore the remainder of this chapter will focus on using

Richardson extrapolation techniques applied to the numerical quadrature inherent

in the method to improve results, and not necessarily improve convergence rates.

117

7.2 Extrapolation Techniques in MPM

Previous chapters have focused on quadrature errors as being one of the domi-

nant errors in MPM. For this reason, we choose to apply extrapolation techniques

as demonstrated in Section (7.1.2) to improve numerical integration in MPM. As

a reminder, MPM discretizes integrals within procedure by performing sums over

particles, multiplying samples of the function being integrated at particles positions

by particle volumes. For example, if the function being integrated is f(x), the

integration of f(x) over the domain is approximated by:

∫

Ω

f(x) dΩ ≈
∑

p

f(xp)Vp =
∑

p

fpVp. (7.15)

There are multiple points within the MPM algorithm where this type of in-

tegration is performed. When projecting particle mass to the grid, the following

approximations are made (the remainder of this section will be presented in 1-D

for simplification):

mi =

∫

Ω

φi(x)ρ(x) dx ≈
∑

p

φi(xp)ρ(xp)Vp =
∑

p

φipmp, (7.16)

where φi is the basis function associated with grid node i, ρ is the density field, and

ρpVp = mp. Particle momentum is projected to the grid in a similar way:

pi =

∫

Ω

φi(x)ρ(x)v(x) dx ≈
∑

p

φi(xp)ρ(xp)v(xp)Vp =
∑

p

φipmpvp, (7.17)

where v(x) is the velocity field and vp is particle velocity. And lastly the internal

force calculation on the grid involves another integration:

fi = −
∫

Ω

σ(x) · ∇φi(x) dx ≈ −
∑

p

σ(xp) · ∇φi(xp)Vp = −
∑

p

σp · ∇φipVp. (7.18)

As was demonstrated and analyzed in Chapter 4, the above approximations are

very much akin to the midpoint integration rule in (7.13), where (for example) φipρp

is the sample of our function φi(x)ρ(x) and Vp is our weight. The major difference

between this an (7.13) is that our weights are sample dependant, i.e. Vp may not

be (and is typically not) constant for all p in standard MPM. And furthermore, as

118

is more fully described in Chapter 4, the particle voxels do not respect breaks in

continuity of the integrand, leading to quadrature errors. These quadrature errors

are particle-position dependant, and thus the error function is not representable as

ε =
∞

∑

i=p

hie(i), (7.19)

where p is the largest order of the error, h is some measure of resolution, and e(i)

is some constant, independent of the spatial discretization, as would be required

to implement a simple extrapolation technique. Instead, the constants e(i) are

dependent on spatial discretization (or particle positions). This can be seen in

our previous work in (6.36) where the error in acceleration looks like ε = Cαg(t),

where g(t) is a time-dependant function dependant on particle positions. A first

step toward a workable extrapolation solution is to simplify the problem and use

moving-mesh MPM as described in Section (3.2.2). In moving mesh, the above

three integrals become:

mi =

∫

Ω0

Φi(X)ρ(X) dX ≈
∑

p

Φi(Xp)ρ(Xp)V
0
p =

∑

p

Φipmp (7.20)

pi =

∫

Ω0

Φi(X)ρ(X)v(X) dX ≈
∑

p

Φi(Xp)ρ(Xp)v(Xp)V
0
p =

∑

p

Φipmpvp (7.21)

fi = −
∫

Ω0

P (X) · ∇Φi(X) dX ≈ −
∑

p

P (Xp) · ∇Φi(Xp)V
0
p = −

∑

p

Pp · ∇ΦipV
0
p

(7.22)

where Ω0 is the reference domain, X is position in the reference domain, and V 0
p is

the particle width in the reference domain. Further simplifying, if we assume the

domain is initially discretized with particles of the same width, i.e. V 0
p = ∆x for

all p, then the above equations reduce to:

mi =
∑

p

Φi(Xp)ρ(Xp)∆x =
∑

p

Φipmp (7.23)

pi =
∑

p

Φi(Xp)ρ(Xp)v(Xp)∆x =
∑

p

Φipmpvp (7.24)

fi = −
∑

p

P (Xp) · ∇Φi(Xp)∆x = −
∑

p

Pp · ∇Φip∆x (7.25)

119

at which point the direct relation to the midpoint rule (7.13) should be apparent.

