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Abstract

Algorithms for fully automatic segmentation of images are often not sufficiently generic with

suitable accuracy, and fully manual segmentation is not practical in many settings. There is a need

for semi-automatic algorithms which are capable of interacting with the user and taking into

account the collected feedback. Typically such methods have simply incorporated user feedback

directly. Here we employ active learning of optimal queries to guide user interaction. Our work in

this paper is based on constrained spectral clustering that iteratively incorporates user feedback by

propagating it through the calculated affinities [17]. The original framework does not scale well to

large data sets, and hence is not straightforward to apply to interactive image segmentation. In

order to address this issue, we adopt advanced numerical methods for eigen-decomposition

implemented over a subsampling scheme. Our key innovation, however, is an active learning

strategy that chooses pairwise queries to present to the user in order to increase the rate of learning

from the feedback. Performance evaluation is carried out on the Berkeley segmentation and

Graz-02 image data sets, confirming that convergence to high accuracy levels is realizable in

relatively few iterations.

Index Terms

Interactive image segmentation; affinity propagation; pairwise querying; active learning; spectral
clustering

I. Introduction

Image segmentation refers to the task of grouping image pixels into a meaningful partition

such that pixels falling in the same group are similar to each other, and different than those

in other groups, in terms of a perceptually meaningful similarity measure. Segmentation

often is used as a pre-processing step before higher level image processing or understanding.

Manually segmenting images can be laborious and time-consuming, especially for large

images, and can be prone to subjectivity. At the same time, developing a generic

unsupervised segmentation algorithm that can be accurately applied to all, or even many,
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types of images is not straight-forward. This is mainly because automatic image

segmentation is known to be an ill-posed problem [3] in the sense that images can be

segmented differently depending on hard-to-specify high level goals. For example, in a

street image, the user might desire to segment cars or buildings depending on the underlying

application: urban traffic or architecture respectively. Alternatively, supervised algorithms

are provided with training sets to learn what the user wants to segment. This strategy,

although not as tedious as manual segmentation, still requires the user to do the laborious

task of fully labeling a sufficient number of training images to assure generalization over the

full class of images of interest.

Hence one promising approach, which has recently received more attention, is to leverage

both automatic and manual segmentation in a user-interactive fashion that is tunable to the

user’s target segmentation outcome with as few interactions as possible. In typical examples

of these methods, a semi-automatic segmentation algorithm is constructed over a classical

fully-automatic core method, where the user’s feedback is viewed as a set of constraints on

the core.

The user constraints can be either on class assignment of individual pixels or pairwise

relationships between them. The former suggests requesting labels for a subset of individual

pixels (individual constraints) [3], [7], [9], [11]–[13], [16], [23], [27] and is usually used

with supervised cores, while the latter is based on specifying whether a pair of pixels should

be in the same or different clusters (pairwise constraints) [17], [33], [35] and is more

compatible with unsupervised methods1. There are also methods encoding both types of

constraints in their formulation [4]. Here, since we approach the segmentation problem from

an unsupervised point of view, we work with pairwise labeling.

Semi-automatic algorithms inherit some basic features from their core methods. One

principal distinction among segmentation methods is whether they use features extracted

from boundaries or regions. A boundary-based core method uses the constraints over the

boundary locations [5], [21] to relocate them while a region-based core exploits constraints

on the region assignments [2], [7], [8], [24] to re-characterize and re-group the pixels.

Boundary-based interactive techniques are easy to run with the user in a loop [14]; however,

the information provided by boundary constraints is local and not easy to propagate.

Methods introduced by Zhang and Ji [34] and Lu and Carreira-Perpiñán [17] are two

examples of region-based methods that interact with the user iteratively. In the former [34] a

probabilistic framework was built for semi-supervised segmentation, whereas the latter [17]

presented a constrained spectral clustering method. The major bottleneck of Lu and

Carreira-Perpiñán’s work is the expensive computational cost, which makes its application

to large images impractical. This difficulty is mainly due to the eigen-decomposition

required by its spectral core method (O(ñ3) with ñ as the number of samples).

There have been two main directions reported to scale up spectral clustering: (1) using

numerical eigen-decomposition methods, as in the pioneering work of Shi and Malik [30]

1In the context of machine learning, supervised and unsupervised methods are two extremes of a spectrum where the learning process
is done with and without training labels respectively. Semi-supervised learning and constrained clustering are their user-interactive
correspondences and sit closer towards each other along that spectrum.
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where the Lanczos method (with complexity of O(ñ3/2)) was employed to estimate the first

few eigenvectors; and (2) data subsampling; for instance Fowlkes et. al [6] exploited the

Nystrom sampling technique (with complexity O(ñn + n3) where n is the number of

samples) for estimating eigenvectors of the affinity matrix. In this work, we used both types

of strategies for further acceleration: subsampling the pixels using the so-called novelty

selection method [26], which tries to avoid choosing redundant samples in a greedy fashion,

and estimating the eigenvectors with a numerical method called orthogonal iteration [10], a

generalization of the power method to multiple eigenvector estimation.

Speed issues also arise in terms of convergence rate when the interactions are done

iteratively: it is desirable for the algorithm to choose constraints such that the number of

interactions required to achieve the desired segmentation is reasonably small. This is a

learning problem; as an educational metaphor consider a learning system, with a student

(here the algorithm asking for individual/pairwise constraints) and a teacher (corresponding

to the source of labels, or oracle) to help the student with answers. A sophisticated method

of teaching is to involve the student in the learning process by guiding him/her to ask about

the most troublesome topics. The problem of how to choose questions to learn as fast as

possible is widely studied under the title of active learning (see [29] for a tutorial).

