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SUMMARY

The Material Point Method (MPM) has demonstrated itself as a computationally effective particle
method for solving solid mechanics problems involving large deformations and/or fragmentation of
structures which are sometimes problematic for finite element methods. However, like most methods
which employ mixed Lagrangian (particle) and Eulerian strategies, analysis of the method is not
straightforward. The lack of an analysis framework for MPM, as is found in finite element methods,
makes it challenging to explain anomalies found in its employment and makes it difficult to propose
methodology improvements with predictable outcomes.

In this paper we present an analysis of the quadrature errors found in the computation of (material)
internal force in MPM and use this analysis to direct proposed improvements. In particular, we
demonstrate that lack of regularity in the grid functions used for representing the solution of the
equations of motion can hamper spatial convergence of the method. We propose the use of a quadratic
B-spline basis for representing solutions on the grid, and we demonstrate computationally and explain
theoretically why such a small change can have significant impact on the reduction of the internal
force quadrature error (and corresponding “grid crossing error”) often experienced when using the
material point method. Copyright c© 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Material Point Method (MPM) [1, 2] is a particle method which represents a material
as a collection of material points (hereafter referenced as particles) whose deformation is
determined by solving Newton’s laws of motion for the internal force due to particle interaction.
As with all methods of this form, the challenge (and novelty) of the method often comes from
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the means by which one defines approximations of differential and integral operators given
particle data. Although similar in nature to Smoothed Particle Hydrodynamics (SPH) as used
in fluid mechanics and to meshfree (or meshless) methods as used in solid mechanics, MPM
distinguishes itself as a mixed Lagrangian-Eulerian method which utilizes a regular lattice
“background” grid for solving the equations of motion. The material point method attempts
to marry the best of both worlds – use of Lagrangian particles for representing material (and
its corresponding kinematic and dynamic properties) and use of an Eulerian grid upon which
efficient numerical solvers can be built.

While MPM has been shown to be extremely successful and robust in the simulation of a
number of complicated engineering problems (see for example [3–5]), detailed analysis of the
errors in MPM, even for simple problems, is lacking. This is not surprising, as MPM suffers
the same challenges as experienced in almost all particle and meshfree methods – finding
a common framework or point of reference from which to define quantities like truncation
error and quadrature error. Such analysis is not only needed as part of the classic numerical
verification process advocated in the engineering sciences, but also for driving improvements
of the methodology.

Consider particle grid crossing – one of the motivations given for the development of
the Generalized Interpolation Material Point Method (GIMP), a generalization of MPM [6].
Bardenhagen et al. demonstrate numerically that particles crossing grid cell boundaries cause
unexpected computational artifacts, especially in the computation of internal forces. In a
similar fashion as is often done in the SPH literature, the problem was ascribed to the
choice of particle representation. Not based upon direct analysis of MPM but upon exploiting
the analogies between MPM and other particle methodologies, GIMP introduces the idea of
particle characteristic functions which have the effect of smoothing the impact of a particle’s
information on the underlying grid. The hope was that through this generalization one could
eliminate these grid crossing artifacts. Although GIMP greatly reduced the impact of grid
crossing, it did not eliminate it. The improved computational results of GIMP merit further
investigation to explain why it provided tremendous benefit or to postulate why it did not
completely solve the problem.

It is the thesis of this work that many of the numerical artifacts seen when employing the
Material Point Method can be understood as being the result of the nature of the quadrature
rules built into the methodology. This paper will examine the errors in internal force due
to quadrature errors in the MPM framework. Detailed analysis will be performed using the
standard piecewise-linear basis functions often used in MPM simulations. The hypothesis of
smoother grid basis functions eliminating internal force errors will be tested by extending
the analysis to both quadratic and cubic B-spline basis functions within the original MPM
framework, showing that they do indeed reduce errors in internal forces. Lastly, we will perform
full dynamic simulations, showing that MPM with B-spline basis functions provide convergence
properties not achievable with the standard piecewise-linear basis functions.

The paper will proceed as follows. In Section 2 we will provide background to help give
context about where and how MPM fits into the family of particle and meshfree methods. In
Section 3 we provide an algorithmic overview of MPM with particular emphasis on the choice
of the grid basis functions. In Section 4 we describe as the building block of our quadrature
argument an interpretation of particle volume. Building upon our interpretation of particle
volumes, we, in Section 5, provide an analysis of its impact on quadrature – in particular, how
one might quantify quadrature errors. In Section 6 we present results which corroborate our
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ANALYSIS AND REDUCTION OF QUADRATURE ERRORS IN MPM 3

perspective and our analysis and show that MPM used with third order B-splines provides a
much improved method. In Section 7 we provide a summary of our findings, our conclusions
and future work.

2. BACKGROUND

In this section we provide some of the historic background supporting the Material Point
Method. Recently, Brackbill provided an overview of a number of related particle methods [7]
which is helpful in understanding where MPM fits in with the particle community. However,
the purpose of this section is not to provide an exhaustive biography of MPM with comparison
to all predecessors and methodological siblings. Rather, we will attempt to hit the salient points
of comparison and contrast with respect to our thesis.

The Material Point Method (MPM) is a mixed Lagrangian-Eulerian method with moving
particles on a background grid. MPM [1,2] descends from a long line of Particle-in-Cell (PIC)
methods, specifically as a solid mechanics extension to the “full particle” formulation of PIC
called FLIP [8,9]. These methods use similar approaches to Smoothed Particle Hydrodynamics
(SPH), namely to use an integral representation of field variables, or kernel approximation,
when solving the governing equations. For example, in SPH, the evaluation of a field variable
at a position x involves a weighted sum of particle data multiplied by a smoothing kernel
function in the neighborhood of x. The extent of the neighborhood, or influence domain,
is determined by the smoothing lengths of the particles. MPM similarly employs the idea
of particles and particle smoothing kernel functions. However, unlike some particle methods
where each particle represents a specific object, or collection of objects, such as electrons or
stars, MPM primarily uses particles and their associated volumes to partition a continuum. In
MPM, particles are used to represent the Lagrangian state of a material. To solve the equations
of motion, particle functions spread (or project) information to a background grid on which the
equations of motion are solved. The background grid cells implicitly define influence domains,
effectively eliminating the need for neighbor searches when a fixed Cartesian mesh is used.
As mentioned earlier, the Generalized Interpolation Material Point method (GIMP) [6] was
developed as an extension to MPM which modifies the type of particle functions used.

Although not derived directly from what is classically considered as meshfree or meshless
methods, MPM has been placed within the meshfree community and has both many of
the same advantages and many of the same challenges of other meshfree methods [10].
Like many meshfree methods, the primary partitioning of the material does not involve
a polygonal tessellation (as in finite elements), but rather some alternative non-mesh-
based unstructured representation. However, MPM utilizes a background mesh to perform
differentiation, integration, and solve equations of motion, similar to other meshfree methods
such as the Element Free Galerkin Method (EFGM) [11]. While the background mesh is
formally free to take any form, it is most often chosen for computational efficiency to be a
Cartesian lattice (i.e. segments, quadrilaterals and hexahedra in 1D, 2D and 3D respectively).
These functions are used, in essence, as a means of discretizing the continuum equations,
with the domain of these functions being an alternative (in the sense of versus particles)
representation of the deformed configuration of the material. Nodal integration based upon
particle positions as is used in other particle methods such as PIC methods [12] is employed
during the solution process. In this paper, we seek an understanding of the ramifications of
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this choice.