Since the above assumptions do leave us with midpoint integration, application of

simple Richardson extrapolation techniques to improve any errors in this integration

as in (7.12) is possible.

We start our extrapolation technique by discretizing our domain into two sep-

arate sets of particles. We will refer to the two sets with subscripts p, and q. The

domain is discretized such that ∆xp, or the particle spacing for the p-set of particles

is given by ∆xp = h/P , where h is the grid spacing and P is an integer number of

particles-per-cell (PPC). The particles are placed in the domain such that particle

boundaries align with grid boundaries, with the particle positions xp defined as the

center of each particle voxel. The second set of particles are initialized in the same

way, however ∆xq = h/Q = 1
2
∆xp, and Q = 2P . In other words, there are twice as

many particles in the set of particles {xq} as in the set {xp}.
The main difference between moving-mesh MPM and the Richardson extrapo-

lated version is the integration steps above. Separate grid masses are calculated:

mi,p =
∑

p

Φipmp, mi,q =
∑

q

Φiqmq. (7.26)

Since midpoint integration is second-order with respect to particle spacing, ∆x, the

extrapolated grid mass is then calculated as

mi =
4mi,q − mi,p

3
=

4
∑

q Φiqmq −
∑

p Φipmp

3
. (7.27)

Similarly, extrapolated grid momentum and internal force are calculated as

pi =
4pi,q − pi,p

3
=

4
∑

q Φiqmqvq −
∑

p Φipmpvp

3
, (7.28)

fi =
4fi,q − fi,p

3
=

∑

p Pp · ∇Φip∆x − 4
∑

q Pq · ∇Φiq∆x

3
. (7.29)

And lastly, there is usually an initialization of grid displacements at the beginning

of the simulation. The initialization step and discretization are given by:

ui = (

∫

Ω0

Φi(X)u(X) dX)(

∫

Ω0

Φi(X) dX), (7.30)

ui = (4
∑

q

Φiquq −
∑

p

Φipup)/(4
∑

q

Φiq −
∑

p

Φip). (7.31)

Then, for each time-step perform the following operations:

120

Solve for mass at grid with p mi,p =
∑

p

mpΦip (7.32)

Solve for mass at grid with q mi,q =
∑

q

mqΦiq (7.33)

Solve for extrapolated grid mass mi = (4mi,q − mi,p)/3 (7.34)

Solve for grid momentum with p pk
i,p =

∑

p

mpv
k
pΦip (7.35)

Solve for grid momentum with q pk
i,q =

∑

q

mqv
k
qΦiq (7.36)

Solve for extrapolated grid momentum pk
i = (4pi,q − pi,q)/3 (7.37)

Solve for grid velocity vk
i = pi/mi (7.38)

Solve for external forces with p f ext
i,p =

∑

p

mpbpΦip (7.39)

Solve for external forces with q f ext
i,q =

∑

q

mqbqΦiq (7.40)

Solve for extrapolated external forces f ext
i = (4f ext

i,q − f ext
i,p)/3 (7.41)

Solve for internal forces with p f int
i,p = −

∑

p

Pk
p · ∇Φip∆x (7.42)

Solve for internal forces with q f int
i,q = −

∑

q

Pk
q · ∇Φiq∆x (7.43)

Solve for extrapolated internal forces f int
i = (4f int

i,q − f int
i,p)/3 (7.44)

Solve for grid acceleration ak
i = (f int

i + f ext
i)/mi (7.45)

Time advance grid velocity vk+1
i = vk

i + ak
i ∆t (7.46)

Time advance grid displacements uk+1
i = uk

i + vk+1
i ∆t (7.47)

Advance particle deformation gradient Fk+1
p,q = 1 +

∑

i

uk+1
i · ∇Φip,q (7.48)

Solve constitutive model Pk+1
p,q = P(Fk+1

p,q) (7.49)

Time advance particle velocities vk+1
p,q = vk

p,q + ∆t
∑

i

ak
i Φip,q (7.50)

