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A'Reliable and Accurate Technique For
Modelling Complex Open Channel Flows

P A Sleigh?, P H Gaskell', M Berzins*

t Department of Mechanical Engineering,
t Department of Computer Studies,
University of Leeds,

Leeds, LS6 9JT, UK.

ABSTRACT It is shown that the solution of challenging, time-dependent hydraulic flow
problems can be achieved via the judicious application of a numerical algorithm com-
prised of state-of-the-art components. The governing equations are discretized using
a finite volume formulation consistent with triangular decomposition of the associ-
ated domains. Key features are: convective fluxes determined via the solution of local
Riemann problems; second order accurate spatio-temporal discretization; local error
estimates. Solutions to two problems, one naturally occurring the other man-made,
are presented which demonstrate effectively the width of applicability of the algorithm.
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1. Introduction

Rivers, estuaries and many other open channel flows can be modelled adequately
in terms of the shallow water equations, which can be written in two-dimensional form
as:

Ut+Ex+Gy=S(U), (1)
with U = [¢, du, ¢v]7 and
bu ov 0
E=| ¢u®+ %epz G= dbuy S=| 80(Sfx+Sox) |. )
duv oV + 367 80(Sfy+ Soy)
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where u, v are the velocities in the x, y directions respectively, ¢ = gh, h is the
- depth, g is the acceleration due to gravity; o,y and Sf,,, are x/y bed and friction
slopes. The latter is found using either the Manning or (equivalent) De Chezy formys
lae.

Accordingly, considerable effort has been expended in recent years on obtaining
accurate numerical solution to (1), see for example Toro[TOR 92] and Tan [TAN 92].
However, there has been very little corresponding progress in evolving an approach
which integrates such ideas into a practically applicable solution algorithm. Those
which do exist are usually centred around a rectangular grid system and embody tra-
ditional solution and discretization schemes which may lack the required accuracy and
may be limited in range of capability [FAL 92]. A notable exception is the approach
adopted by Zhao et al [ZHA 96] who integrated the latest shock capturing methods
into a complete, albeit first order accurate, river model.

The present work brings together many of the latest numerical and computational
techniques with a view to providing a satisfactory answer to the above, and employs
the following key components:

¢ a finite volume formulation, the unstructured computational grid for which is
generated automatically by triangular decomposition of the region of interest;
any associated digital bathymetry data is similarly interpolated automatically;

e the use of an appropriate Riemann solver to calculate inter-cell convective fluxes
together with an associated flux limiter which is monotonicity preserving;

* 2nd order accurate spatial and temporal discretization and efficient solution of
the associated algebraic equation set via SPRINT2D;

o the flexibility to specify general boundary conditions, including the capacity to
handle wetting and drying characteristics.[SLE 96]

The test problems to be investigated are: i) coastal flow around a Pacific island; ii)
flow through a complex recreational water facility.

2. Algorithmic Formulation
A cell centred finite volume method is formulated by integrating equations (1) over
a triangular shaped control volume, representing the dependent variables of the system

as piecewise constants associated with the centroid. Integrating equations (1) over the
ith triangle, say, gives:

/A | %—[I]dQ - /A S)da= - /A (B +G(U),)d0 3

whére.A,- is the area of the triangle and Q is the integration variable defined on A;. T.hc
integrals on the left are evaluated via a one-point quadrature rule — the quadrature point

=0
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gh, histhe = | being the centroid of the triangle, with velocity U;. Using the divergence theorem, the
and friction =+ & area integral on the right can be written as a line integral along the boundary:
hezy formy- == &

o A-% = —}{ F,(U)dS+AiS(U) )]
on obtaining tor U l
n[TAN92), = . . . . o . .
an approach where I is the periphery of the triangle and § is the associated integration variable.