With all numerical methods, the accuracy of the method can depend highly on the accuracy
of the numerical quadrature used. For some methods, like the Finite Element Method, defining
regions on which to perform integration and the act of numerical integration itself are well
established tasks. In meshfree methods, however, information is often stored at seemingly
“random” positions, and hence the act of numerical integration becomes more difficult. The
issue of numerical integration within meshfree methods has received much attention and is
well studied (e.g. see Dolbow and Belytschko [13] where the effect of meshfree shape functions
on integration error is reviewed).

The difficulty of various quadrature schemes, especially when using background grid cells as
integration domains within Galerkin implementations, is one reason that collocation methods
and nodal integration have been explored [14,15]. It is these collocation schemes that particle
methods such as PIC, SPH, and MPM most resemble. Unfortunately, detailed analysis of
numerical integration errors within particle methods is limited in the literature. Vshivkov
provides a detailed analysis of the interpolation errors in PIC [16], showing that the error
depends both on the grid spacing and the mean number of particles in a cell. Recently, Qinlan
et al. [17] looked at the truncation error when approximating spatial derivatives within SPH,
showing the error depends on smoothing length and the ratio of particle spacing to smoothing
length. Both the particle-centric nature of the shape functions in both PIC and SPH, and the
difference between shape functions in SPH and MPM, make the straight-forward application
of these results to MPM difficult. It is because of this that an analysis of integration errors
specific to MPM is appropriate.

3. OVERVIEW OF THE MATERIAL POINT METHOD

In this section we will provide an overview of the standard explicit MPM algorithm as presented
by Sulsky et al. [2]. The method has five main steps: projecting particle data to the grid,
evaluating field variables at material points to be used in the constitutive model, constitutive
model evaluation, evaluation of internal force on the grid, and advecting of the Lagrangian
particles. We will first give an algorithmic description of the process and then follow by a
discussion of the choice of the grid basis functions one can employ in the method.

3.1. Standard Material Point Method

The MPM procedure begins by discretizing the problem domain Ω with a set of material
points, or particles. The particles are assigned initial values including position, velocity, mass,
volume, and stress, denoted xp, vp, mp, Vp, and σp (subscript index p is used to distinguish
particle values versus an index of i for grid node values). Alternatively, instead of velocity and
mass, momentum and mass density may be prescribed at the particle location, from which
mp and vp can be calculated. Depending on the material being simulated, other quantities
may be required at the material points, including items such as temperature, pressure, etc.
The particles are then considered to exist within a computational grid, which for ease of
computation is usually a regular Cartesian lattice. Figure 1 shows the setup for a typical 2D
MPM problem.

At each time-step tk (all of the following quantities will be assumed to be at time tk
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Ω

xi

xp

Figure 1. Typical 2D MPM problem setup. The dotted line represents the boundary of the simulated
object Ω and each closed point represents a material point used to discretize Ω. The square mesh
represents the background grid. Each square in the background grid is a grid cell, and grid nodes are

located at the corners of grid cells.

unless otherwise noted), the first step in the MPM computational cycle involves projecting
(or spreading) data from the material points to the grid. Specifically we are interested in
projecting particle mass and momentum to the grid to calculate mass and velocity at the grid
nodes in the following way:

mi =
∑

p

φipmp (1)

vi = (
∑

p

φipmpvp)/mi, (2)

where φip = φi(xp) is basis function centered at grid node i evaluated at the position xp. Note
that Equation (1) represents the mass-lumped version of what Sulsky and Kaul [18] describe
as the consistent mass matrix Mij =

∑

p φipφjpmp. Next, velocity gradients are calculated at
the particle positions as follows:

∇vp =
∑

i

∇φipvi (3)

where ∇φip = ∇φi(xp). The velocity gradient is then used in the evaluation of the constitutive
model, resulting in an updated particle deformation gradient F p and stress σp. Once σ is
calculated, the internal forces at grid nodes can then be calculated by:
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6 M. STEFFEN, R.M. KIRBY AND M. BERZINS

f int
i = −

∑

p

σp · ∇φipVp (4)

where Vp = det(F p)V
0
p denotes the volume of the particle voxel (in its deformed configuration).

Combining the internal grid force with any external forces fext
i , grid accelerations are then

calculated as:

ai = (f int
i + fext

i )/mi. (5)

Next, grid velocities and positions are updated with an appropriate time stepping scheme.
Implicit time stepping schemes exist for MPM [18–20], however we choose to use the explicit
Forward-Euler time discretization presented within the original MPM algorithm:

vk+1
i = vk

i + ai∆t (6)

xk+1
i = xk

i + vk+1
i ∆t. (7)

Conceptually, when the grid nodes are advected, particles are then advected along with the
grid. However, instead of explicitly moving the grid nodes as in Equation (7), the grid node
location remains fixed and particles are advected using:

vk+1
p = vk

p +
∑

i

φipai∆t (8)

xk+1
p = xk

p +
∑

i

φipv
k+1
i ∆t. (9)

Equations (1-9) outline one time-step of MPM and are common to most material models
and external force conditions. The calculation of σp involves a constitutive model evaluation
and is specific for different material models. The 1D hyper-elastic constitutive model used in
this paper involves updating the particle’s history-dependent deformation gradient, Fp using
the velocity gradient from (3):

F̃p = 1 + ∇vk
p∆t (10)

F k+1
p = F̃pF

k
p (11)

Particle stress is then calculated as follows:

σp = E(Fp − 1) (12)

where E is the Young’s Modulus of the material. Multi-dimensional hyper-elastic constitutive
models of the form found in the work of Simo and Hughes [21] have also been implemented
for MPM, but will not be explicitly considered in this work.

Calculating fext
i is another problem dependent procedure with several options. The first

option is to calculate fext
i directly on the grid. This is easily done with body forces such as

gravity where fext
i = mig. Another option is to calculate fext

p on the particles and interpolate
to the grid through the grid shape functions:

fext
i =

∑

p

φipf
ext
p . (13)
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ANALYSIS AND REDUCTION OF QUADRATURE ERRORS IN MPM 7

Moving forces, such as tractions on the end of an elastic bar, can be implemented by associating
the forces with a finite set of “end” particles and using Equation (13). Lastly, for performance
reasons, MPM is typically implemented using a fixed, equally spaced Cartesian lattice, however
nothing in the method requires the grid to be fixed. Moving grid nodes can be implemented to
track boundary forces, calculating fext

i directly on the boundary nodes, however implementing
this for complex geometries in multiple dimensions is not trivial.

3.2. Choice of Grid Basis Functions

In the discussion above, we purposely did not define precisely what grid basis function one
should use for MPM. In the MPM algorithm outlined above, the choice of φ can be considered
another option of the method.

Due to their compact support, ease of computation, and partition of unity property,
piecewise linear basis functions are probably the most commonly used choice (with their natural
extensions to bi-linear and tri-linear basis functions in two dimensions and three dimensions
respectively).