Time advance particle displacements uk+1
p,q = uk

p,q + ∆t
∑

i

vk+1
i Φip,q. (7.51)

121

7.3 Results

To test the above method, we simulate the same 1-D periodic bar described in

Section (5.2.2) with the parameters A = 0.05 (five percent maximum displacement),

E = 104, ρ0 = 1.0, and time-steps which correspond to a CFL of 0.2. The prob-

lem was solved with periodic, moving-mesh MPM using standard piecewise-linear

basis functions. The simulations were run with standard moving-mesh MPM as

outlined in Section (3.2.2) with both two and six particles-per-cell (PPC). Another

simulation was run using our extrapolation techniques, with P = 2, Q = 4, thereby

giving us a total of 6N particles (with N being the number of grid cells), the

same number of particles as the standard moving-mesh MPM simulation with six

particles-per-cell (PPC). Convergence results for the three tests are shown in Figure

7.3. Here, we can see the effects of the quadrature errors do not show themselves

until 8,192 grid cells, when errors in the two particles-per-cell (PPC) solution (using

standard moving-mesh MPM) start to level off. At 16,384 grid cells, errors in the

the six particles-per-cell (PPC) solution begin to level off. For both this, and the

next grid resolution, the extrapolated solution using two and four particles-per-cell

(PPC) outperforms the six particles-per-cell (PPC) standard solution.

7.4 Summary and Conclusions

In this chapter, we reviewed the mathematics behind Richardson extrapolation

techniques and demonstrated how the technique can be applied in situations other

than standard h-refinement of finite difference solvers where Richardson extrapola-

tion is commonly employed. We showed how Richardson extrapolation can be used

in numerical integration methods such as the midpoint rule, where fourth-order

convergence can be obtained by combining results where two different numbers of

sample points have been used. We developed a modification to moving-mesh MPM

which employs these extrapolation techniques to improve numerical quadrature in

the method. We showed that these extrapolation techniques outperformed standard

moving-mesh MPM when similar numbers of particles were used.

Richardson extrapolation applied to improve quadrature errors in moving-mesh

122

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 10 100 1000 10000 100000

E
rr

or

N

2ppc
6ppc

Richardson 2ppc,4ppc
Second Order

Figure 7.3. Results for Richardson extrapolation techniques applied to mov-
ing-mesh MPM. Results for standard moving-mesh MPM with two particles-per-cell
(PPC) and six particles-per-cell (PPC) are compared to the Richardson extrap-
olated solution when the two-particles-per-cell (PPC) and four particles-per-cell
(PPC) results are combined. Here, the Richardson extrapolated solution out-per-
forms the six particles-per-cell (PPC) solution, even though the same number of
particles are used.

MPM was the most straight-forward application of these techniques to the method.

Currently there are numerous second-order errors in standard MPM, even when

more advanced basis functions are used. Some of the many errors include the

quadrature errors we have previously discussed, grid-crossing, and mass lumping

errors, the combination of which makes the application of Richardson extrapolation

to achieve an MPM algorithm which is higher than second order (spatially) non-

trivial. This is a worthwhile goal, however, and is the subject of future work. Since

quadrature errors are much greater in standard (non moving-mesh) MPM and still

dominate many of our simulations, a good middle ground may be developing an

extrapolation method specifically for standard MPM.

CHAPTER 8

FUTURE WORK

Throughout this dissertation work, we have been conscious to offer analysis and

improvements to the Material Point Method, while at the same time not diverging

from what we believe to be core attributes giving MPM its unique benefits. One of

these attributes is the implicit mass lumping as has been presented throughout this

work. While MPM implementations exist which use full mass-matrices [32, 33, 48],

it is our experience that the vast majority of practitioners use the implicit mass

lumping techniques. Mass lumping allows for trivial solutions to the linear system

which do not require a large matrix solve. This, in turn, allows for efficient parallel

implementations of the method. The second intrinsic feature of the method which

we felt the need to preserve is the nodal quadrature employed in the method.

Nodal quadrature makes approximations to integrals extraordinarily easy to com-

pute and requires no neighborhood information or neighbor-finding routines, other

than simple calculations to find out which grid cell contains a particular particle.

