
Engineering Applications of Artificial Intelligence 129 (2024) 107615

A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Research paper

Deep neural operators as accurate surrogates for shape optimization
Khemraj Shukla a,1, Vivek Oommen a,1, Ahmad Peyvan a,1, Michael Penwarden b,1,
Nicholas Plewacki c, Luis Bravo c, Anindya Ghoshal c, Robert M. Kirby b,
George Em Karniadakis a,∗

a Brown University, Providence, RI, 02912, United States of America
b University of Utah, Salt Lake City, UT, 84112, United States of America
c Weapons and Materials Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 21005, United States of America

A R T I C L E I N F O

Keywords:
Neural operators
DeepONet
Airfoil shape optimization
Navier–Stokes equations
Surrogate models

A B S T R A C T

Deep neural operators, such as DeepONet, have changed the paradigm in high-dimensional nonlinear regres-
sion, paving the way for significant generalization and speed-up in computational engineering applications.
Here, we investigate the use of DeepONet to infer flow fields around unseen airfoils with the aim of shape
constrained optimization, an important design problem in aerodynamics that typically taxes computational
resources heavily. We present results that display little to no degradation in prediction accuracy while reducing
the online optimization cost by orders of magnitude. We consider NACA airfoils as a test case for our proposed
approach, as the four-digit parameterization can easily define their shape. We successfully optimize the
constrained NACA four-digit problem with respect to maximizing the lift-to-drag ratio and validate all results by
comparing them to a high-order CFD solver. We find that DeepONets have a low generalization error, making
them ideal for generating solutions of unseen shapes. Specifically, pressure, density, and velocity fields are
accurately inferred at a fraction of a second, hence enabling the use of general objective functions beyond
the maximization of the lift-to-drag ratio considered in the current work. Finally, we validate the ability of
DeepONet to handle a complex 3D waverider geometry at hypersonic flight by inferring shear stress and heat
flux distributions on its surface at unseen angles of attack. The main contribution of this paper is a modular
integrated design framework that uses an over-parametrized neural operator as a surrogate model with good
generalizability coupled seamlessly with multiple optimization solvers in a plug-and-play mode.
1. Introduction

Two types of neural network solvers for regression problems exist,
one for which the network learns the map between input data and
output data and the other where neural operators learn function-
to-function maps. In this paper, we consider the latter. This recent
paradigm shift in perspective, starting with the original paper on the
deep operator network or DeepONet (Lu et al., 2021, 2019), provides
a new modeling capability useful in engineering design — that is,
the ability to replace very complex and computational resource-taxing
multiphysics systems with neural operators that can provide functional
outputs in real-time. Specifically, unlike physics-informed neural net-
works (PINNs) (Raissi et al., 2019; Meng et al., 2023a) that require
optimization during training and testing, a DeepONet does not require
any optimization during inference; hence, it can be used in real-time
forecasting, including design, autonomy, control, etc. An architectural
diagram of a DeepONet with the commonly used nomenclature for its

∗ Corresponding author.
E-mail address: George_Karniadakis@Brown.edu (G.E. Karniadakis).

1 Equal contribution.

components is shown in Fig. 1. DeepONets can take a multi-fidelity
or multi-modal input (De et al., 2022; Howard et al., 2022; Lu et al.,
2022b; Jin et al., 2022; Zhu et al., 2022) in the branch network and can
use an independent network as the trunk, a network that represents
the output space, e.g., in space–time coordinates or parametric space
in a continuous fashion. In some sense, DeepONets can be used as
surrogates similarly to reduced order models (ROMs) (Hesthaven and
Ubbiali, 2018; Hesthaven et al., 2016; Benner et al., 2017; Williams
et al., 2015; Chiavazzo et al., 2014; Lieberman et al., 2010; Bui-Thanh
et al., 2008; Benner et al., 2015; Amsallem et al., 2015; Carlberg and
Farhat, 2008; Choi et al., 2020). However, unlike ROMs, they are over-
parametrized, which leads to both generalizability and robustness to
noise that is not possible with ROMs; see the recent work of Kontolati
et al. (2022).