The notation used here for 1D piecewise linear basis functions is

φi(x) =











1 + (x − xi)/h : xi − h ≤ x < xi

1 − (x − xi)/h : xi ≤ x ≤ xi + h

0 : otherwise

(14)

and the gradient of Equation (14) is given by

∇φi(x) =











1/h : xi − h ≤ x < xi

−1/h : xi ≤ x ≤ xi + h

0 : otherwise

(15)

where xi denotes grid position i and h denotes a (uniform) grid spacing h = xi+1 − xi.
It is worth noting that while these piecewise linear basis functions are those used in

many low-order finite element methods, the discontinuous nature of ∇φ is important in the
analysis of MPM since it is a mixed Lagrangian-Eulerian method. Therefore, example zero-
centered versions of Equations (14) and (15) are explicitly shown in Figure 2 (top). In finite
element methods, integration over the domain is decomposed into the sum of integrals over
elements with quadrature points remaining fixed within elements. In MPM however, particles
act as integration points and are allowed to advect through the domain and across these
discontinuities in ∇φ. The consequences of using particles to integrate discontinuous functions
will be explored in Section 5.

As Bardenhagen et al. describe in the development of GIMP [6], lack of regularity in ∇φi

is the root cause of grid cell crossing instabilities, and as can be seen in Figure 2, piecewise-
linear basis functions are only C0 continuous at nodal boundaries. Quadratic B-splines are
then another logical choice of basis as they are C1 continuous and only span three grid cells.
Figure 2 (middle) shows an example set of quadratic B-spline basis functions for six equally
spaced grid nodes (left) and their derivative functions (right).

To construct the basis function for grid node i, the knot vector {xi−3/2, xi−1/2, xi+1/2, xi+3/2}

is used, where xi is the position of node i, and xi+1/2 = 1
2 (xi +xi+1). However, if node i = 1 is

one node away from the left boundary x0, the knot vector {x0, xi−1/2, xi+1/2, xi+3/2} is used.
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Figure 2. Example set of six equally-spaced 1D basis functions (left column) and corresponding
gradients for a selected grid node (right column) for piecewise-linear (top row), quadratic B-spline

(middle row), and cubic B-spline (bottom row) basis functions.

And lastly, the basis function for the border node i = 0 is defined by adding two B-splines
defined by the knot vectors {xi, xi, xi+1/2, xi+3/2} and {xi, xi, xi, xi+1/2}. A similar technique
is used for the right boundary. As an example, an internal zero-centered quadratic B-spline
has the form

φ(x) =



















1
2h2 x2 + 3

2hx + 9
8 : − 3

2h ≤ x ≤ − 1
2h

− 1
h2 x2 + 3

4 : − 1
2h ≤ x ≤ 1

2h
1

2h2 x2 − 3
2hx + 9

8 : 1
2h ≤ x ≤ 3

2h

0 : otherwise

(16)

This method of constructing quadratic B-spline basis functions not only guarantees the peak
of the basis functions to be centered over the grid nodes when nodes are equally spaced, but
also guarantees the partition of unity property,

∑

i φi(x) = 1 for any x ∈ Ω, required for the
form of the implicit mass lumping often used in MPM. This method also generates interior
basis functions which are zero on the boundary, i.e. φi6=0(x0) = 0. This boundary property
combined with the partition of unity property combine such that a boundary basis function
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ANALYSIS AND REDUCTION OF QUADRATURE ERRORS IN MPM 9

evaluates exactly to 1 on the boundary, allowing for easier application of boundary conditions.
As with the standard piecewise-linear basis functions, multi-dimensional basis functions can
be created by tensor products of the one-dimensional constructs.

Cubic B-splines may also be used and are, perhaps, somewhat more intuitive since the
nodal positions are the values used in the knot vectors. Cubic B-splines are C2 continuous and
span four grid cells in each dimension. The knot vector {xi−2, xi−1, xi, xi+1, xi+2} is used for
internal nodes. The vector {xi−1, xi−1, xi, xi+1, xi+2} is used when node i is one node away
from the left boundary. And when node i is the left boundary, the basis function is defined by
adding the two B-splines defined by the vectors {xi, xi, xi, xi+1, xi+2} and {xi, xi, xi, xi, xi+1}.
Again, construction of right boundary basis functions are similar. An internal zero-centered
cubic B-spline has the following form:

φ(x) =































1
6h3 x3 + 1

h2 x2 + 2
hx + 4

3 : −2h ≤ x ≤ −h

− 1
2h3 x3 − 1

h2 x2 + 4
3 : −h ≤ x ≤ 0

1
2h3 x3 − 1

h2 x2 + 4
3 : 0 ≤ x ≤ h

− 1
6h3 x3 + 1

h2 x2 − 2
hx + 4

3 : h ≤ x ≤ 2h

0 : otherwise.

(17)

Figure 2 (bottom) shows an example set of cubic B-spline basis functions for six equally
spaced grid nodes (left) and their derivative functions (right). Multi-dimensional B-spline basis
functions are created by taking the tensor product of one-dimensional basis functions. These
multi-dimensional spline basis functions will have a rectilinear footprint on the grid and are
not the same as the radial spline basis functions used in other mesh-free methods, such as
SPH.

4. INTERPRETATION OF PARTICLE VOLUME

It is our contention that understanding how particle volumes are handled in MPM is necessary
for developing a coherent analysis of the method. Every MPM simulation is initialized by
discretizing the problem domain Ω with a set of particles. The exact method of discretization
can vary depending on the situation, but normally consists of placing particles so that one
obtains coverage of the material configuration. One example of a variation might be whether
particles reside on the trace of the material configuration or not (which might be preferable
for handling boundary conditions).

It is often convenient to imagine partitioning the material frame Ω into a set of initial voxels
Ω0

p (we use the term voxel to denote the volumetric subset of the domain, and reserve the use
of the term volume to denote the scalar quantity describing the integral over a voxel) such that
Ω =

⋃

p Ω0
p. The superscript is used to emphasize that this occurs at time level zero (i.e. in

the material or reference configuration). The concept of a “particle” in MPM is that of one of
these voxels; however, the geometric information of the voxel itself is normally not maintained.
A position xp ∈ Ω0

p (usually, but not always, consisting of the geometric centroid of the voxel)
and volume V 0

p =
∫

Ω0
p

dΩ are held by each particle. With each time-step of the MPM algorithm

presented in Section 3, a particle’s position and volume are updated. As the material deforms,
the voxels tacitly deform as denoted in Figure 3. It is assumed that at any time level, the
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10 M. STEFFEN, R.M. KIRBY AND M. BERZINS

deformed configuration of the material is represented by the union of the deformed voxels, and
that the sum of the volumes equals the volume of the deformed material.

x

Xp

xp

u

X

Figure 3. Reference (left) and deformed (right) configurations. The dotted lines represent the voxel
associated with a particle in both the reference and deformed configurations. Note that the voxel of a

particle does not maintain its shape in the deformed configuration, but space can still be tiled.