This is a constant-time calculation which makes implementation of the method

relatively easy. A number of interesting paths could emerge if we were to relax

these requirements and expand upon the material already presented.

While much attention was spent on numerical integration in the method, there

is still much that can be improved. In his dissertation, Wallstedt [54] diverged

from the nodal-quadrature scheme in MPM, and employed least-squared based

integration to better approximate the integrals in the method. While not fully

developed, at various times we have played with similar techniques, using Lagrange

interpolating polynomials through points, and integrating the interpolant using

standard Gaussian quadrature. These early attempts at improved integration

124

showed promising results, but new difficulties arose. In particular, if we are interpo-

lating and integrating field variables, the domain which we are integrating must be

clearly defined. Wallstedt also made progress toward one solution, using boundary

particles and performing least squares calculations to estimate boundary geometry.

This boundary geometry then defined the exact regions to be integrated. We believe

that significant improvements to the method will require attention to be focused

in this particular area–improvement of the integration of field variables, and better

treatment of the domain and boundary geometries. There are numerous graphics

and mesh-free algorithms which may provide inspiration for future improvements.

We believe the extrapolation techniques presented in Chapter 7 just scratch

the surface of the benefits they may provide to the method. The work presented

here only focuses on moving-mesh MPM, and while useful as a jumping-off point,

moving-mesh MPM is only useful in small-deformation problems. Expansion of the

techniques to standard MPM will require careful attention to particle voxel and grid

cell alignment issues, but if successful, may provide a tremendous improvement in

errors.

Along with the reduction of errors, extrapolation techniques can also be used in

error estimation and error control. Dynamic error control, such as automatic time-

step selection, or spatial refinement strategies, requires a thorough understanding of

the errors in a method. Dynamic error control could also be used to drive adaptive

hp-refinement strategies–often used in the finite element community. The ability to

monitor and control these errors in a simulation is key to verification and validation

efforts which are becoming ever more important as people are wanting to put trust

in numerical simulation results. This body of work has moved us much closer to

understanding the many subtle errors in this method, and makes dynamic error

estimation a realistic goal.

APPENDIX

A.1 Integrating Piecewise-Constant Functions
with the Midpoint Rule

If y(x) is piecewise constant with a discontinuity at x = 0, as shown in Figure

4.3, then y can be thought of as

y(x) =

{

y1(x) = a1 : x ≤ 0

y2(x) = a2 : x > 0.
(A.1)

Assuming 0 ∈ [ξ−∆x/2, ξ +∆x/2], the exact integral of y(x) over the region needs

to be evaluated in two parts,
∫ 0

ξ−∆x
2

y1 dx = a1x|0ξ−∆x
2

= −a1(ξ −
∆x

2
) (A.2)

and
∫ ξ+∆x

2

0

y2 dx = a2(ξ +
∆x

2
), (A.3)

giving the total integral over the region
∫ ξ+∆x

2

ξ−∆x
2

y(x) dx = (a2 − a1)ξ +
1

2
(a2 + a1)∆x. (A.4)

Using the midpoint rule over the same region gives MP(ξ) = y(ξ)∆x. When

ξ ≤ 0, MP(ξ) = a1∆x. The integration, or quadrature error in this case is

E(ξ) =

∫ ξ+∆x
2

ξ−∆x
2

y(x) dx − MP(ξ) = (a2 − a1)[ξ +
1

2
∆x]. (A.5)

The only value for ξ which gives zero error in (A.5) is ξ = −∆x/2 which corresponds

to a zero error when integrating the region [−∆x, 0]. Since y(x) = y1, with no jumps

on the open interval (−∆x, 0), a zero error when ξ = −∆x/2 make sense because

the midpoint rule can integrate a constant function exactly. When ξ > 0, a similar

analysis shows E(∆x/2) = 0. The maximum error magnitude occurs when ξ = 0,

giving

Emax = E(0) =
1

2
|a2 − a1|∆x. (A.6)

126

A.2 Integrating Piecewise-Linear Functions
with the Midpoint Rule

If y(x) is piecewise linear, as shown in Figure 4.4, composed of y1(x) for x ≤ 0

and y2(x) for x > 0, with y1(0) = y2(0) = 0, and y′
1(0) 6= y′

2(0), y(x) can be written

as

y(x) =

{

y1(x) = a1x : x ≤ 0

y2(x) = a2x : x > 0.
(A.7)