In the present work, we investigate the possibility of using Deep-
ONets to represent functions over different solution domains, which
vailable online 30 November 2023
952-1976/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.engappai.2023.107615
Received 29 January 2023; Received in revised form 26 October 2023; Accepted 2
3 November 2023

https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
mailto:George_Karniadakis@Brown.edu
https://doi.org/10.1016/j.engappai.2023.107615
https://doi.org/10.1016/j.engappai.2023.107615
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.107615&domain=pdf

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Nomenclature

𝑚 Maximum camber in percentage of the chord
𝑝 Position of maximum camber in percentage of the

chord
𝑡 Maximum thickness of the airfoil in percentage of

the chord
𝜌 Non-dimensional density
𝑢 Non-dimensional velocity of the fluid in x direction
𝑣 Non-dimensional velocity of the fluid in y direction
𝑝 Non-dimensional pressure
𝑇 Non-dimensional temperature
 Output of the DeepONet model
𝜃𝑏 Set of all trainable weights and biases of the branch

network
𝜃𝑡 Set of all trainable weights and biases of the trunk

network
𝑁𝜙 Number of basis functions learned by the DeepONet
𝜏𝑖𝑗 Components of viscous stress tensors
𝑓 Generalized input function to the DeepONet
𝜉𝑔 Geometric parameter
𝑐 Chord length
𝑀𝑎 Mach number
𝜉𝑓 Flow parameter
𝑅𝑒 Reynolds number
𝑃𝑟 Prandtl number
𝜶 Output of the branch network
𝝓 Output of the trunk network
𝜏𝑤 Wall Shear Stress
𝐿 Lift
𝐷 Drag
⃖⃗𝑛 Unit Normal
�⃗� Unit Tangent

has not been explored before. In particular, we focus on aerodynamic
design by considering the classical problem of optimizing the shape of
an airfoil at subsonic flow conditions. Aerodynamic shape optimization
(ASO) of airfoils plays a vital role in the design of efficient modern
commercial aircraft. The aerodynamic geometric optimization process
is usually applied to the airfoil shape that forms the cross sections of
the three-dimensional (3D) airfoil. Constrained geometric optimiza-
tion is performed to reduce the drag force while increasing the lift
to enhance the aircraft’s fuel efficiency, reducing the transportation
cost. The constrained optimization process often requires a numerical
model that predicts the flow field around a given airfoil subject to
geometric constraints and computes the lift and drag for desired flow
conditions. Traditionally, the numerical models are compressible flow
numerical solvers, which are computationally intensive to realize the
flow field around a complex airfoil accurately. Surrogate models can be
introduced to circumvent the time-consuming part of the optimization
loop where the numerical solver calculates aerodynamic forces.

ASO traditionally uses two main paradigms: gradient-based and
gradient-free optimization approaches. The gradient-based approaches
require calculating the cost function derivative with respect to the de-
sign variables. When the number of design variables exceeds a certain
threshold, the gradient-based optimization becomes infeasible due to its
expensive computational cost (Yu et al., 2018). The adjoint formulation
is derived from either the Euler or Navier–Stokes equations to make
the gradient optimization independent of the design variables (Reuther
et al., 1996; Carpentieri et al., 2007; Nadarajah and Jameson, 2001;
Srinath and Mittal, 2010). Solving the adjoint equations can be as time-
2