Integration within MPM relies upon a particle’s position and volume; it is used directly in
calculating f

p
i in Equation (4) and is used tacitly in the mass projection since the mass at a

grid node i is given by the following relation:

mi =

∫

Ω

ρ(x)φi(x) dΩ ≈
∑

p

ρpφipVp ≈
∑

p

1

Vp
mpφipVp =

∑

p

mpφip. (18)

It is important to appreciate that the choice within MPM to only maintain a particle’s
volume and a single sample point (particle position) dictates the quadrature approximation
properties of the method. MPM effectively employs, in the worst case, first-order Riemann
integration of field quantities. In the one-dimensional case where the voxel consists of a line
segment of length L and the sample point can be maintained at the center of the interval, the
form of the integration reduces to the familiar midpoint rule. In the multi-dimensional case, it
is more difficult to show that one can do better than first-order if one only monitors volume
and a single position, as the general shape of the voxel is only constrained by the laws of motion
and the sampling point is not required to be maintained at the geometric centroid. Much of

the anomalous behavior exhibited by MPM can be attributed to the quadrature approximation

properties of the method. In fact, many of the proposed improvements to MPM either explicitly
or tacitly attempt to control and improve MPM’s quadrature behavior.

For example, Bardenhagen et al. [6] try to address the problem of tracing deformed particle
voxels with contiguous particle GIMP by using updated volumes in the weighting function
Sip. This is only used in 1D and assumes space remains tiled with the updated set of Ωp, xp

is in the center of the update voxel Ωp, and the width of Ωp is given by the updated particle
volume Vp. This technique still uses information at the particle position to approximate the
deformed shape of Ωp.

Recently in [22] Ma et al. have modified GIMP to approximate the deformed state of each
Ωp, solving the problem of tiling space by placing massless tracking particles at the corner of
the initial square voxels. These particles are advected with the grid velocity and are used to
define the deformed voxel shape.
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ANALYSIS AND REDUCTION OF QUADRATURE ERRORS IN MPM 11

One interpretation of both of these previous efforts is that both have focused on improving
the means of computing (or maintaining) the measure of integration – that is, attempting to
more faithfully represent the voxel. Both, however, accomplish this at a computational cost
which degrades the raw efficiency one can gain from the algorithm as presented in Section 3.
In this work, we have taken an alternative view – to acknowledge the errors introduced by the
quadrature employed in the current MPM algorithm, to attempt to understand the different
contributing factors in that error, and to modify the integrand to help minimize the impact of
the error. In particular, our focus is on the impact of changing the grid basis functions used
within MPM in a way that reduces the quadrature error and provides consistent convergence
results. In the next section, we will present our analysis and our suggested improvements based
on our findings.

5. ANALYSIS

Most of the grid values in MPM are calculated as approximations to the mass-lumped L2

projections of data onto the grid basis functions or the gradients of the basis functions as in
Equation (1). For example, if a field function g(x) existed over the domain Ω, the values of gi

and ∇gi at grid node i would be calculated as:

gi =

∫

Ω

g(x)φi(x) dΩ ≈
∑

p

gpφipVp (19)

∇gi = −

∫

Ω

g(x)∇φi(x) dΩ ≈ −
∑

p

gp∇φipVp (20)

where gp is a sample of g(x) at the particle position xp and Vp is the particle volume. The
function g may be of the form g(x) = f(x)ρ(x), with ρ the density, leading to a mass weighted
projection of f as in (2) with fi = gi/mi. If g(x) was a vector valued function, the divergence
of g(x) at a grid node would be calculated as follows:

(∇ · g)i = −

∫

Ω

g(x) · ∇φi(x) dΩ ≈ −
∑

p

gp · ∇φipVp. (21)

Note that in one dimension Equations (19) - (21) all have the form
∫

Ω
f(x) dx ≈

∑

p f(xp)Vp

– that is, they represent quadrature approximations of the integral. In this section, we will
discuss the case of one-dimensional MPM in which we track the interval length L and maintain
the sample point (particle position) at the centroid of the voxel. In this case, the quadrature
in MPM reduces to the midpoint rule.

As a review, the midpoint rule for approximating the integral of f(x) is typically written as
∫

Ω
f(x) dx ≈ h

∑N
i=1 f(xi) where the domain Ω has been subdivided into N regions of size h

and xi is located in the center of region i. The midpoint rule, however, does not require each
region to be the same size. If the domain is divided into N regions with individual sizes hi,
the midpoint rule with uneven spacing is written as

∫

Ω
f(x) dx ≈

∑N
i=1 f(xi)hi where again,

xi is located in the center of region i.
It should be clear that if xp is located in the center of the voxel defined by the volume Vp,

and if the set of particle voxels tile the domain (or at least tile the non-zero regions of the
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12 M. STEFFEN, R.M. KIRBY AND M. BERZINS

function being integrated), that the MPM approximation to the integrals in Equations (19) -
(21) are equivalent to a midpoint rule with uneven spacing. There is a problem, however, with
applying the standard midpoint rule error analysis to this problem. The standard error analysis
assumes continuity of f in each interval i. Depending on the choice of basis functions φi, the
functions being integrated will not satisfy this continuity condition over the entire domain Ω.
Integrating discontinuous functions with the midpoint rule is valid when the division of Ω into
regions respects these discontinuities. In finite elements, for example, discontinuities occur at
element boundaries, however integration is always performed over individual elements, and thus
these discontinuities are respected in FEM integration schemes. In MPM, however, the particle
voxels will not, in general, respect these discontinuities for all time as particles advect through
the domain. Figure 4 shows how a particle configuration may respect spatial discontinuities
caused by the gradient of basis functions at time t, but will not at time t + ∆t once the
particles have advected through the domain. Therefore, one way to understand the integration
errors in MPM is to understand the errors in using the midpoint rule when integrating across
discontinuities.

Figure 4. Particle configuration at time t (left) respects discontinuities in the gradients of piecewise-
linear basis functions, allowing for exact integration using the midpoint rule. Advected particles at

time t + ∆t (right) no longer respect the discontinuities, leading to quadrature errors.

In this section, we will first lay out the simple test problem presented in [6] for understanding
errors in internal force computation of MPM. We will then examine the interplay between the
midpoint rule nature of MPM quadrature and the choice of the grid basis functions – in
particular, examining the commonly used piecewise-linear functions as well as the B-splines
we introduced in Section 3.2.

5.1. Uniformly Stressed Body in MPM

In MPM, the internal force calculated by Equation (4) is an approximation to

f int
i = −

∫

Ω

σ(x) · ∇φi(x) dΩ ≈ −
∑

p

σp · ∇φipVp (22)

which is similar in form to Equation (21). The stress field σ(x) can in general take any form,
making error analysis difficult. One form of σ(x) which allows for easy analysis is the case of
a uniformly stressed body with constant particle spacing ∆x, where σp = σ for all particles.
Bardenhagen et al. [6] note that force imbalances can develop with uniformly stressed bodies
when different numbers of particles are in adjacent cells. Since MPM can be thought of as
using a midpoint-rule approximation to expressions such as Equation (22), the errors in the
internal force calculation can be analyzed by looking at errors in midpoint integration when
integrating across discontinuities.
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ANALYSIS AND REDUCTION OF QUADRATURE ERRORS IN MPM 13

For this uniformly stressed body problem, the error in internal force can be evaluated as

Ef =

∫

Ω

σ(x) · ∇φi dΩ −
∑

p

σp · ∇φipVp = σ ·

[

∫

Ω

∇φi dΩ − ∆x
∑

p

∇φip

]

. (23)

The bracketed term in Equation (23) not only corresponds to the error in internal force,
but also represents the error in integrating ∇φi using the midpoint rule. Since we are using
piecewise polynomial basis functions, ∇φi is also a piecewise polynomial and the internal force
errors can be analyzed by looking at the midpoint integration errors present in Equation (23).
We will now examine those errors for the three basis function choices presented in Section 3.2.