The exact integral of y(x) over the region [ξ − ∆x/2, ξ + ∆x/2], needs to be

evaluated in two parts,

∫ 0

ξ−∆x
2

y1 dx = a1x
2|0

ξ−∆x
2

= −1

2
a1(ξ

2 − ξ∆x +
1

4
∆x2) (A.8)

and
∫ ξ+∆x

2

0

y2 dx = a2x
2|ξ+

∆x
2

0 =
1

2
a2(ξ

2 + ξ∆x +
1

4
∆x2), (A.9)

giving the total integral over the region

∫ ξ+∆x
2

ξ−∆x
2

y(x) dx =
1

2
(a2 − a1)ξ

2 +
1

2
(a2 + a1)ξ∆x +

1

8
(a2 − a1)∆x2. (A.10)

Using the midpoint rule over the same region gives MP(ξ) = y(ξ)∆x. When

ξ ≤ 0, MP(ξ) = a1ξ∆x. The integration, or quadrature error in this case is

E1(ξ) =

∫ ξ+∆x
2

ξ−∆x
2

y(x) dx−MP(ξ) =
1

2
(a2 − a1)ξ

2 +
1

2
(a2 − a1)ξ∆x +

1

8
(a2 − a1)∆x2.

(A.11)

To find values of ξ corresponding to maximum or minimum error, we solve d
dξ

E1 = 0

for ξ:

d

dξ
E1 = (a2 − a1)ξ +

1

2
(a2 − a1)∆x (A.12)

= (a2 − a1)(ξ +
1

2
∆x). (A.13)

Since a2 6= a1, the above equation is zero only when ξ = −∆x/2. A similar analysis

for when ξ > 0 shows d
dξ

E2 = 0 only when ξ = ∆x/2. To find the maximum

magnitude, we first note that E(±∆x/2) = 0 which also says that the midpoint

127

rule integrates a linear function exactly. Lastly, since E1(0) = E2(0), the maximum

magnitude error must be when ξ = 0 giving

Emax = E(0) =
1

8
|a2 − a1|∆x2. (A.14)

A.3 Integrating Piecewise-Quadratic Functions
with the Midpoint Rule

If y(x) is piecewise quadratic, as shown in Figure 4.5, composed of y1(x) for

x ≤ 0 and y2(x) for x > 0, with y1(0) = y2(0) = 0 and y′
1(0) = y′

2(0), and

y′′
1(0) 6= y′′

2(0), y(x) can be written as

y(x) =

{

y1 = a1x
2 + bx : x ≤ 0

y2 = a2x
2 + bx : x > 0.

(A.15)

The exact integral of y(x) over the region [ξ − ∆x/2, ξ + ∆x/2], needs to be

evaluated in two parts,
∫ 0

ξ−∆x
2

y1 = [
1

3
a1x

3 +
1

2
bx2]0

ξ−∆x
2

= −[
1

3
a1(ξ −

∆x

2
)3 +

1

2
b(ξ − ∆x

2
)2]

= −1

3
a1(ξ

3 − 3

2
ξ2∆x +

3

4
ξ∆x2 − 1

8
∆x3) − 1

2
b(ξ2 − ξ∆x +

1

4
∆x2)(A.16)

and
∫ ξ+∆x

2

0

y2 = [
1

3
a2x

3 +
1

2
bx2]

ξ+∆x
2

0

=
1

3
a2(ξ

3 +
3

2
ξ2∆x +

3

4
ξ∆x2 +

1

8
∆x3) +

1

2
b(ξ2 + ξ∆x +

1

4
∆x2),(A.17)

giving the total integral over the region
∫ ξ+∆x

2

ξ−∆x
2

y =

∫ 0

ξ−∆x
2

y1 +

∫ ξ+∆x
2

0

y2

=
1

3
(a2 − a1)ξ

3 +
1

2
(a2 + a1)∆xξ2

+
1

4
(a2 − a1)∆x2ξ +

1

24
(a2 + a1)∆x3 + ξb∆x. (A.18)