consuming as solving the governing equations (i.e., the rule of thumb
is that forward and adjoint solutions taken together are at least twice
the cost of the forward solver). Also, the optimization process can
fall into a local minima leading to a non-optimized geometry (Cher-
nukhin and Zingg, 2013). Gradient-free approaches (Li et al., 2019;
Wu et al., 2022; Yıldız et al., 2022; Aye et al., 2019; Kumar et al.,
2023; Anosri et al., 2023; Meng et al., 2023b; Yıldız et al., 2022) can
avoid local minima by employing the direct optimization approach that
uses many costly numerical simulations. The numerous simulations of
the flow can help achieve the global minimum of the cost function
at the expense of high computational costs. Surrogate models can be
deployed to realize the flow field with acceptable accuracy and an
immense speedup compared to the full CFD simulations. The surrogate
model can then be used in a gradient-based or a gradient-free global
optimization process. The surrogate-based models are usually coupled
with gradient-free optimizations such as genetic algorithm and particle
swarms optimization (PSO) (Eberhart and Kennedy, 1995) methods.
Krige (1951) proposed the Kriging surrogate model that is employed
in aerospace design experiments (Liu et al., 2017; Li et al., 2019). The
Kriging surrogate model must be trained both before and during the
optimization process since the surrogate model is usually inaccurate
when based solely on the initial training. High generalization error of
the Kriging surrogate model results in inaccurate model prediction at
the initial training stage. As proposed in this work, a deep operator
network (DeepONet) can alleviate this issue since it maps a function to
another function, significantly improving the generalization error (Lu
et al., 2021).

The parameterization of the geometry drastically affects ASO’s com-
putational cost and accuracy. Parameterizing the geometry reduces the
number of design variables the optimization algorithm must search.
Reducing the number of design variables simplifies the optimization
process, as well as the constraints imposed by the user, and de-
creases the sensitivity to noise. The parametric model must reproduce
a wide range of airfoil shapes and keep the number of design variables
minimal. Various geometric parametric models have been employed
for ASO. Carpentieri et al. (2007) employed orthogonal Chebyshev
polynomials to construct the airfoil curves. An orthogonal polyno-
mial is used to cover the entire design space. Lepine et al. (2001)
used Non-Uniform Rational Basis Spline (NURBS) to parameterize a
large class of airfoil shapes by only using 13 control points. Follow-
ing the Lepine et al. (2001) idea, Srinath and Mittal (2010) also
employed NURBS for the parameterization. Other researchers have
used B-Spline (Wang et al., 2019), and Bezier (Papadimitriou and
Papadimitriou, 2016) curves, Hicks and Henn’s functions (Hicks and
Henne, 1978) for airfoil shape construction. Painchaud-Ouellet et al.
(2006) used NURBS for the shape optimization of an airfoil within
transonic regimes. They showed that using NURBS ensures the regu-
larity of the airfoil shape. The airfoil shape can also be constructed
using a deformation method (Hicks and Henne, 1978). This method
adds a linear combination of bumps to a baseline airfoil shape for
parameterization (Chen and Fidkowski, 2017; He et al., 2019). The
Class function/shape function Transformation (CST) approach (Wu
et al., 2019) employs Bernstein polynomials (Akram and Kim, 2021)
to parameterize airfoils and other aerodynamic geometries. Other re-
searchers employed proper orthogonal decomposition (POD) (Wu et al.,
2019) to reduce the number of design variables. In the current study,
we employ the NACA 4-digit airfoil and NURBS parameterizations for
the airfoil shape construction.

With the significant advancement in computational power, Deep
Neural Network (DNN) tools have gained much attention for serving
as accurate surrogate models in a broad spectrum of scientific disci-
plines (Zhang et al., 2021; Zhiwei et al., 2020; Renganathan et al.,
2021). In prior work, robust neural network-based algorithms for time-
series classifications were developed (Xing et al., 2022; Xiao et al.,
2021). Neural network models are also employed for diagnosing bear-
ing faults (Mishra et al., 2022c,b,a). The DNN approach can be readily