Computing the uncertainty about the segment assignment of individual pixels in a given

segmentation is common in active semi-automatic segmentation techniques: as two

examples, Zhang and Ji [34] ranked image entities based on their impact on the uncertainty

of a constructed Bayesian Network model; and Top et. al [31] selected the slice with the

most uncertainty to be labeled for segmenting 3D images interactively. Almost all reported

segmentation methods equipped with active learning, request user labels for individual

pixels. Here, since we focus on pairwise constraints, we ask about the comparative

assignments of pairs of samples.

The interactive framework described here builds on a constrained spectral clustering core

method using affinity propagation [17], where user feedback is used to learn new pairwise

similarities. The central idea relies on the assumption of a Gaussian process prior over the

vector containing the segmentation assignments. Here we use this algorithm iteratively,

alternating between updating the segmentation and requesting pairwise constraints from the

user, until the user is satisfied with the result (or in effect, the iterations converge). We scale

up the original algorithm from the synthetic small data sets in [17] to handle large images by

reducing the computational burden of each iteration. Additionally, we accelerate the learning

process by actively learning which pairs of pixels to query. Focusing on binary segmentation

problems, the performance of our algorithm is evaluated using the Berkeley segmentation

dataset [20]. We show that it converges reasonably quickly to the target segments even

though the input image is represented only by naive pixel-wise features. Similar to other

stochastic algorithms observing partial labels coming from the user at each iteration does not

guarantee monotonically improving performance; however when it is likely to see

performance fluctuations along the iterations, the algorithm is expected to climb up to a

reasonable result at the convergence. We analyzed stability through the softness parameter

of affinity propagation and found that a well-chosen dynamic schedule performed best in
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terms of convergence rate. We also investigated how generalizable this schedule is by

running it over two other sets of images chosen from Graz-02 data set [19], [25].

II. Preliminaries

In this section, after introducing our notations, we give an overview of the graph-cut

problem for which spectral clustering gives an approximate solution, and then briefly

describe the constrained spectral clustering algorithm based on affinity propagation which

we adopt.

A. Notations

Throughout this paper, lower case letters such as a ∈ ℝ denote scalar variables; lower case

bold-faced letters like a ∈ ℝn, n > 1 denote vectors; upper case letters like A represent sets

and upper case bold-faced letters like A ∈ ℝn×m, n, m > 1 represent matrices. Moreover, aij

denotes (i, j)’th element of matrix A and ak indicates its k’th column. In ∈ ℝn×n and 0n×m ∈

ℝn×m denote the identity and all-zeros matrices respectively, and 1n represents an n × 1 all-

ones vector. We represent the i’th canonical vector by ei. The operator |.| returns the absolute

value for scalars and cardinality for sets. The indicator function (a) indicates if the object

a belongs to set A:

Finally, p denotes a probability density function (pdf) while P denotes a probability mass

function (pmf).

B. Spectral Clustering

Let us represent each image as a set of feature vectors X = {x1, …, xn} ∈  ⊆ ℝd where xi

collects the features of the i’th pixel. In order to construct a graph over the image, we use a

positive definite kernel k(·, ·) :  ×  → ℝ+ for measuring similarity between pairs of data

points. The Gaussian kernel is a common function of this type:

(1)

where Σ ⪰ 0 is the covariance matrix. Here the kernel is assumed to have uncorrelated

variables yielding a diagonal matrix Σ with possibly different diagonal terms. We collect the

calculated similarities leading to a positive definite affinity matrix2 K ≻ 0 such that kij =

k(xi, xj). This matrix induces an undirected graph G = (X, K) over the set of pixels X and

with edge weights defined by equation (1).

The binary graph-cut problem is how to bipartition X into two balanced groups C = {C1,

C2}, such that the sum of the similarities between nodes in different groups is minimized.

2In this paper, the terms affinity and similarity are used interchangeably.
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One way of solving this NP-complete problem is by relaxing the discreteness and defining a

continuous cluster assignment vector f that can be estimated by eigen-decomposition of the

Laplacian matrix3  where D is the degree matrix whose i-th diagonal term is dii

= Σj kij. In order to discretize this solution, k-means clustering is usually used over the rows

of the partially estimated eigenvector matrix [22].

C. Affinity Propagation

In the method proposed by Lu and Carreira-Perpiñán [17], constraints are propagated

through pairwise affinities by assuming that f is a realization of a Gaussian process:

(2)

where the covariance, K, is the similarity matrix of the data. A pairwise constraint ωij

between two given pixels xi and xj, is either a must-link (ωij ∈ ) or a cannot-link (ωij ∈ ),

ensuring that the points are in the same or different clusters respectively. In the affinity

propagation technique [17], ωij is modeled probabilistically such that fi and fj tend to have

the same or different signs if ωij belongs to  or  respectively:

(3a)

(3b)

where fi is the i-th component of the continuous label vector,  denotes a Gaussian

distribution and variances  and  specify softness of our belief about the user’s

constraints (here for simplicity we assumed εm = εc = ε). Using (2) as the prior and (3a) or

(3b) as the likelihood function of the constraints, the posterior distribution over f given a set

of independent constraints Ω = ∪(i,j)ωij would also be a Gaussian:

(4)

where M(Ω) = M is a sparse matrix. Then the new affinity matrix would be the covariance

of the obtained posterior: K̄ = [K−1+M]−1 (for details see the original work [17] and

Appendix A). It can be verified easily that K̄ is also positive definite and therefore

invertible.

