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Abstract

This paper is concerned with a numerical investigation into time dependent inviscid
3D shock wave diffraction from a region with right angled cuboid cross section through
a 2 solid angle. A novel, fast, 3D unstructured tetrahedral mesh adaption algorithm _
is used, coupled to a Riemann problem based MUSCL type upwind scheme, which
generalises to higher order accuracy the first order method of Godunov. Two shock
Mach numbers are studied with strong ring vorticies observed for subsonic post shock
flow, and the formation of recompression shocks in the supersonic case.

1 INTRODUCTION

In recent years the numerical investigation of the phenomena of shock wave diffraction
has generated great interest within the fluid dynamics community, with a number of
high quality two dimensional numerical simulations having been performed e.g. [6].
It is natural to want to extend this numerical work into three dimensions to provide
additional insight into the complex flow structures which shock diffraction produces.
and to make comparisons with available experimental and theoretical results. The
significant computational challenge posed by the scale of the 3D problem makes the
use of grid adaptation highly desirable for the calculation of high resolution solutions
in highly active flow regions.

This paper describes a preliminary numerical study of inviscid shock wave diffraction
around a 3D cuboid corner for a range of shock Mach numbers, using the 3D time
dependent Euler equations for an ideal gas. A fast and novel 3D unstructured tetra-
hedral grid adaptation algorithm, based in part on ideas contained in [3],[4],(7] and
of the generic node addition or h-refinement type, is used to adapt the computational
mesh. This is coupled to a higher order extension of the upwind Godunov scheme of
the MUSCL type [12) on tetrahedra. Details of the grid adaptation and solver algo-
rithms are given. The numerical regime investigated concentrates on flows with Mach
numbers of 1.7 and 3.0, with the shock diffracting outwards from within a region with
cuboid cross section through a 27 solid angle. For the case of subsonic post shock flow
the diffraction causes the formation of a clear ring vortex structure around the outer
edge of the entrance cavity. The behaviour of these compressible inviscid ring vortices
is of significant theoretical interest [9], and preliminary measurements are made of the
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vortical Mach number and velocity. For the case of supersonic post shock flow the
formation of a recompression shock is observed as in the 2D calculation [6).

The paper is organised as follows. In section 2 and 3 we give the equations and describe
the numerical solver algorithm respectively. In section 4 we give details of the mesh
adaptation algorithm. Section 5 describes the problem and numerical computations.
We finish with some concluding remarks.

2 THE EQUATIONS

The numerical algorithms described here apply to the general class of hyperbolic con-
servation laws of the form:

U+ [F(D)]: + [GU))y + [H(U)): =0 (1)

for three space dimensions (z,y, z) and with time t. The variable U(z,y, z,t) is the
vector of conserved variables and the vector functions F(U), G(U) and H(U) the
analytic fluxes. For the case of the 3D Euler equations the conserved variables and
fluxes may be written as:

P pu pY pw

pu pul+p puv puw

pv | + puv + | p?+p | + prw =0 (2)
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E], [wE+p)], Lv(E+p) w(E+p)],

Here p represents density, u,v and w the cartesian z, y and z velocity components and
E is the total energy. This is defined:

v

1 J4
E=Zp(u*+v*+uw’)+ep ,  e=e(p,p)=—— (3)
2 (y=1)p
where e is the specific internal energy assuming an ideal gas equation of state which
closes the system. On account of the need to admit discontinuous solutions such as
shock waves and contact surfaces, it should be understood that we investigate weak
solutions of the integral form of these equations.

3 NUMERICAL METHOD

The numerical method we employ is a second order accurate, conservative cell-centred
finite volume extension of Godunov’s Riemann Problem (RP) scheme, based around
MUSCL type piecewise linear reconstructions of the primitive variables within each
mesh element [12]. If the solution in some element ¢ at time t™ is U, and is understood
to be an numerical approximation to the exact element averaged solution, then the
numerical solution at the next time level t"+1! is:

Un+l__un At 3 A.F
i . .'—kaz_% kP p.ny (4)

where the sum is over the k faces of the element ¢. The fluxes Fy represent the numerical
flux function for each element face, termed the element face fluxes, and are determined
by the scheme. The nj are the outward face unit normal vectors and A, the face
areas. In the case of the well known Godunov scheme these element face numerical
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fluxes are constructed from the solution of the local element Riemann Problem (RP)
at each element face. The inter-element RP has initial data