thm. Those Using a mid-point quadrature rule to approximate the integral enables the flux at the
ok mid-point of each side of the triangle to be written as:

embody tra- :

ccuracy and : U, 1

he approach R 3 ==F (Fu(U)ik-lik + Fa(U)ijlij+ Fu(U)ir 1) + S(U), (5)
ng methods 3 '

: where ij represents a common edge, of length /;;, of two triangles with associated
mputational . velocities U; and U, and F,(U);; the flux (from the triangle associated with U;) in the
nd employs i outward normal direction, evaluated at the mid-point of this edge. These are defined

' similarly for sides ik and il. [BER 95, SLE 96]
or which is The unstructured triangular meshes used to perform the computations were gen-
L= erated using public domain software, GEOMPACK [JOE 91}, which was found to
of interest; 5 ) , . . . .
matically; prodqce consistently smgoth meshes _w1th an outline of the dgmam and a triangle

: ‘quality value’ only needing to be specified. An added feature is that GEOMPACK
ctive fluxes ] also allows the mesh to be distributed as required via a function defining a weight be-
rving; tween O and 1 at any point in the domain. Hence the mesh density can be conveniently

_ increased in regions having known geometric complexity, interesting flow features or

solution of high levels of error.
A feature of equations (1) which is extremely useful is that they are rotationally
capacity (o invariant enabling the use of one-dimensional solution schemes based on a local co-
ordinate system, (X, ¥) say, centred at the mid-point of a cell face. In which case the
; solution to:
> island; ii) -' Ui+ (E(U)), =0, (6)

where E(U) = [duy, duZ + %q)z, dunue]T is transformed back to the global coordinate
system giving the flux, F,(U), at each face in equation (5).

The evaluation of the normal flux, equation (5), is posed as a series of Riemann
problems, local to the lines which make up the triangular mesh. Each one is an ini-
tial value problem with discontinuous conditions on either side of the line, the ap-
proximate solution to which enables the correct flux value, E(U), in equation (6) to
be computed. Tan[TAN 92] and Toro[TOR 92] identify several suitable approximate
Riemann solvers. However, following a series of exhaustive one-dimensional tests
Roe’s solver was found to be the most robust.

Riemann solvers are also convenient in the context of boundary conditions, since
for a particular problem these can be applied by replacing one side of the Riemann
problem with a relationship describing the conditions at the boundary. It is solved in
the same way as those in the interior of the domain to obtain a flux across the boundary.

Second order accurate spatial discretization is achieved by writing, Berzins and

ns (1) over
‘the system
1) over the

3

on A;. The
ature point
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U = U0 (Uh-0)
Up = Uj'*'d’('fj)(Ui‘;—Ui)
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Ware[BER 95]:

M

where U; and UX are the internal and external linear upwind values; r/; and r}; are the

internal and external upwind bias ratios of gradients, defined as:
g Ul UG- ® *
YOUE-U T UR-py

where US is the linear centred value at the cell interface. < is a modified Van Leer

flux limiter and the values of U, U} and U are determined from a series of ope.
dimensional linear interpolations from a six-triangle stencil.[BER 95]

Time integration was carried out within the SPRINT2D environment using a ex-
plicit, Theta method in which the solution at time t,,; = 1, + K, where ¥ is the time

step, is written as:
‘_/(tn+l) b Z(tn) + (1 + G)KZ(tn) + 9KEN(’n+1;Z(tn+l)) (9)

where V(t,) and V(r,) is the numerical solution and its time derivative at the previous
time, ¢,, respectively. The value of 0 is constrained to lie in the range 0.5 < 6 <
1.0. However, its value was pre-set explicitly at 0.55. x is chosen to satisfy a local
error control which may reflect the spatial error present. The system of equations is
solved by functional iteration and it can be shown how an associated CFL type stability
condition is satisfied automatically if the functional iteration converges sufficiently
fast, [BER 95, SLE 96].