After computing K̄, the new degree matrix D̄ and consequently the updated Laplacian L̄ can

also be obtained and used to update the clustering result.

3More specifically, L, as defined above, is the normalized symmetric Laplacian matrix. According to Luxburg [18] there are other
forms of Laplacian as well.
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III. The Proposed Algorithm

Here we explain the main parts of our proposed algorithm, Active Constrained Spectral

Clustering. A pseudocode is shown in Figure 1. There are four subroutines in the main body

of the algorithm: (1) novelty selection (NS: line 1) for subsampling the data (see section III-

A1); (2) Spectral Clustering (SC: lines 3 and 18) (see section II-B); (3) nearest neighbors

(NN: lines 4 and 19) for generalizing labels from a subset of pixels to all the pixels and (4)

Edge-wise Active Learning (EAL: line 7) for querying a pair of edges (see section III-B).

The algorithm starts by subsampling the image and computing the initial similarity matrix

K0. This subsampling is carried out to control the computational complexity of the

iterations, as described below. Using K0 an initial segmentation result C ̃
0 will be obtained. If

the result is not satisfactory, the algorithm enters the while-loop (an interactive human-

computer active learning loop) on line 6. Within this loop, from line 7 to line 15, pairwise

queries are selected and appropriate constraints are generated accordingly. We discuss our

pairwise query selection method in the next subsection. Finally, the similarity matrix is

updated to Kt+1 (the same as K̄ in section II-B) on line 16 and the constrained segmentation

result C̃
t+1 is obtained. This procedure is iteratively repeated until it converges to the user’s

satisfaction.

In the remaining parts of this section, we first describe the computational methods employed

to speed-up the spectral core method. Then the learning accelerator component of our

algorithm is presented, that is the edge-wise active learning (EAL) subroutine.

A. Computational Speed-up Techniques

The algorithm described in section II-B is not practical to apply to large datasets, and in

particular to typical digital images. This is mainly due to the costly eigen-decomposition of

the Laplacian matrix. As mentioned before, there are several ways of combating this

problem. In this work, we joined two approaches: (1) subsampling the data and (2) efficient

numerical eigen-decomposition of the Laplacian matrix. These two methods are described in

the following two sub-sections:

1) Sub-sampling—We simply reduce the size of the similarity matrix by subsampling the

data, while trying to preserve as much information as possible. Novelty selection, introduced

by Paiva and Tasdizen [26], is a greedy sampling approach aiming to select samples with

low redundancy.

Suppose  is the feature set of all the pixels in the image. We start from an empty

subsample set, add the first point x̃1 and go through the remaining data points one by one.

Each time, the minimum Euclidean distance between a candidate point and the already

selected samples is computed and compared with a pre-specified threshold δ. The point will

be added to the sample set only if the minimum distance is larger than δ, otherwise its

nearest neighbor among the selected samples will be stored. Therefore the denser a region is,

the more samples are generated around that area. Clearly for homogeneous regions the

algorithm is equivalent to uniform sampling. For the rest of the paper, we denote X as the set

of selected samples using this technique and also assume that |X| = n. Note that this
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technique has the computational complexity of O(nñ).Our segmentation algorithm runs on X

to get a sparse set of labels C followed by generalization to the full set of labels C̃ by means

of Nearest Neighbors (NN).

2) Numerical Eigen-decomposition—Numerical approaches are widely used to scale

large eigen-decomposition problems. Orthogonal iteration4 is a generalization of the well-

known power method to estimating multiple eigenvectors associated with the largest

eigenvalues iteratively [10]. Specifically, since we work with two clusters, the goal is to

estimate an orthonormal basis for the dominant 2-dimensional invariant subspace of the

Laplacian L. Here we give a very brief description of the algorithm; more details together

with pseudo-code are provided in Appendix B.

The algorithm is initialized with two orthonormal vectors. The following iterations can be

summarized in two steps: the result of the last iteration is left-multiplied by Lq where q ≥ 1

is an integer parameter chosen according to the structure of L. Then we orthonormalize the

resulting vectors using a Gram-Schmidt process. Iterations of this procedure have been

shown to converge to the true dominant eigenvectors if the second and third eigenvalues are

not equal. In Appendix B, we show that the number of operations required for this algorithm

is linear with respect to n, and therefore it runs faster than the Lanczos and Nystrom

methods mentioned earlier.

B. Edge-wise Active Learning (EAL)

As described, the goal in active learning is to minimize the number of queries required to

obtain the desired segmentation outcome. We can achieve that by asking for feedback on

samples about whose cluster assignments we are most uncertain [29]. Specifically, the

sample with the largest uncertainty score is selected to be queried and correspondingly

constrained, with the hope of decreasing total uncertainty of the segmentation.

Since we work with pairwise constraints, our query selection strategy is over pairs of

samples or edges. This suggests linking a point with high uncertainty to another point with

low uncertainty (or high certainty) and asking if they should be linked. In order to avoid

being biased to the cluster of the high-confidence point, we also query the edge between the

uncertain point and a high-confidence point in the other cluster.

Let us now clarify the notation used in Figure 1. Each edge Q connecting the points q1 and

q2 is denoted by a set comprised of its end-points: Q = {q1, q2}. ωQ indicates the edge label

over Q provided by the user: 1 if Q is specified as a must-link and −1 otherwise. Our active

learning strategy aims to generate two edges Q1 = {q0, q1} and Q2 = {q0, q2} where the

central point q0 has low confidence, whereas the other two points are highly certain samples

assigned to different clusters.