5.2. Piecewise-linear basis functions

Consider the scenario depicted in Figure 4 where the particle configuration does not respect
discontinuities in the underlying integrand. Figure 5 shows this scenario in more detail, focusing
on the particle overlapping the discontinuity. When a background grid with cell width of h is
discretized using piecewise-linear basis functions, ∇φ is piecewise constant, and discontinuities
in ∇φ occur at −h, 0, and h, with jumps in the polynomial’s leading coefficient (see Equation
(15)) of 1/h, −2/h, and 1/h, respectively. The midpoint integration error from integrating
across a discontinuity in a piecewise-constant function is shown in detail in the Appendix for
the case of the uniformly stressed body above. As is shown by Equation (46), the maximum
error due to integrating over a discontinuity is given by Ejump = C1[[φ

′

(0)]]∆x, where [[·]]
denotes the jump condition, ∆x is the particle width, and C1 is a constant depending on
the polynomial. With piecewise-linear basis functions used in MPM, the coefficient C1 for
integrating ∇φ is 1/2.

Figure 5. Piecewise constant function with a midpoint region spanning a discontinuity at x = 0. This
is representative of a particle of width ∆x centered at ξ whose voxel, Ωp, crosses a grid cell boundary.

For particles not crossing over a discontinuity, there will be no error contribution since
the midpoint rule can integrate constant functions exactly. Therefore, the only integration
intervals contributing to the total error are those which cross the discontinuities. Substituting
these individual Ejump errors into the bracketed term in Equation (23) leads to an upper
bound on the total force error Ef of:

Etotal = σ

[

1

2

(

1

h
+

2

h
+

1

h

)

∆x

]

= 2σ
∆x

h
. (24)

The previous analysis only considered the magnitude of the jump when calculating an upper
bound on the error. If the sign of jump is taken into account, the maximum positive error occurs
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14 M. STEFFEN, R.M. KIRBY AND M. BERZINS

when integration over the discontinuity at 0 is respected by the particle distribution (i.e. no
particles cross the discontinuity at 0), but the discontinuities at −h and h are not. Similarly,
the maximum negative error occurs when the discontinuities at −h and h are respected, but
the discontinuity at 0 is not. These cases lead to errors of

Etotal = ±σ
∆x

h
. (25)

5.3. Quadratic B-spline basis functions

Consider the scenario depicted in Figure 6. For quadratic B-spline basis functions, ∇φ is
piecewise-linear, and discontinuities in ∇2φ at −3h/2, −h/2, h/2, and 3h/2, with jumps in
second derivative (from Equation (16)) of 1/h2, −3/h2, 3/h2, and −1/h2, respectively. The
midpoint integration error from integrating across a discontinuity in a piecewise-linear function
is shown in detail in the Appendix. As is shown by Equation (54) the maximum error due to
integrating over a discontinuity is given by Ejump = C2[[φ

′′

(0)]]∆x2, where [[·]] denotes the
jump, ∆x is the particle width, and C2 is a constant depending on the polynomial. With the
quadratic B-spline basis functions used in MPM, the coefficient C2 for integrating ∇φ is 1/8.

Figure 6. Piecewise-linear function with a midpoint region spanning a discontinuity in y′ at x = 0.
This is representative of a particle of width ∆x centered at ξ whose voxel, Ωp crosses a grid cell

boundary.

Again, for particles not crossing over a discontinuity, there will be no error contribution
since the midpoint rule can integrate linear functions exactly. Therefore, the only integration
intervals contributing to the total error are those crossing discontinuities. Substituting these
individual Ejump errors into the bracketed term in Equation (23) leads to an upper bound on
the total force error Ef of

Etotal = σ

[

1

8

(

1

h2
+

3

h2
+

3

h2
+

1

h2

)

∆x2

]

= σ
∆x2

h2
. (26)

Taking the signs of the jump in second derivatives into consideration, the maximum positive
error occurs when the particle distribution is respectful of discontinuities when integrating
over the discontinuities at −h/2 and 3h/2 (those corresponding to a negative a∗), but not
respectful at −3h/2 and h/2. The maximum negative error occurs when the opposite is true.
Once again, these cases lead to errors which are half of the maximum error calculated using
the magnitude of the jump, and are given by:

Etotal = ±σ
∆x2

2h2
. (27)
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5.4. Cubic B-spline basis functions

Consider the scenario depicted in Figure 7. For cubic B-splines, ∇φ is piecewise-quadratic,
and discontinuities in ∇3φ occur at −2h,−h, 0, h, 2h, with jumps in the third derivative
(see Equation (17)) of 1/2h3, −2/h3, 3/h3, −2/h3, and 1/2h3, respectively. The midpoint
integration error from integrating across a discontinuity in a piecewise-quadratic function is
shown in detail in the Appendix. As can be seen by (I.3), the maximum error due to integrating
over a discontinuity is given by Ejump = C3[[φ

′′′

(0)]]∆x3, where [[·]] denotes the jump, ∆x is
the particle width, and C3 is a constant depending on the polynomial. With the cubic B-spline
basis functions used in MPM, the coefficient C3 for integrating ∇φ is 1/24.

Figure 7. Piecewise-quadratic function with a midpoint region spanning a discontinuity in y′′ at x = 0

The total maximum error from integrating across discontinuities is then given by:

Etotal = σ

[

1

24

(

1

2h3
+

2

h3
+

3

h3
+

2

h3
+

1

2h3

)

∆x3

]

= σ
∆x3

3h3
(28)

However, ∇φi is quadratic between the discontinuities and the midpoint rule can not exactly
integrate quadratic functions. As a review, if f ∈ C2[a, b], then for some µ in (a, b), the
composite midpoint error with sub intervals of size ∆x is given by [23]

E =
(b − a)

24
∆x2f ′′(µ) (29)

For our piecewise-cubic φi, the value of midpoint error for integrating ∇φi in the four separate
regions (see Equation (17)) is given by

E =
1

24
∆x2 [h1φ

′′′(µ1) + h2φ
′′′(µ2) + h3φ

′′′(µ3) + h4φ
′′′(µ4)]

=
1

24
∆x2

[

h1
1

h3
− h2

3

h3
+ h3

3

h3
− h4

1

h3

]

(30)

where h1, h2, etc. are the size of the integration intervals in the different regions after sub
intervals crossing the discontinuities have been removed. There exist many arrangements of
particles such that h1 = h2 = h3 = h4 in which case the bracketed term in Equation (30) goes
to zero, leaving Equation (28) as the only source of error. In general, however, the total error
from integrating ∇φi is the sum of Equation (28) and Equation (30) and since h1, h2, h3, and
h4 are O(h) the total error is O(σ∆x2/h2).

We see the internal force error improves when using quadratic B-spline basis functions
instead of standard piecewise-linear basis functions. The quadratic B-splines show an error
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16 M. STEFFEN, R.M. KIRBY AND M. BERZINS

which is O(∆x2/h2) while the piecewise-linear basis functions have an error of O(∆x/h).
Using even higher order splines, such as cubic B-splines, may give further improvement for
some special particle configurations, but in general the composite midpoint integration error
limits the error to the same order as with quadratic B-splines.