Using the midpoint rule over the same region gives MP(ξ) = y(ξ)∆x. When

ξ ≤ 0, the midpoint rule gives

MP(ξ) = (a1ξ
2 + bξ)∆x. (A.19)

128

The integration error across the discontinuity is then

E1(ξ) =

∫ ξ+∆x
2

ξ−∆x
2

y − MP(ξ)

=
1

3
(a2 − a1)ξ

3 +
1

2
(a2 − a1)∆xξ2 +

1

4
(a2 − a1)∆x2ξ +

1

24
(a2 + a1)∆x3.(A.20)

To find the ξ corresponding to maximum error, we solve for d
dξ

E1 = 0.

d

dξ
E1 = (a2 − a1)ξ

2 + (a2 − a1)∆xξ +
1

4
(a2 − a1)∆x2

= (a2 − a1)(ξ +
1

2
∆x)2. (A.21)

Since a2 6= a1, this is zero only when ξ = −1
2
∆x. A similar analysis for when

ξ > 0 shows d
dξ

E2 = 0 only when ξ = ∆x/2. Since E(±1
2
∆x) = 0, |E| must be a

maximum at ξ = 0. Therefore, the maximum error is

Emax = E(0) =
1

24
|a1 + a2|∆x3.

REFERENCES

[1] Asadzadeh, M., Schatz, A. H., and Wendland, W. A new approach to
richardson extrapolation in the finite element method for second order elliptic
problems. Mathematics of Computation 78, 268 (2009), 1951–1973.

[2] Atluri, S. N. Meshless Local Petrov-Galerkin (MLPG) mixed collocation
method for elasticity problems. Computer Modeling in Engineering & Sciences
14, 3 (2006), 141–152.

[3] Atluri, S. N., Liu, H. T., and Han, Z. D. Meshless Local Petrov-Galerkin
(MLPG) mixed finite difference method for solid mechanics. Computer Mod-
eling in Engineering & Sciences 15, 1 (2006), 1–16.

[4] Atluri, S. N., and Zhu, T. A new Meshless Local Petrov-Galerkin (MLPG)
approach in computational mechanics. Computational Mechanics 22, 2 (1998),
117–127.

[5] Banerjee, B. Method of manufactured solutions. www.eng.utah.edu/ baner-
jee/Notes/MMS.pdf, October 2006.

[6] Bardenhagen, S. Energy conservation error in the material point method
for solid mechanics. Journal of Computational Physics 180 (2002), 383–403.

[7] Bardenhagen, S. G., Brydon, A. D., and Guilkey, J. E. Insight into
the physics of foam densification via numerical simulation. Journal of the
Mechanics and Physics of Solids 53, 3 (2005), 597–617.

[8] Bardenhagen, S. G., and Kober, E. M. The generalized interpolation
material point method. Computer Modeling in Engineering and Science 5, 6
(2004), 477–495.

[9] Beissel, S., and Belytschko, T. Nodal integration of the element-free
Galerkin method. Computer Methods in Applied Mechanics and Engineering
139, 1 (1996), 49–74.

[10] Belytschko, T., Liu, W. K., and Moran, B. Nonlinear Finite Elements
for Continua and Structures. John Wiley and Sons, LTD, 2000.

[11] Belytschko, T., Lu, Y. Y., and Gu, L. Element free Galerkin methods.
International Journal for Numerical Methods in Engineering 37, 2 (1994), 229–
256.

130

[12] Blum, H., Lin, Q., and Rannacher, R. Asymptotic error expansion and
richardson extrapolation for linear finite elements. Numerische Mathematik
49, 1 (1986), 11–37.

[13] Brackbill, J. U. The ringing instability in particle-incell calculations of
low-speed flow. Journal of Computational Physics 75 (1988), 469–492.

[14] Brackbill, J. U. Particle methods. International Journal of Numerical
Methods in Fluids 47 (2005), 693–705.

[15] Brackbill, J. U., Kothe, D. B., and Ruppel, H. M. FLIP: a low-
dissipation, particle-in-cell method for fluid flow. Computer Physics Commu-
nications 48 (1988), 25–38.