The standard measure of uncertainty is entropy, which requires us to construct a

probabilistic model for each cluster:

4also known as subspace or staircase iteration.
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Probabilistic Modeling of the Clusters—To compute the assignment entropy at a

given sample x ∈ X, we need to estimate the posterior probability that a sample belongs to a

certain cluster given its features. Note that the posterior probability is computed based on a

given clustering result C = {C1, C2}

(5)

The likelihood function p(x|x ∈ Ci) for each cluster i = 1, 2 can be estimated using kernel

density estimation (KDE):

(6a)

(6b)

where k is the same kernel function as in (1). The class priors can also be computed

empirically (P(x ∈ Ci) = P(Ci) = |Ci|/n, i = 1, 2), which results in the following class

posterior probabilities:

(7)

Note that in equations (5) and (7), , the evidence, is just a

normalization constant. Figure 2 gives a simple 2-dimensional example used to illustrate the

probabilistic concepts introduced here and also later in section III-B. In the first row, Figure

2a shows synthetic data generated by a mixture of three Gaussian components. The samples

are colored according to the true clusters and displayed on top of the marginal density

contours. Figures 2b and 2c show the two clusters resulting from an unconstrained spectral

clustering, each of which is shown over its own posterior distribution contours computed by

(7).

Finally the posterior entropy can be obtained using Shannon’s definition:

(8)

One problem is that entropy-based querying is not robust to low-evidence points (outliers),

which does not lead to maximal affinity propagation (discussed in section IV-A). This fact is

illustrated in figure 2d where the result of unconstrained spectral clustering is shown

together with the contours of its posterior entropy. As can be seen, the entropy is

independent of the evidence and is large everywhere close to the boundary between the

Sourati et al. Page 8

IEEE Trans Image Process. Author manuscript; available in PMC 2014 July 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



clusters. Indeed, in this specific example, maximum entropy occurred in a low-evidence

region.

Density-Weighted Entropy—One solution is to weight the entropies by marginal

distributions to get a density-weighted scoring metric [29]:

(9)

where h(x) is defined in equation (8). The uncertain point q0 is selected by maximizing ϕ(x),

which selects points with both high uncertainty and high evidence, and thus ignores outliers.

Figure 2e shows contours of ϕ for our example, where the sample with the largest value is

located in a crowded region close to the boundary.

Inverse-Density-Weighted Entropy—Similarly, using entropy by itself to find the high

confidence end-points would suffer from outlier vulnerability (observe in Figure 2d that

minimum entropy happens in low-density tails of each cluster). Again a weighting technique

is used to make the metric more robust, but since here we encounter a minimization

problem, we define an inverse-density-weighted entropy:

(10)

The behavior of this function is shown for our toy example in Figure 2f, where contours of

ψ(x) are shown on a logarithmic scale. It can be observed that the lowest values occur in

low-entropy high-density regions.

We chose the confident points to be the closest ones to q0 in a pool of samples with

sufficiently high ψ (line 5 in EAL). Thresholding parameters are tuned based on statistical

information about each cluster (line 3 in Figure 1). In Figure 2f, the encircled points are q1

and q2 selected with respect to q0 displayed in Figure 2e.

Finally, the edges Q1 and Q2 can be viewed as edges of an incomplete triangle. Label of the

third edge Q3 can be easily inferred in a binary clustering (lines 9 through 15). By adding

this additional label to the collection of constraints, the current iteration of query generation

finishes.

The generated pairwise queries Q1, Q2 and Q3 are then labeled and used to update the

similarity matrix by affinity propagation described in section II-C.

IV. Experimental Results

In this section, first we present some details about algorithm implementation, and then

describe its performance as evaluated using the Berkeley segmentation dataset. We also
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report specifically on evaluation of our active learning strategy by comparing it to four

different strategies.

A. Implementation Details

Some practical points regarding the affinity update process are discussed here. To analyze

this process theoretically, we consider only one constraint ωij for simplicity. We rewrite the

update equation in a linear form (using the matrix inversion lemma and after some

simplifications) so that K̄ = KT(ωij). The transformation matrix T(ωij) can be described

columnwise as:

(11)

where

Equation (11) implies that each column of the updated matrix is a modification of the

corresponding column in the original affinity matrix. This modification is minimal for

regions far away from xi and xj. Also observe that as ε grows, θt and hence the impact of the

constraints, decreases.

The update shown in (11) suffers from the fact that there is no upper bound on the value of

the modifications. As a result they may violate two key properties of the Gaussian

assumption on the affinities in K̄; non-negativity of the elements, and the requirement that

self-similarities should be equal to unity and greater than or equal to cross-similarities. In Lu

and Carreira-Perpiñán’s work [17], a heuristic was introduced for shrinking all negative

updated elements to zero. Here, we also imposed a heuristic for projecting values larger than

one to unity. Specifically, we limit each element of the updated matrix k̄
ij between zero and

one as follows:

(12)

Another observation is that if both end-points of a constraint ωij are outliers, then the

updates would be too small (kit, kjt ≪ 1, ∀ t ∈ {1, …, n}−{i, j}). Even if only one end-point

is an outlier, the amount of propagation is limited. This is the reason why in our active

learning strategy we avoided choosing outliers.

B. Results on Berkeley Segmentation Dataset

In order to test the performance of our algorithm, we first applied it to the Berkeley

segmentation dataset [20]. We selected 55 images from both training and testing categories

based on the existence of a meaningful object in each selected image that was not trivial to
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cluster using our core method. We use the Rand Index (RI) with respect to the gold-standard

segmentation as a clustering metric:

with TP and TN true positive and true negative pixels with respect to the targeted object.