For each of the triangles which comprise the solution domain a local spatial error
estimate is made, based on the difference between solutions found with both a low
and high order interpolation scheme, for each equation. A scaled error is then com-
puted for each of them, using prescribed absolute and relative errors, as a means of
providing a measurement for use as suitable refinement indicator. This approach is
very flexible, and provides the basis from which to implement automatic grid refine-
ment/coarsening. An alternative approach, used here, is to make the necessary mesh
adjustments affected via the redistribution functions available within GEOMPACK.

3. Problem Specification and Results

First the flow in the shallow coastal waters around Rattray Island, which lies off
the north-east coast of Australia, is examined, The island is approximately 1.5km
long and 0.3km wide and inclined at 60° to the dominant tidal current; the mean local
depth is approximately 25m. Observers of the flow past this island have noted that
it is predominantly unidirectional with in a large eddy to the lee-ward side. Previ-
ous two-dimensional theoretical investigations [FAL 92] of the flow have shown good
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agreement with available field data, indicating that equations (1) constitute a suit-
able model. In line with previous numerical studies the flow domain and attendant
boundary conditions are shown in Figure 1 with the boundary data supplied from field

@) ' measurements. Slope friction is incorporated via the Manning formula with n = 0.025.
Osclllating Depth
d r{; are the A ¥ ;
; - 8.6 km _
1 v
® _ 0 _
3/ / &
2] & s
>d Van Leer 57] = 7 L/ =
ries of one- E; = 5 &
('S / / ('S
using a ex- 5 ;
18 the time /] /
/] /
A_Y /
©) Osclilating Velocity
he previous Figure 1. Domain Dimensions and Boundary Conditions.
05<6<
isfy a local }J Sample results after 24003 seconds have lapsed are shown if Figure 2 — to the left
quations is the mesh for the entire domain, to the right, close ups of the velocity field on the lee-
pe stability 1 ward side of the island. Looking from top to bottom it can be seen that with 986 cell
sufficiently { mesh only, two rather ill defined vortices exist downstream of the island. Although
: it is obvious visibly that this area requires a finer mesh, the same is indicated by the
vatial error : solution since the errors in this region were found to be higher. The middle figures
both a low show the result of increasing the total mesh density, in a regular sense, to 3983 cells.
then com- ‘ Resolution of the two vortices is now much better but there are far too many cells in
, means of _ regions of the flow where very little is happening for the required level of accuracy.
pproach is { The bottom figures demonstrates the effect of implementing the redistribution features
rid refine- s within GEOMPACK. Here a 2033 cell mesh is used to concentrate the majority of cells
sary mesh ] in the high error region. The two vortices remain as equally well defined as for the
APACK. middle mesh yet roughly half the number of cells have been used.
The second problem considered is that of flow in a prototype canoe slalom, see
Figure 3 - it is approximately 200m long having a flow rate typical of such large scale
facilities and equal to 10m3/s. Note how this domain contains islands which present
no additional difficulty for the mesh generation procedure.
ch lies off The boundary conditions are such that there is no flow across the containing walls;
o]y 1.5km the upstream flow rate is as specified above and at the downstream end a depth of 0.8m
rean local is prescribed. Figure 3 shows the course tessellated with 1335 triangular cells. This
oted that serves to illustrate both the complexity of the flow domain itself and the nature of the
e. Previ- triangular decomposition. Shown also are: (a) the steady-state velocity vectors in the
own good ) second pond obtained with the the above mesh; (b) the mesh covering the same pond
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Figure 2: Rattray Island — Meshes and Velocity Vector Diagrams
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obtained using 2323 tria :gles in total but weighted towards this region; (c) the corre-
. sponding velocity vectors obtained with the weighted mesh.

The two sets of velocity vectors are in accord and reveal an interesting flow pattern,
while the bulk of fluid follows a path straight through the pond, in doing so it generates
areverse flow along the entire length of ponds lowest branch, a large eddy in the upper
section and perhaps most interesting of all a small eddy in the neck of the second
branch. The resolution of detailed features such as these now offer the designers of
such recreational facilities a new tool in their search for the best possible design.
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