[16] Brackbill, J. U., and Ruppel, H. M. FLIP: a method for adaptively
zoned, particle-in-cell calculations of fluid flows in two dimensions. Journal of
Computational Physics 65 (1986), 314–343.

[17] Chen, J. S., Yoon, S., and Wu, C. T. Non-linear verson of stabilized
conforming nodal integration for galerkin mesh-free methods. International
Journal of Numerical Methods in Engineering 53, 12 (2002), 2587–2615.

[18] de St. Germain, J. D., Parker, S. G., McCorquodale, J., and
Johnson, C. R. Uintah: A Massively Parallel Problem Solving Environment.
In HPDC (2000), pp. 33–42.

[19] Dolbow, J., and Belytschko, T. Numerical integration of the galerkin
weak form in meshfree methods. Computational Mechanics 23, 3 (1999), 1432–
0924.

[20] Grigoryev, Y. N., Vshivkov, V. A., and Fedoruk, M. P. Numerical
”Particle-in-Cell” Methods. VSP BV, 2002.

[21] Guilkey, J. E., Harman, T. B., and Banerjee, B. An Eulerian-
Lagrangian approach for simulating explosions of energetic devices. Computers
and Structures 85, 11-14 (2007), 660–674.

[22] Guilkey, J. E., Hoying, J. B., and Weiss, J. A. Computational
modeling of multicellular constructs with the ma terial point method. Journal
of Biomechanics 39, 11 (2006), 2074–2086.

[23] Guilkey, J. E., and Weiss, J. A. Implicit time integration for the material
point method: Quantitative and algorithmic comparisons with the finite
element method. International Journal for Numerical Methods in Engineering
57, 9 (2003), 1323–1338.

[24] Hairer, E., Nrsett, S., and Wanner, G. Solving Ordinary Differential
Equations I. Springer, 1993.

131

[25] Han, Z. D., Liu, H. T., Rajendran, A. M., and Atluri, S. N. The
applications of Meshless Local Petrov-Galerkin (MLPG) approaches in high-
speed impact, penetration and perforation problems. Computer Modeling in
Engineering & Sciences 14, 2 (2006), 119–128.

[26] Han, Z. D., Rajendran, A. M., and Atluri, S. N. Meshless Local
Petrov-Galerkin (MLPG) approaches for solving nonlinear problems with large
deformations and rotations. Computer Modeling in Engineering & Sciences 10,
1 (2005), 1–12.

[27] Hughes, T. J. R. The finite element method: linear static and dynamic finite
element analysis. Prentice-Hall, 1987.

[28] Kashiwa, B. A., Lewis, M. L., and Wilson, T. Fluid-structure inter-
action modeling. Tech. Rep. LA-13111-PR, Los Alamos National Laboratory,
Los Alamos, 1996.

[29] Knupp, P., and Salari, K. Verification of Computer Codes in Computa-
tional Science and Engineering. Chapman and Hall/CRC, 2003.

[30] Lawson, J., Berzins, M., and Dew, P. Balancing space and time errors
in the method of lines for par abolic equations. SIAM Journal on Scientific
and Statistical Computing 12, 3 (1991), 573–594.

[31] Li, S., and Liu, W. K. Meshfree Particle Methods. Springer, 2004.

[32] Love, E., and Sulsky, D. L. An energy-consistent material-point method
for dynamic finite deformation plasticity. International Journal for Numerical
Methods in Engineering 65, 10 (2006), 1608–1638.

[33] Love, E., and Sulsky, D. L. An unconditionally stable, energy-momentum
consistent implementation of the material-point method. Computer Methods
in Applied Mechanics and Engineering 195, 33-36 (2006), 3903–3925.

[34] Ma, J., Lu, H., and Komanduri, R. Structured mesh refinement in
generalized interpolation material point (GIMP) method for simulation of
dynamic problems. Computer Methods in Applied Mechancs and Engineering
12 (2006), 213–227.

[35] Nairn, J. A. Numerical simulations of transverse compression and densifica-
tion in wood. Wood and Fiber Science 38, 4 (2006), 576–591.

[36] Oñate, E., and Idelsohn, S. R. The particle finite element method. an
overview. International Journal of Computational Methods 1, 2 (2004), 267–
307.