Note that although the tasks of constraining and clustering are performed over the

subsampled pixels, the accuracy is measured on the entire image.

To avoid subjectivity from a particular user and for ease of testing, we ran the evaluation

reported here in a fully automated mode. In particular we substituted a perfect oracle for the

user, represented by the program itself, which answered queries using the ground truth

segmentation. The while-loop in the main algorithm (Figure 1) was thus replaced by a for-

loop whose length was fixed to a sufficiently large number (here 500). After processing all

55 images we computed the average and standard deviation of RI across the images as a

function of iteration index. With the computational acceleration described earlier, the

algorithm ran quickly in MATLAB on a standard desktop with 12 GB of memory with no

further optimization beyond the eigen-decomposition method described above. Computed

time per iteration varied from 0.05 to 4 seconds with an average of 0.8 seconds and a

standard deviation of 0.65 seconds.

To minimize the effect of particular choice of features, we used a very simple pixel-wise

features, namely the spatial coordinates and the luminance intensities (d = 3), all normalized

to unit variance.

Throughout this section we used the following parameter values chosen empirically: the

threshold δ in the novelty selection algorithm was set to 0.2; the diagonal terms in Σ were

set to 0.25 for both spatial features (normalized x- and y-coordinates) and to 0.5 for

intensity; kernel values smaller than 5×10−2 were shrunk to zero; and γj = min Ψj, j = 1, 2 in

EAL. See Appendix B for details regarding the orthogonal iteration and the default values

used there.

A nice property of our constrained spectral clustering algorithm is that it allows

incorporation of the confidence of the labeler regarding the constraints they provide through

the softness parameter ε (see equations 3). In real-world scenarios, we expect that during

later stages of active learning, the labeler will be queried with more and more difficult edge

queries and hence would have less confidence in their provided constraints. Mimicking such

scenario, we introduce a dynamic parameter ε(t) where the labeler’s confidence diminishes

with iteration index t. In this section, we present experimental results for two settings: (1)

constant softness parameter, where we assume that the labeler/oracle confidence in their

constraint information is constant, and (2) dynamic softness parameter, where we assume

that the labeler’s confidence diminish with iteration.

1) Constant Softness Parameter—The softness parameter ε is fixed to a small

constant, 10−5. The mean and standard deviation of clustering accuracy measured for all
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iterations are shown in Figure 3a. We recall that each iteration of the algorithm queries two

edges, so that 500 iterations implies that 2×500 = 1000 edges have been labeled in total. The

average RI starts from about 55% for the unconstrained segmentation and at its peak (around

2×200 labeled queries) achieves about 90% accuracy.

It can be observed that after getting about 2 × 250 constraints the average accuracy gradually

starts decreasing. At the same time, the standard deviation also increased. This means that

continued imposition of even correct constraints may cause accuracy reduction. We are

observing a decrease in performance as labels are increased because at this point the

learning algorithm is over-fitting the constraints. An accuracy image is shown in Figure 3b,

which displays a matrix whose rows and columns correspond to RI of individual images and

iteration index respectively. A dark region on the left part of this figure means that the

unconstrained segmentation gives a poor result. Ideally the figure should uniformly get

brighter as we move towards the right. In contrast, although for most of the images (rows)

the accuracy is much higher than that at the start, as we scan to the right we see many black

spots and dark regions confirming that the aforementioned decrease in the average accuracy

is mainly due to sharp decreases in the accuracy of individual results after getting close to a

perfect segmentation. Figure 4 illustrates how over-fitting can occur. The transition between

the objects in natural images usually takes place smoothly. Consequently some object pixels

near the boundary can have intensities similar to nearby background pixels as shown in

Figure 4. At the same time, such pixels are the likeliest ones to be selected by EAL as the

most uncertain point, especially when the current segmentation result is nearly perfect.

Putting constraints in these cases can be misleading because it can easily push many

background pixels into the segmented object. Note that in real settings, because active

learning segmentation is interactive, the user will stop the iteration once almost perfect

segmentation is met, which would thus avoid the over-fitting issues that usually occur in

later iterations.

2) Dynamic Softness Parameter—In real interactive settings, the user can also

incorporate their uncertainty in their labels through the softness parameter ε. Because, we

are simulating the user labeling automatically, we make the softness parameter ε dynamic so

that it increases (reflecting diminishing confidence) according to some schedule. This

implies the algorithm will put less weight on the constraints as the iterations continue. Here

we use a linear schedule for the softness parameter of the algorithm (t = 0 corresponds to the

unconstrained initialization):

(13)

where ε0 is the minimum softness. We tried such linear schedules on the Berkeley dataset

with ε0 = 10−5 and different values for the slope m. According to Figure 5a, which shows the

average accuracies, using m = 10−4 yielded practically the same result as m = 0. Increasing

m to 10−3 reduced the decrease in the average accuracy to some degree while setting it equal

to 10−2 eliminated the decrease along with the fluctuations. Further increase in m caused the

algorithm to become saturated prematurely before reaching an acceptably high accuracy.

Figure 5b indicates that the value m = 10−2 outperformed others in terms of RI standard

deviation too. An accuracy map of individual images in the dynamic case is shown for m =
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10−2 in Figure 6, confirming the stabilizing effect of using a dynamic parameter. We

observed that incorporating a dynamic schedule makes our constrained spectral clustering

with active learning robust to over-fitting.