trained for numerous input design variables to predict the cost function

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Fig. 1. A schematic representation of a DeepONet that is trained to learn the mapping from the input function 𝑓 to the output function (𝑓)(𝑦), evaluated at 𝑦. DeepOnet consists
of a branch and a trunk network.
of the optimization loop. Du et al. (2021) trained a feed-forward DNN
to receive airfoil shapes and predict drag and lift coefficients. They also
used RNN models for estimating the pressure coefficient. The optimal
airfoil design determined using the surrogate model was compared
with an airfoil design obtained with a CFD-based optimization pro-
cess (Du et al., 2021). Hao et al. (2023) provides a comparative study
of neural operator learning methods for flow field prediction around
airfoils. Liao et al. (2021) designed a surrogate model using a multi-
fidelity Convolutional Neural Network (CNN) with transfer learning.
This learning method transfers the information learned in a specific
domain to a similar field. The low-fidelity samples are taken as the
source, and the high-fidelity ones are assigned as targets. Tao and
Sun (2019) introduced a Deep Belief Network (DBN) to be trained
with low-fidelity data. The trained DBN was later combined with high-
fidelity data using regression to create a surrogate model for shape
optimization. Existing surrogate models for shape optimization are all
trained to predict lift, drag, or pressure coefficients. For example, Zhao
et al. (2023) uses a DeepONet to learn the mapping from iced airfoil
geometries to their aerodynamic coefficients. In contrast, the flow field
around the aerodynamic shape is not inferred. Prior works have also
investigated the capabilities and limitations of the different neural
operators in various benchmark cases in Lu et al. (2022a). The recent
Geo-FNO (Li et al., 2022) and CORAL (Serrano et al., 2023) propose
neural operator-based models capable of learning solutions of PDEs on
general geometries. However, both these works ignore the contribution
of the viscous forces while computing the lift and drag forces, making
it less realistic. Here, we construct a surrogate model that predicts
the viscous flow field around the airfoil shape using a DeepONet.
Predicting the flow field provides additional information that can be
used in the cost function of the optimization loop. We aim to develop
an aerodynamic shape optimization framework using a surrogate model
that can infer the flow field around the geometry. The surrogate model
is constructed using a DeepONet and is trained using high-fidelity CFD
simulations of airfoils in a subsonic flow regime. The surrogate model is
then implemented in two different optimization frameworks for shape
optimization. The novelties of this study include the following:

• Generating a DeepONet-based surrogate model is an efficient and
inexpensive instantiation of the exorbitant CFD solver.

• The surrogate model is invariant to the input space, which can be
defined as low or high-dimensional parameterizations.

• Prediction of high-dimensional flow field can be used for various
cost functions in the constrained optimization loop.
3

• Drag and lift coefficients are computed using the inferred high-
dimensional flow field, resulting in more accurate predictions.

• Integration of the Dakota optimization framework with the Deep-
ONet surrogate.

The remainder of the article is organized as follows. We begin by
defining the optimization process. We then present the data generation
for training the surrogate model using the open-source spectral/ℎ𝑝 el-
ement Nektar++ CFD solver. The training procedure of the DeepONet-
based surrogate model is explained. Later, the optimization results
using two different methods are represented. Finally, we summarize
our findings in the Conclusions section. In the Appendix, we verify
the accuracy of the data generated by repeating selected simulations
using different codes. Additionally, we provide validation of the Dakota
optimizer by comparing it against multiple approaches. We find that all
the approaches studied herein converge to the same solution.

2. Problem setup

To highlight the capabilities of DeepONets as function-to-function
maps that can be used within the airfoil shape optimization pro-
cess, we start by reviewing the traditional end-to-end shape optimiza-
tion pipeline augmented with DeepONet training. A schematic of the
pipeline is shown in Fig. 2. Reviewing the figure from upper left to
lower right, we start with an experimental setup. This represents the
determination of the feasible set from which the parametric airfoils
in training will be drawn, the aerodynamic conditions, and any other
engineering constraints related to the problem. We choose NACA four-
digit airfoils as our geometric representation, which provides the upper
and lower surface equations, given a random draw of parameters.
This representation is then used in three places: (1) to directly mesh
the flowfield around the airfoil, for which we use Gmsh; (2) to use
in querying the surrogate model on the surface of the airfoil when
predicting the objective lift-to-drag ratio; and (3) as the branch input to
the DeepONet function-to-function map, which is pre-processed using
NURBS to lower the dimensionality.