Brackbill [7] makes a similar observation concerning PIC methods when, building upon
theoretical results presented by Vshivkov [16], he states the error of the PIC method is bounded
by:

ε ≤ C1

(

δ

h

)2

+ C2h
2 (31)

where δ is the particle spacing, h is the mesh spacing, and C1 and C2 are constants depending
only on the smoothness of the data. Here, the quantity δ/h is a measure of the inverse of the
number of particles per cell.

This result follows from Vshivkov’s earlier analysis [16] where he calculates the error, δk,
in the charge density at node k as calculated with PIC. One would expect this error to be
analogous to measuring the error in the projection of particle information to the grid in MPM
(such as the projection of mass) since the piecewise-linear mesh kernel functions Vshivkov
assumes in his analysis are the same as the grid basis functions used in standard MPM. His
result states that the error is bounded by:

δk ≤

(

3ρ2
av

2ρmin
+ h

ρ2
avρmax

6ρ3
min

∣

∣

∣

∣

∂ρ

∂x

∣

∣

∣

∣

max

)

1

N2
+

h2

12

∣

∣

∣

∣

∂2ρ

∂x2

∣

∣

∣

∣

max

(32)

where N is the average number of particles in a cell. The first term on the right-hand-side
relates to the “quadrature” error as a consequence of number of particles and grid spacing and
the second term relates to the “approximation” error as a consequence of grid spacing (and
tacitly the choice of basis functions).

These results for PIC demonstrate the interplay between approximation error (based upon
the choice of the basis functions) and the quadrature error – results which are consistent with
and indeed motivated the current work.

6. RESULTS

In this section we now attempt to use the perspective provided in Section 4 and analysis
provide in Section 5 to explain common test cases presented in the MPM literature.

6.1. Uniformly Stressed Body

We first begin by revisiting the uniformly stressed example mentioned in the previous section.
First, we must present a algorithmic way of setting up the problem. Consider the diagram
given in Figure 8. To describe any arrangement of uniformly spaced particles surrounding a
grid cell, we start by selecting a particle spacing ∆x less than the cell width h, with b = ∆x/h.
Here, b is a fractional measure of the inverse of the number of particles-per-cell (PPC). Next,
place a particle at a location of α ∈ [0,∆x]. Define a = α/∆x (a percentage shift). Next, fill
the region [−2h, 2h] with particles, maintaining the particle spacing ∆x. Let the grid span the
region [−2h, 2h] with five grid nodes, thus the grid locations will be xi = −2h,−h, 0, h, 2h.
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Now, give all the particles constant stress, σp = σ, and volume Vp = ∆x. We will consider
calculation of f int

i on grid node i = 2 (the center node). Since stress and volume are constant,
we would expect f int

2 = 0.

2h−2h −h 0 h

α

∆x∆x

Figure 8. Example grid and particle arrangement used for the uniformly stressed body test.

The internal force in MPM is calculated as follows:

f int
i =

∑

p

σp · ∇φi(xp)Vp. (33)

For piecewise-linear basis functions, this becomes:

f int
2 =

∑

p∈[−h,0]

σ
−1

h
∆x +

∑

p∈[0,h]

σ
1

h
∆x (34)

= N2σ
1

h
∆x − N1σ

1

h
∆x (35)

where N1 is the number of particles in the region [−h, 0], and N2 is the number of particles
in the region [0, h]. With this problem setup, there will either be equal number of particles
on both sides of the grid nodes, or N2 − N1 = ±1. Thus, f int

2 takes on one of three values:
σ 1

h∆x, 0, or −σ 1
h∆x, depending on particle arrangement. This can be seen in the contour

plot shown in Figure 9 (top). Note that the error of σ 1
h∆x is half of the maximum analytical

error shown in (24) which only considered the magnitudes of errors when particles overlapped
discontinuities in ∇φi. If signs of errors were taken into account the maximum error would be
σ 1

h∆x.
Several things can be observed in Figure 9. First, note that there are combinations of

fractional offset a and inverse particles-per-cell b which yield zero error. These combinations
consist of two things: (1) when voxel boundaries line up with element boundaries such that
there is no jump error term (like in the case of fractional offset a = 0.5 where there is a line of
zero error for all choices of inverse particles-per-cell b) and (2) when symmetries in the particle
positions cause cancellations in the error due to signs of the jumps. The second observation that
can be seen in Figure 9 is that when quadratic B-spline basis functions are used, the magnitude
of the maximum error (on the order of .25) is much less than with piecewise-constant basis
functions (on the order of 1.0), and the error approaches zero much faster as the measure of
particle spacing b decreases and the number of particles-per-cell increases. When cubic B-spline
basis functions are used, the magnitude of the maximum error is again much lower (on the
order of .04) and the error approaches zero faster than with quadratic B-splines or piecewise-
linear basis functions. This suggests that the maximum error decreases and the convergence
rate of the error improves as the continuity of the basis functions is increased.
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Figure 9. Plots of internal force error |f int
2 | for a uniformly stressed body discretized with evenly

spaced particles. Various particle spacings, b, and offsets, a, are shown using standard piecewise-linear
(top), quadratic B-spline (middle) and cubic B-spline (bottom) basis functions. The figures show the
maximum error decreases and the convergence rate of the error improves as the continuity of the basis

functions is increased. All plots use a consistent color scale.

To better understand the convergence of f int
2 , for each b value in Figure 9 the maximum error

over the fractional offset a was tabulated and plotted in Figure 10 on log-log graphs. The left
column shows the error for evenly-spaced particles while the right column shows particles in
the same configuration, but randomly perturbed up to 40% of the measure of particle spacing
b to the left or right from their nominal positions. Errors which are O(∆x) for piecewise-linear
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and O(∆x2) for quadratic B-splines agree with the analysis from the previous section. The
cubic B-splines demonstrates errors of O(∆x3).

The O(∆x3) behavior of the cubic B-splines are due to the globally uniform spacing of
particles in the test, even when the particles are perturbed. This uniform spacing of particles
exploits the symmetry in φ and the O(∆x2) error from Equation (30) cancels out. Another
random test was run where particles were randomized in a global sense (the left half of the
domain might have more particles than the right half of the domain) and the results are shown
in Figure (11). Here, for larger values of b (that is, fewer particles-per-cell), the internal force
has O(x2) behavior. As b decreases, however, there exist more particles contributing to the
integration and the O(x3) behavior returns.

6.2. Test Problem With Dynamic Traction Boundary Conditions

Previous analysis of the spatial convergence properties of MPM has been performed using
quasi-static computations and comparisons with analytical solutions [6]. Since MPM is often
used for dynamics problems, a one-dimensional test case with an analytic transient solution
was developed.