In order to investigate the generalization of the described dynamic algorithm, we ran it with

the same set of parameter values mentioned above and with the best schedule understood

from the results coming from the Berkeley data set (that is m = 10−2) on the Graz-02 image

dataset [19], [25], categories of Cars and People. We chose 80 images from each category

and applied our dynamic algorithm on them for 500 iterations. The resulting average and

standard deviation RI are shown in Figures 5c and 5d implying that the results are very

similar to what we got from the Berkeley data set.

Figure 7 shows the results on four individual images. The first and fourth rows show the

gray-scale original images and the RI accuracy plots. The dashed lines in the plots show the

iterations from which the results have been selected to be displayed in the other rows: the

second and fifth rows containing the static results, and the third and sixth rows showing the

dynamic results (where a linear schedule with m = 10−2 was used). The selected iterations

for all, except the child image are the same. They were chosen to show the initial, pre-

convergence and post-convergence cases. In the first image, they were chosen such that the

second phase coincides with a valley and the third happened before a permanent break in the

static case.

Since the feature set used here is not descriptive enough, the initial unconstrained

segmentations are far from the desired result, but, as expected, constraining them increases

the accuracy. We observe that there are sharp valleys in the accuracy plots, especially in

static cases. The valleys usually occur after convergence. In real settings, users would have

terminated the iterations before they occur because they would have been already satisfied

with the segmentation (see the plots in 7d, 7j, 7l). But some valleys occur in earlier iterations

(see figure 7b). The algorithm was able to recover to high accuracy from these values most

of the time.

In Figure 7 we can see that the boundary of clusters are not smooth and sometimes small

isolated components appeared. These are the effects of generalization of the cluster

assignments from a sparse set of labels to the full set that contains all the pixels. By

decreasing the sampling threshold δ we may reduce this sampling effect at the expense of

higher computational complexity.

Finally, as Figure 6 implies, for a few images the algorithm did not converge to high

accuracy in 500 iterations even when using dynamic softness. An example of such a failure

is shown in Figure 8. This is likely caused when the features are too naive (note that we are

only using intensity and the x, y location as features), thoroughly mixing up the clusters, so

that restoring a small portion of all possible pairwise constraints to correct assignments

cannot help discriminate the clusters [15].
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C. Active Learning Evaluation

We evaluated our active learning strategy against four different scenarios explained below.

The first three applies active learning strategies based on three simulated users (cases (i), (ii)

and (iii)) and the segmentation is learned via our constrained spectral clustering approach.

The fourth one is an alternative active learning strategy and constrained clustering proposed

by Wang and Davidson [32] (case (iv)).

i. Random query selection: the query points q0, q1 and q2 are chosen randomly from

the samples.

ii. Object-oriented query selection: we simulate a smarter user who looks at the

structure of the target object. Specifically, the user starts by putting cannot-links

between interior and exterior points that are located close to the object’s border,

and gradually moves to points further from the borders. Interior and exterior points

themselves are must-linked separately.

iii. Boundary-oriented query selection: We simulate another user behaving similar to

our active learning strategy. The central point q0 is chosen randomly as a pixel on

the current segmentation boundary and the other end-points, q1 and q2, are selected

randomly from within a ball of a specific radius around q0.

iv. Wang and Davidson’s method [32]: Their active learning strategy selects the best

edge to query that minimizes the expected error. To perform constrained spectral

clustering, they add must-links and cannot-links as additional constraints to the

spectral clustering optimization formulation. All the parameters in this algorithm

here are set to the recommended values given in the original work [32].

Cases (i), (ii) and (iii) are compared in Figure 9 against EAL in both static and dynamic

modes. It shows that random querying increased the accuracy more slowly compared to our

method, EAL, and also did not achieve the same accuracy. The object-oriented strategy

improved the accuracy as rapidly as EAL during the first iterations, but totally failed before

convergence. Note that for the images with small target objects, the number of possible

constraints with this strategy was less than 2 × 500. Also querying based on (iii) produced

very slow improvement in terms of the average RI.

The active learning strategy in (iv) uses a different base constrained clustering algorithm.

The numerical acceleration technique described in III-A2 cannot be directly applied to their

method and therefore it is not computationally cheap enough to be applied to the same data

used in the last section (obtained using δ = 0.2). Therefore we increased the sampling

threshold to δ = 0.5 in order to reduce the number of samples and used it for comparison.

The results are illustrated in Figures 10a and 10b. Note that in order to make Wang and

Davidson’s algorithm comparable to ours we queried two pair-wise edges at each of its

iterations. While our algorithm behaved similar to the case when δ was 0.2, the alternative

active spectral clustering method increased the accuracy in early iterations but then failed to

consider efficiently further constraints. This method was designed for general data and not

ready for scaling to large data, such as images, unlike our method, EAL. Furthermore, [32]

optimizes for expected error. Note that in images, typically there are more background

pixels than foreground. We noticed empirically that the results of their algorithm tend to
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converge to unbalanced segmentations (see the individual segmentation example in Figure

10c for the old woman image shown in Figure 7i). Correctly classifying background tends to

reduce the error. We investigated and found that their active learning strategy tends to select

edge queries in the background region, rather than querying foreground or boundary

information, leading to poorer segmentation performance. Our proposed active learning

strategy, on the other hand, optimizes for uncertainty. This tends to pick points on image

boundaries, which is important for image segmentation.

Since the cases (i), (ii) and (iii) all use our constrained clustering approach, their average

running time for individual iterations are similar, removing the need for any comparison.