Uil <0 i
U(r,O):{ Ulr ;f ;>o (5)

where (L. U, ) represents the left and right element data values about a particular face.
with local coordinate z = 0 at time ¢ = 0, in the frame normal to that face. We denote
the solution to this RP by U*(Uj, U,; z/t). The solution is self similar in the z/t plane.
being constant along rays through the origin. Through the rotational invariance of the
Euler equations we may define the numerical flux in the frame normal to the face to
be:

Fr.ng = RTVH(RU(U, Ur; 0)) (6)

Here R is the rotation matrix constructed from the Euler angles associated with the
face normal vector and H is the z direction Euler flux, and the RP solution is taken along
theray t = 0. If piecewise constant data is use for the left and right data states then this
is simply the first order upwind Godunov flux. This scheme is extended to second order
accuracy by the use of piecewise linear data reconstructions within each element of the
MUSCL type, with the left and right data states now representing face-interpolated
variable values. The scheme is constructed in three stages. First a slope limited central
difference gradient plane is fitted through the four surrounding tetrahedral neighbour -
elements. This gradient plane is limited to be the maximum possible which does not
produce undershoots or overshoots in the primitive field variables when interpolated
to the inter-element face centroid positions. This extends to 3D the limiter described
in [2]. Second these limited face interpolated data values are used to perform a non-
conservative predictor type update - the "Hancock step” [12}- on the data values within
each element: s

vt =ur - Axt/—f L AFL (7)

=0

where the sum is again over the k faces of the element i. The F{ represents here the
analytic flux Fi+ Gj+ Hk evaluated on the element 7 data state interpolated to each
interelement face centroid. The third stage in the construction of the numerical flux
is to interpolate from the predicted data at the half timestep U{'H/z to each element
face centroid, then use the left and right interpolated data states as initial data in the
interelement RP. The numerical flux is then calculated from (6) as described above.
The time step is decided by applying a CFL like condition based on an estimate of
the maximum wave speed and element geometry. Implicit in this numerical method
is the need to solve the RP for the Euler equations at each element interface at each
time step. Rather than solve these inter-element RPs exactly which is computationally
expensive, a computationally inexpensive approximate Riemann solver is emploved.
We use the HLLC approximate solver which is an improved version of the HLL solver
of Harten, Lax and van Leer 5], and is obtained by incorporating the contact surface
and shear waves into the wave pattern [11]. The HLLC solver has been extensively
tested and shown to be both robust, accurate and computationally inexpensive [11].

4 MESH ADAPTATION ALGORITHM

The mesh refinement algorithm for TETRahedral ADaptivity (TETRAD) extends into
the 3D prior work on 2D triangular meshes {3]. The approach we take is hierarchical
in nature and and is based around node,edges,face and element objects which together
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form the mesh data structure. The adaption algorithm assumes that an initial good
quality tetrahedral mesh has been generated over the computational domain. and which
will act as the invariant base mesh. This base mesh is then adapted in an h-refinement
manner by node addition resulting in edge and element subdivision. For reasons of
both tetrahedral quality control and algorithmic simplicity we allow only two types
of element subdivision. The first, which we call reqular subdivision, is the popular
subdivision by eight across the longest interior diagonal of the parent tetrahedron (8].
where a new node bisects each edge of the parent element. The second, which we call
green subdivision [1], introduces an extra node into the parent tetrahedron, which is
subsequently connected to all the parent vertices and any additional nodes which bisect
the parent edges [7]. This provides a means of removing 'hanging nodes’ without the
introduction of additional edge refinement. Because these ’green tetrahedra’ may be of
poorer quality than their regular counterparts, when green tetrahedra flagged for re-
finement they are replaced by regularly refined tetrahedra. This requirement together
with a recent result of Ong [10], means that the degradation of the mesh quality due
to the refinement process is bounded. This approach has several advantages. First
the algorithm is strongly local in nature which aids its parallellization. Second the
green tetrahedra form interfaces between levels of refinement, making it straightfor-
ward to apply hierarchical adaptive time refinement and a multigrid implementations.
The refinement and derefinement processes are driven from the action of refining and

derefining element edges as suggested in [4]. Elements connecting to edges targeted for .