[37] Parker, S., Guilkey, J., and Harman, T. A component-based parallel
infrastructure for the simulation of fluid-structure interaction. Engineering
With Computers 22, 3 (2006), 277–292.

132

[38] Quinlan, N. J., Basa, M., and Lastiwka, M. Truncation error in
mesh-free particle methods. International Journal of Numerical Methods in
Engineering 66, 13 (2006), 2064–2085.

[39] Ralston, A., and Rabinowitz, P. A First Course in Numerical Analysis,
second ed. Dover, 2001.

[40] Rannacher, R. Extrapolation techniques in the finite element method: A
survey. In Proceedings of the Summer School in Numerical Analysis at Helsinki
(1988), pp. 80–113.

[41] Richardson, L. F. The approximate arithmetical solution by finite differ-
ences of physical problems involving differential equations, with an application
to the stresses in a masonry dam. Philosophical Transactions of the Royal
Society of London. Series A, Containing Papers of a Mathematical or Physical
Character 210 (1911), 307–357.

[42] Schwer, L. Method of manufactured solutions: Demonstrations.
www.usacm.org/vnvcsm/PDF Documents/MMS-Demo-03Sep02.pdf, August
2002.

[43] Spencer, A. J. M. Continuum Mechanics. Dover, 2004.

[44] Steffen, M., Kirby, R. M., and Berzins, M. Analysis and reduction
of quadrature errors in the material point method (MPM). International
Journal for Numerical Methods in Engineering 76, 6 (2008), 922–948. DOI:
10.1002/nme.2360.

[45] Steffen, M., Kirby, R. M., and Berzins, M. Decoupling and balancing
of space and time errors in the material point method (MPM). International
Journal for Numerical Methods in Engineering (2009). submitted.

[46] Steffen, M., Wallstedt, P. C., Guilkey, J. E., Kirby, R. M., and
Berzins, M. Examination and analysis of implementation choices within the
material point method (MPM). Computer Modeling in Engineering & Sciences
32, 2 (2008), 107–127.

[47] Sulsky, D., Chen, A., and Schreyer, H. L. A particle method for
history dependent materials. Computer Methods in Applied Mechanics and
Engineering 118 (1994), 179–196.

[48] Sulsky, D., and Kaul, A. Implicit dynamics in the material-point method.
Computer Methods in Applied Mechanics and Engineering 193, 12-14 (2004),
1137–1170.

[49] Sulsky, D., Schreyer, H., Peterson, K., Kwok, R., and Coon,
M. Using the material point method to model sea ice dynamics. Journal
of Geophysical Research 112 (2007).

133

[50] Sulsky, D., Zhou, S., and Schreyer, H. L. Application of a particle-in-
cell method to solid mechanics. Computer Physics Communications 87 (1995),
236–252.

[51] Tran, L. T., Kim, J., and Berzins, M. Solving Time-Dependent
PDEs using the Material Point Method, A Case Study from Gas Dynam-
ics. International Journal for Numerical Methods in Fluids (2009). DOI:
10.1002/nme.2360.

[52] Vshivkov, V. A. The approximation properties of the particles-in-cells
method. Computational Mathematics and Mathematical Physics 36, 4 (1996),
509–515.

[53] Wallstedt, P., and Guilkey, J. Improved velocity projection for the
material point method. Computer Modeling in Engineering and Science 19, 3
(2007), 223–232.

[54] Wallstedt, P. C. On the Order of Accuracy of the Generalized Interpolation
Material Point Method. PhD thesis, University of Utah, 2008.

[55] Wallstedt, P. C., and Guilkey, J. E. An evaluation of explicit time
integration schemes for use with the generalized interpolation material point
method. Journal of Computational Physics 227, 22 (2008), 9628–9642.

[56] Zhang, L. Dynamic description of texture evolution in polycrystalline nickel
under mechanical loading with elastic and plastic deformation via Monte Carlo
and Material Point Method simulation. PhD thesis, Colorado School of Mines,
2008.

[57] Zienkiewicz, O. C., and Taylor, R. L. The Finite Element Method,
fourth ed., vol. 1. McGraw-Hill, 1989.