Figure 10d shows that the average running time for case (iv) is almost twice as large as our

algorithm in all iterations. This illustrates the speed improvement effect of our fast

numerical eigen-decomposition.

V. Limitations

There are shortcomings that we did not eliminate in this work and which need further

research. The major drawback of the algorithm is that it does not guarantee that all the

constraints are satisfied. More specifically, the algorithm tends to strictly satisfy the most

recent constraints and “forget” the earlier ones. If the algorithm could recall previous

constraints, the instabilities we have observed would be less probable. One possible solution

to this shortcoming is to re-emphasize the constraints while discretizing the labels in the

spectral space (for example by doing constrained k-means [1]).

Another issue is related to the stabilization of the algorithm along the iterations (see section

IV-B2): it is not always possible to design an efficient schedule for ε(t) automatically if

labelers do not indicate their confidence in labeling.

Finally, we have used heuristics in order to restore some of the key characteristics of the

updated affinity matrix K̄. Post-processing K̄ in equation (12) might weaken the effect of

constraints by eliminating the information hidden in truncated values. An elegant solution

could be obtained by defining a subspace of similarity matrices and projecting the updated

affinity onto this group; however this is not a straightforward procedure. Klein et. al [15]

post-processed the modified affinity matrix by computing the all-pair-shortest-paths using

the updated values and substituting the result into the new matrix. This technique was useful

for re-establishing the missing triangle inequality but cannot cope with negativity.

VI. Conclusion and Future Work

This work addresses the problem of constrained unsupervised segmentation. We have built a

framework based on constrained spectral clustering with affinity propagation proposed by

Lu and Carreira-Perpinán [17] to incorporate pairwise constraints in the form of must- or

cannot-links. The main purpose is to accelerate the convergence to the user’s desirable

segmentation by both directly reducing computational costs and also choosing edge queries

between the most effective pairs of pixels. The former is performed by subsampling the

input image and employing a numerical method to do the eigen-decomposition needed in

spectral clustering, and the latter is addressed by devising an edge-wise active learning
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(EAL) technique to propose edge queries which will have the largest impact on the total

uncertainty about the clustering assignment.

Performance of the algorithm is evaluated using 55 general images selected from the

Berkeley segmentation dataset. The results showed that starting from a very poor, close to

random unconstrained segmentation, the algorithm could approach the gold standard

segmentation reasonably fast in comparison with random query selection and other

simulated strategies. The major shortcomings of the algorithm include its violation of earlier

constraints and instability along iterations. One reasonably effective solution developed to

cope with the latter was to set up a monotonically increasing schedule for the softness

parameter of the algorithm. This dynamic algorithm is also tested on two alternative data

sets containing 80 images from the Cars and People categories of Graz-02 data set.

Our major future direction towards designing a constrained segmentation method will be on

developing an algorithm with fewer heuristics while addressing the aforementioned

shortcomings. Furthermore, there are other challenging issues to work on, such as batch-

mode active learning, noisy oracles, and including variable labeling cost.
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Appendix A. Affinity Update

The basic derivations of the affinity matrix update can be found in [17]. Here we give a

more detailed explanation of them.

For a constraint set Ω = ∪ (i,j) ωij, the non-zero elements of the sparse matrix M = M(Ω)

appeared in (4), are as follows:

where the plus and minus signs in the off-diagonal terms are associated with cannot- and

must-links respectively. This characterization implies that M(Ω) = Σωij∈ΩM(ωij). Therefore

the update equation for Ω can be written as a sequential updates for the individual

constraints:

where we associate each individual constraint with an index between 1 and |Ω|. Here we

focus on one of the individual updates for a given ωij. From the structure of M(ωij), it is

clear that there exists a permutation matrix such as P ∈ {0, 1}n×n that can make it block

diagonal:

where . Also define
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Now we show that if the update equation is written in terms of Mp and Kp, K̄ can be

computed efficiently. To do this, first we define K̄
p and relate it to K̄:

In this derivation, we used the orthogonality of permutation matrices (PTP = PPT = In).

Using the Woodbury inversion identity, we can expand the equation for K̄
p as:

(14)

Now it’s easy to verify the following key point regarding the inversion that appeared in the

expanded format:

Plugging this result into equation (14) for computing K̄
p yields:

The inversion here operates on a 2 × 2 matrix, and hence is straightforward to compute.

Note that the condition number of this matrix for a given constraint ωij is proportional to

 (plus when ωij ∈  and minus when ωij ∈ ). So one should be careful not to

make ε2 too small such that the machine precision cannot handle inverting this ill-

conditioned matrix. Moreover, the left and right matrix products, plus the necessary

permutations for getting back to K̄ have the complexity of O(n), therefore the whole update

can be done with O(n) operations.

Appendix B. Orthogonal Iteration

The eigendecomposition process is the main bottleneck in scaling up spectral clustering.

Accurate estimation of all eigenvalues of L is very time consuming (O(n3)) and often not

practical, especially when working with images. We employed the so-called orthogonal

iteration method to numerically estimate the first two eigenvectors. This algorithm along

with its extensions are discussed in many sources such as [10], [28]. Here we explain it in

terms of our notations.

For any estimated eigenpair (v̂, λ̂) of a symmetric matrix L, where λ̂ is computed using the

Rayleigh quotient, i.e. λ̂ = v̂TLv̂/v̂T v̂, the residual vector is defined as:
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(15)

Provided that ||v̂||2 = 1 the eigenvalue estimation error is upper-bounded as below [28]:

(16)

Therefore the 2-norm of the residual vector can be used as a stopping criterion in iterative

eigen-decomposition methods.