Given a bar of length l, fixed at x = 0, free at x = l, with a Young’s modulus of E, density
of ρ = E (wave-speed of 1.0), driven by a forcing function of

q(x, t) = δ(x − l)H(t)τ sin(xt/l), (36)

where H(t) is the Heaviside step function, and initial conditions of u(x, 0) = 0, v(x, 0) = 0,
has an analytical displacement function derived by wave propagations of the form:

u(x, t) =































0 : t ∈ [0, l − x)

α[1 + cos(ω(t + x))] : t ∈ [l − x, l + x)

α[cos(ω(t + x)) − cos(ω(t − x))] : t ∈ [l + x, 3l − x)

α[−1 − cos(ω(t − x))] : t ∈ [3l − x, 3l + x)

0 : t ∈ [3l + x, 4l]

(37)

on x ∈ [0, l] and t ≥ 0, where α = lτ/(ρπ) and ω = π/l. The stress is given by:

σ(x, t) =































0 : t ∈ [0, l − x)

τ sin(ω(t + x)) : t ∈ [l − x, l + x)

τ [sin(ω(t + x)) + sin(ω(t − x))] : t ∈ [l + x, 3l − x)

τ sin(ω(t − x)) : t ∈ [3l − x, 3l + x)

0 : t ∈ [3l + x, 4l].

(38)

As was stated before, the traction for this problem occurs on the free end of the bar, however
the bar end position is time dependent. The analytic end bar position at any time t can be
found by calculating u(l, t) from (37). Interpolating the traction force, the external grid forces
can then be calculated as

fext
i = φi(l + u(l, t))q(l, t) (39)

Since there is only one traction force, a maximum of two grid nodes will have non-zero external
forces.
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Figure 10. Errors in internal force vs. particle spacing b (or the inverse of the number of particles-per-
cell) for constant σ = 1 and grid spacing h = 0.1. The top plot uses evenly spaced particles where
each sample point is the maximum error over various offsets a. The bottom plot uses randomly spaced
particles. The constants on the error bounds are c1 = 2, c2 = 1, and c3 = 1/4. A tighter error bound
may be possible for the evenly spaced particles due to symmetries. The ∆xmax in the bottom plot is
1.6 times the ∆x in the top plot due to the random spacing of the particles. This leads to higher error

bounds for the randomly spaced particles than the evenly-spaced particles.

The parameters used were, ρ = E = 100, τ = 1, and l = 1. The uniform MPM grid spanned
the region [0, 1.15]. The number of grid cells was varied to understand the spatial convergence
of the methods. The bar was discretized using np = 3ng number of particles, where ng is the
number of MPM grid nodes. This ends up being slightly more than three particles-per-cell
(PPC) since the bar is only of length 1. The problem setup is illustrated in Figure 12.

The maximum extension of the bar occurs first at time T = 1 which results in an end-bar
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Figure 11. Errors in internal force vs. particle spacing for constant σ = 1 and grid spacing h = .1.
Here particles were globally randomly spaced (the left half of the domain can have more particles than
the right half of the domain). This is opposed to the previous figure where particles were only locally
randomly spaced and overall particle density remained constant throughout the domain. Instead of
perturbing particles from a nominal even spacing, the globally random spacing is accomplished by
filling the domain from one side to the other with randomly sized particles, while still using the same

overall number of particles as the locally random case.

l

xi

xp

q(x, t)

Figure 12. One-dimensional bar with traction and corresponding MPM discretization.

displacement of u(l, 1) = π/50 ≈ .06283. The simulations were thus run to a time of 1 and the
RMS errors in displacement were calculated

eRMS =

√

1

np

∑

p

(u(xp, 1) − up)2 (40)

with up = xp − x0
p, the difference between the current and original position of particle p.

A number of important questions can be asked regarding the convergence properties of
MPM. Recent studies by Wallstedt and Guilkey [24] looked at convergence with respect to
the number of particles-per-cell. Kim et al. [25] provided an analysis framework for a modified
version of MPM used for gas dynamics and showed first order convergence of the method.
Bardenhagen et al. [6] performed grid resolution studies with MPM and GIMP in the context
of a quasi-static compression problem. For classic MPM, these tests showed convergence for
a few data points corresponding to very low grid resolutions (between roughly 5 and 20 grid
cells). However, as resolutions increased, the errors started to increase, showing a lack of
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convergence. In our studies, we fix the number of particles-per-cell at approximately 3.5 and
focus our attention on the convergence properties with respect to grid resolution for a full
dynamic test of the expansion of our fixed-free elastic bar. The results for the simulation with
various basis functions are shown in Figure 13.
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Figure 13. Convergence test for a 1D fixed free elastic bar with sinusoidal traction. The RMS Error
in displacements are calculated at time T = 1, when bar is at maximum extension.

Similar to the Bardenhagen tests [6], standard MPM using piecewise-linear basis functions
shows a lack of convergence for 20 grid cells and higher. Simply substituting smoother
basis functions for the standard piecewise-linear basis functions traditionally used in MPM
drastically improves spatial convergence, with convergence rates nearing 2 for both quadratic
B-splines and cubic B-splines. Significant integration errors will always exist when using nodal
integration such as in MPM, especially when particles are free to move through the domain.
Error plateaus can be seen in the simulation when B-spline basis functions are used, however
positive convergence results can be obtained out to many thousands of grid cells.

The level of improvement due to increasing the basis function regularity is greater than
might be anticipated based solely on the quadrature results seen in the previous section. The
benefit of increased regularity goes beyond just improving quadrature as seen in Figure 10. In
future work, we will investigate the other parts of the MPM algorithm which might benefit
from the increased level of smoothness of the grid basis functions.

7. SUMMARY AND CONCLUSIONS

In this paper we have considered the impact of the Material Point Method’s choice of
maintaining only particle position and volume information when approximating integrals of
particle voxels. The nodal integration of equations within MPM was shown to be similar
to using midpoint approximations to the integrals. However, the underlying equations being
integrated have discontinuities and the partitioning of the domain specified by the particle
configuration does not respect these discontinuities, leading to quadrature errors containing
information about the jumps in the integrand. Errors in using the midpoint rule across
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discontinuities were analyzed and applied to the MPM force calculation, the results showing
that simply using smoother basis functions such as quadratic and cubic B-splines drastically
reduce integration errors.

Grid resolution tests with quadratic B-spline basis functions showed positive spatial
convergence up to about 120 grid cells, allowing much lower errors than MPM with piecewise-
linear basis functions while only increasing the basis function span by one extra grid cell width.
After 120 grid cells, the error plateaus and remains effectively the same up 2560 grid cells. The
same test was run with cubic B-splines where positive spatial convergence was demonstrated
out to 2560 grid cells, although the convergence rate starts to drop dramatically after 1280 grid
cells. These results are in stark contrast to those obtained using standard (piecewise-linear)
MPM in which a lack of convergence is observed.

The analysis and corresponding convergence studies suggest that basis functions smoother
than piecewise-linear should be used for moderate grid resolutions. B-spline basis functions are
simple to construct and are easily extendible to multiple dimensions. We have implemented
these multi-dimensional B-spline basis functions in Uintah, a massively parallel problem solving
environment from the University of Utah [26], which provides a framework for large scale MPM
simulations. For future work, we plan to accomplish comparisons in two-dimensions and three-
dimensions where other subtitles not exhibited in one-dimension arise – namely, additional
complexity of handling boundary conditions and material contact conditions.

8. ACKNOWLEDGEMENTS

This work was supported by the U.S. Department of Energy through the Center for the
Simulation of Accidental Fires and Explosions (C-SAFE), under grant W-7405-ENG-48. In
addition, the authors would like to acknowledge helpful discussions with members of the Utah
MPM Group – in particular Dr. Jim Guilkey and Phil Wallstedt.