refinement or derefinement are adapted provided they pass various conditions which
effectively decouple the regions of mesh refinement from those of derefinement. The
various mesh objects edges, elements and so on are defined by their constituent nodes,
with the key connectivity stored in the mesh data structure being that of which ele-
ments connect to a given mesh node in the form of a linked list. Nodes, edges and
faces are also stored as lists, whereas elements are stored as trees. Only boundary
faces are supported explicitly in the data structure. Scalability tests on the algorithm
show the refinement process generates tetrahedra at the rate of 10500 per CPU second
on a SGI R4400 processor, scaling as O(N'%4) in mesh element number N. Full re-
finement/derefinement shock propagation tests show a scaling behaviour of O(N!-14)
in mesh size, which is encouraging but we believe can still be further improved . To
combine the Euler flow solver with the adaptive algorithm currently we choose a simple
flow variable approach which is sufficient for this application. Regions of the mesh of
(low) high density gradient are flagged for (de)refinement, with the calculation of local
flow gradients being performed across element faces. All the elements associated with
a flagged face are flagged.

5 RESULTS AND CONCLUSION

The numerical simulations studied consist of shock wave diffraction around the 3D right
angled corner formed between two cuboid mesh regions, in the 3D analogue of the 2D
case studied in [6]. The initial mesh is generated by hexagonal cell subdivision into 5184
tetrahedral elements, with the first cuboid domain having dimensions 0.2 x 0.2 X 0.15.
Rankine-Hugoniot shock data initialises the computation, with the first cuboid domain
being set to the post-shock data state and the discontinuity lying on the z = 0.2
plane. The ambient state has density 1.3KgM =3 and pressure 100000Pa. We show
here results of two computations, the first (Figures 1 and 2) being for a Mach 3.0
shock, and the second (Figure 3) for a Mach 1.7 shock. Figure 1 shows the surface of
the computational mesh for the Mach 3 calculation, with 'O’ marking the origin. The
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shock has diffracted outwards through the square box section, with reflective boundary
conditions in the y = 0 and z = 0 planes effectively dividing the computational problem
by four. Figure 2 shows two cut planes through the solution at z = 0.05 (left picture)
and : = 0.2 (the planes "aaa” and "bb” in Figure 1 respectively), giving 35 contours
of density at an output time of 0.143mS. A CFL number of 0.75 was used throughout.
The final mesh contains 267323 elements with 3 levels of adaption being employed.
The solution shows the recompression shock surface expected from the 2D calculations
(6], with the z = 0.2 plane cutting along and across the shock surface, which forms a
band around the z = 0.2 square section entrance. A region of low density and pressure
separated flow exists 'behind’ the corner. Diffraction effects in the z direction can be
seen from the relative position of the shock on the two cut planes. Figure 3 shows the
results of the Mach 1.7 density calculations along the same solution cut planes. Here the
post shock flow is subsonic and causes the strong vortical activity in the region behind
the box section entrance. Arrow plots of absolute velocity and examination of the
vorticity vector confirms the presence of a ring vortex in this region of radius between
0.01M and 0.02M. Preliminary measurements of the vortical circulation I and vortical
Mach number Mr = I'/27ay, where we have taken as, to be the post-shock sound
speed. gives Mr in the filament to be approximately 0.75, with estimated speed of the
ring as 100M S5~! to 120M S-'. Moore's relation between ring velocity and vortical
Mach number [9], based on a idealised ring vortex structure, predict a ring velocity of

approximately 20M S~ to 45M S~ for this Mr. Given the preliminary nature of these .

measurements as well as the box section geometry, it is interesting that this agreement
is so good. Further work on this is in progress. The computations were carried out on
a SGI 8 processor Power Challenge machine with 256 M B physical memory and took
approximately 900 CPU minutes.
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Figure 2: Mach 3.0 density (35 contours) Z = 0.05 and Z = 0.2 cut planes
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Figure 3: Mach 1.7 density (35 contours) Z = 0.05 and Z = 0.2 cut planes
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