Figure 11 shows different steps in orthogonal iteration. Except for the initialization step

(lines 1 through 3), each iteration (lines 4 to the end) consists of two phases: (1) updating the

estimations and (2) computing the 2-norm of the residuals.

The algorithm is initialized by a random orthonormal matrix V̂
0 ∈ ℝn×2. At each iteration τ

= 0, …, τmax, in the first phase, either one or both columns of V̂
τ are left-multiplied by the

q’th power of L followed by orthonormalization to get V̂
τ+1 (CO in lines 7 and 9 stands for

column-orthonormalization). In our implementation we empirically fix q to 100. In the

second phase, the Rayleigh quotient for each column of V̂
τ+1 is computed (line 11) followed

by calculating the residuals rτ+11 and rτ+12 as defined in (15) and forming the residual

matrix Rτ+1. Finally computing the 2-norm of the residuals specifies if any of the iterating

vectors has converged, so that it can stay fixed. The initialization only consists of phase (2)

applied over the initial matrix V̂
0.

Let us start from the second phase (lines 1–3 and 11–13). First, it implements equation (15)

and then creates an indicator vector uτ+1 of length two whose components indicate whether

the 2-norm of each individual column of Rτ+1 is greater than a pre-specified threshold ρ

(fixed to 10−5 in our implementation). There are three possibilities for the element wise

summation of this vector:

1.  meaning that none of the columns in V̂
τ+1 has converged and both of

them will be updated during phase (1) of the next iteration (line 7, both columns of

the estimation multiplied by Lq).

2.  meaning that only one of the vectors has not yet converged, thus the

algorithm keeps iterating on that, fixing the other one (line 9: just one column of

the estimation multiplied by Lq).

3. meaning that both vectors have already converged, so that the loop can

be terminated.

The convergence rate can be shown to be proportional to  which is small when the data

has two well-separated partitions. Moreover, the major operations of each iteration consist

of the matrix-vector product and the orthonormalization process for which Gram-Schmidt

algorithm is used. Since the input matrix is sparse, the product Lq V̂
τ+1 has the complexity

of order O(nq). Performing Gram-Schmidt process on the product result with size n ×2 takes
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O(n) operations [10]. Therefore complexity of the whole algorithm will be O(τmax.n(q + 1))

which is linear with respect to n.
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Fig. 1.
The main algorithm and subroutine EAL explained in section III
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Fig. 2.
Illustrating probabilistic concepts of our approach: (a) three Gaussian components with

different means and equal covariances used to generate the points that are displayed over

contours of their marginal distribution. The points in each desired (gold-standard) cluster are

shown in a different color and shapes; (b,c) the resulting groups after doing an unconstrained

spectral clustering lying on contours of their corresponding posterior distribution; (d) the

resulting groups shown together over contours of the posterior entropy h, with the encircled

point as the one with the largest h; (e) the resulting groups over contours of the density

weighted entropy ϕ, with the encircled point as the one with maximum ϕ (i.e. q0); (f) the

resulting groups over contours of the inverse-density weighted entropy ψ, with the encircled

points having the minimum ψ and shortest distance to q0 in each cluster (i.e. q1 and q2).
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Fig. 3.
Results of running the algorithm with constant ε: (a) average and std RI versus different

number of constraints; (b) the accuracy image: RI of segmenting individual images versus

the iteration index
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Fig. 4.
Illustration of a potential reason for fluctuating results. Blue and red pixels form two clusters

and the thick dark blue boundary separates the correct segments. (a) The segmentation result

at iteration t which is close to the ground-truth together with the constraints Ωt+1 including a

must- (Solid edge) and cannot-link (dashed line). Observe that the central point q0 is an

object pixel with features very similar to background. (b) The results after applying Ωt+1.

Notice that many background pixels have been pushed into the object cluster and the

accuracy is reduced RI(t)>RI(t + 1).
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Fig. 5.
(a) Average and (b) standard deviation RI of trying different values for m in equation (13)

(m = 10−4, 10−3, 10−2 and 10−1); average RI obtained by running the dynamic algorithm

with m = 10−2 over (c) Cars and (d) People categories of INRIA image data set.
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Fig. 6.
RI measurements for segmentation of individual images while using dynamic softness with

a linear schedule and m = 10−2.
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Fig. 7.
Segmentation results of some iterations on four individual images: the first and fourth rows

indicate the original gray-value images together with their corresponding RI plot for all

iterations. The blue lines over these plots show the iterations whose results are selected to be

displayed in other rows. The second and fifth rows show the static results, and the dynamic

results are in the third and sixth rows.
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Fig. 8.
One of the few images for which the algorithm failed to converge to a high accuracy.
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Fig. 9.
Comparing EAL ran with static affinity propagation (ε = 10−5) with three different query

selection scenarios described as cases (i), (ii), (iii) in section IV-C, all of which ran with the

sampling factor δ = 0.2.
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Fig. 10.
(a,b) the average and std RI of EAL and Wang and Davidson’s algorithm on a smaller

dataset obtained by using δ = 0.5; (c) the segmentation result of Wang and Davidson’s

algorithm [32] on the old woman image shown in Figure 7i picked from an iteration after

convergence. Observe that it has converged to an unbalanced segmentation with low

accuracy; (d) Average running time of Wang and Davidson’s constrained spectral clustering

[32] and our algorithm ran with constant ε = 10−5
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Fig. 11.
Orthogonal iteration subroutine used in Spectral Clustering (SC) to estimate eigenvectors

associated with the two largest eigenvalues of the Laplacian matrix.
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