APPENDIX

I.1. Integrating Piecewise-Constant Functions with the Midpoint Rule

If y(x) is piecewise constant with a discontinuity at x = 0, as shown in Figure 5, then y can
be thought of as

y(x) =

{

y1(x) = a1 : x ≤ 0

y2(x) = a2 : x > 0.
(41)

Assuming 0 ∈ [ξ − ∆x/2, ξ + ∆x/2], the exact integral of y(x) over the region needs to be
evaluated in two parts,

∫ 0

ξ−∆x

2

y1 dx = a1x|
0
ξ−∆x

2

= −a1(ξ −
∆x

2
) (42)

and
∫ ξ+∆x

2

0

y2 dx = a2(ξ +
∆x

2
), (43)
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giving the total integral over the region
∫ ξ+∆x

2

ξ−∆x

2

y(x) dx = (a2 − a1)ξ +
1

2
(a2 + a1)∆x. (44)

Using the midpoint rule over the same region gives MP(ξ) = y(ξ)∆x. When ξ ≤ 0,
MP(ξ) = a1∆x. The integration, or quadrature error in this case is

E(ξ) =

∫ ξ+∆x

2

ξ−∆x

2

y(x) dx − MP(ξ) = (a2 − a1)[ξ +
1

2
∆x]. (45)

The only value for ξ which gives zero error in (45) is ξ = −∆x/2 which corresponds to a
zero error when integrating the region [−∆x, 0]. Since y(x) = y1, with no jumps on the open
interval (−∆x, 0), a zero error when ξ = −∆x/2 make sense because the midpoint rule can
integrate a constant function exactly. When ξ > 0, a similar analysis shows E(∆x/2) = 0. The
maximum error magnitude occurs when ξ = 0, giving

Emax = E(0) =
1

2
|a2 − a1|∆x. (46)

I.2. Integrating Piecewise-Linear Functions with the Midpoint Rule

If y(x) is piecewise linear, as shown in Figure 6, composed of y1(x) for x ≤ 0 and y2(x) for
x > 0, with y1(0) = y2(0) = 0, and y′

1(0) 6= y′
2(0), y(x) can be written as

y(x) =

{

y1(x) = a1x : x ≤ 0

y2(x) = a2x : x > 0.
(47)

The exact integral of y(x) over the region [ξ − ∆x/2, ξ + ∆x/2], needs to be evaluated in
two parts,

∫ 0

ξ−∆x

2

y1 dx = a1x
2|0

ξ−∆x

2

= −
1

2
a1(ξ

2 − ξ∆x +
1

4
∆x2) (48)

and
∫ ξ+∆x

2

0

y2 dx = a2x
2|

ξ+∆x

2

0 =
1

2
a2(ξ

2 + ξ∆x +
1

4
∆x2), (49)

giving the total integral over the region
∫ ξ+∆x

2

ξ−∆x

2

y(x) dx =
1

2
(a2 − a1)ξ

2 +
1

2
(a2 + a1)ξ∆x +

1

8
(a2 − a1)∆x2. (50)

Using the midpoint rule over the same region gives MP(ξ) = y(ξ)∆x. When ξ ≤ 0,
MP(ξ) = a1ξ∆x. The integration, or quadrature error in this case is

E1(ξ) =

∫ ξ+∆x

2

ξ−∆x

2

y(x) dx − MP(ξ) =
1

2
(a2 − a1)ξ

2 +
1

2
(a2 − a1)ξ∆x +

1

8
(a2 − a1)∆x2. (51)

To find values of ξ corresponding to maximum or minimum error, we solve d
dξ E1 = 0 for ξ:

d

dξ
E1 = (a2 − a1)ξ +

1

2
(a2 − a1)∆x (52)

= (a2 − a1)(ξ +
1

2
∆x). (53)
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Since a2 6= a1, the above equation is zero only when ξ = −∆x/2. A similar analysis for when
ξ > 0 shows d

dξ E2 = 0 only when ξ = ∆x/2. To find the maximum magnitude, we first note

that E(±∆x/2) = 0 which also says that the midpoint rule integrates a linear function exactly.
Lastly, since E1(0) = E2(0), the maximum magnitude error must be when ξ = 0 giving

Emax = E(0) =
1

8
|a2 − a1|∆x2. (54)

I.3. Integrating Piecewise-Quadratic Functions with the Midpoint Rule

If y(x) is piecewise quadratic, as shown in Figure 7, composed of y1(x) for x ≤ 0 and y2(x) for
x > 0, with y1(0) = y2(0) = 0 and y′

1(0) = y′
2(0), and y′′

1 (0) 6= y′′
2 (0), y(x) can be written as

y(x) =

{

y1 = a1x
2 + bx : x ≤ 0

y2 = a2x
2 + bx : x > 0.

(55)

The exact integral of y(x) over the region [ξ − ∆x/2, ξ + ∆x/2], needs to be evaluated in
two parts,

∫ 0

ξ−∆x

2

y1 = [
1

3
a1x

3 +
1

2
bx2]0

ξ−∆x

2

= −[
1

3
a1(ξ −

∆x

2
)3 +

1

2
b(ξ −

∆x

2
)2]

= −
1

3
a1(ξ

3 −
3

2
ξ2∆x +

3

4
ξ∆x2 −

1

8
∆x3) −

1

2
b(ξ2 − ξ∆x +

1

4
∆x2) (56)

and
∫ ξ+∆x

2

0

y2 = [
1

3
a2x

3 +
1

2
bx2]

ξ+∆x

2

0

=
1

3
a2(ξ

3 +
3

2
ξ2∆x +

3

4
ξ∆x2 +

1

8
∆x3) +

1

2
b(ξ2 + ξ∆x +

1

4
∆x2), (57)

giving the total integral over the region
∫ ξ+∆x

2

ξ−∆x

2

y =

∫ 0

ξ−∆x

2

y1 +

∫ ξ+∆x

2

0

y2

=
1

3
(a2 − a1)ξ

3 +
1

2
(a2 + a1)∆xξ2

+
1

4
(a2 − a1)∆x2ξ +

1

24
(a2 + a1)∆x3 + ξb∆x. (58)

Using the midpoint rule over the same region gives MP(ξ) = y(ξ)∆x. When ξ ≤ 0, the
midpoint rule gives

MP(ξ) = (a1ξ
2 + bξ)∆x. (59)

The integration error across the discontinuity is then

E1(ξ) =

∫ ξ+∆x

2

ξ−∆x

2

y − MP(ξ)

=
1

3
(a2 − a1)ξ

3 +
1

2
(a2 − a1)∆xξ2 +

1

4
(a2 − a1)∆x2ξ +

1

24
(a2 + a1)∆x3. (60)
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To find the ξ corresponding to maximum error, we solve for d
dξ E1 = 0.

d

dξ
E1 = (a2 − a1)ξ

2 + (a2 − a1)∆xξ +
1

4
(a2 − a1)∆x2

= (a2 − a1)(ξ +
1

2
∆x)2. (61)

Since a2 6= a1, this is zero only when ξ = − 1
2∆x. A similar analysis for when ξ > 0 shows

d
dξ E2 = 0 only when ξ = ∆x/2. Since E(± 1

2∆x) = 0, |E| must be a maximum at ξ = 0.
Therefore, the maximum error is

Emax = E(0) =
1

24
|a1 + a2|∆x3.
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