In terms of creating the surrogate model, this can be viewed as
the following forward problem. One deciphers the geometric and flow
parameters, which are then used to create the inputs to a CFD solver:
a geometric representation of the airfoil and its corresponding mesh
to be used for approximating the flowfield and a flow parameter file.
These are then input to a flow solver — in our case, the CFD solver
Nektar++. Results from this solver are used to generate training data

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Fig. 2. Diagram of constrained airfoil geometry optimization with a DeepONet surrogate model. The blue ovals indicate the beginning and end states of the method. The main
intermediate steps are highlighted in colored boxes, whereas the auxiliary steps are gray parallelograms.
used to train our DeepONet surrogate. Finally, the lower-right quadrant
of the diagram denotes the shape optimization process using the trained
DeepONet surrogate. This process is iterative as the optimizer, for
which we use Dakota, queries the DeepOnet surrogate model with new
design parameters until the objective function is sufficiently minimized.
This process differs from existing approaches because the bulk of the
optimization process is done offline. Generating data using the CFD
solver can be expensive, but with the final trained DeepOnet, the online
cost of geometric optimization is orders of magnitude faster than other
methods. Furthermore, as long as the objective can be created by the
DeepONet flowfields trained over, a different objective function can be
defined, not only lift-to-drag and an airfoil can be quickly optimized
with respect to the new objective without any additional cost.

For our experiments, we have focused on using 2D compressible
Navier–Stokes fields at Reynolds number 𝑅𝑒 = 500 and Mach number
𝑀𝑎 = 0.5 for our training. These values have been chosen to allow us to
focus on DeepONet’s ability to capture variations in domains (instead
of the compounding effects of unsteadiness, etc.). Given the success
of DeepONets under this experimental setup, future work will extend
this pipeline to more complex flows and experimental conditions, such
as varying the angle of attack, morphing geometry, handling unsteady
flow, or going into the high-speed flow regimes.

3. Methodology

3.1. Data generation

For each example in the dataset, we define a set of geometric
parameters (𝜉𝑔) and flow parameters (𝜉𝑓). The geometric parameters are
then converted into another representation, such as surface coordinates
derived from the NACA airfoil equations; this transformation is given
by 𝛤 (𝜉𝑔). These points are then used to mesh the flowfield domain
with Gmsh (Geuzaine and Remacle, 2020-06-22), which is then input
into the flowfield simulation software Nektar++ (Cantwell et al., 2015;
Moxey et al., 2020). We obtain the solutions fields from Nektar++
through post-processing for density, x-velocity, y-velocity, and pres-
sure. This is saved in two sets, one in a subdomain around the airfoil
for training the DeepONet and one at airfoil sensors on the surface for
validation. We also save the Nektar++ lift and drag forces to validate
the discrete integration of the airfoil forces.
4

3.1.1. Geometry generation
NACA 4-digit airfoils provide an excellent testbed application for

geometry optimization using DeepONets since they can represent a
wide range of shapes from well-known and studied parametrized ge-
ometric equations. Our geometry optimization framework could be
easily extended to any parametrized geometry, such as NACA 5-digits
or beyond. Following Jacobs et al. (1933), we define the parametric
equations for the surface of an airfoil with a chord length of one as
follows:

𝑦𝑡 =
𝑡
0.2

(

𝑎0
√

𝑥 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + 𝑎𝑥𝑥
4
)

(1)

𝑦𝑐 =

⎧

⎪

⎨

⎪

⎩

𝑚
𝑝2

(

2𝑝𝑥 − 𝑥2
)

if 𝑥 < 𝑝
𝑚

(1−𝑝)2
(

1 − 2𝑝 + 2𝑝𝑥 − 𝑥2
)

if 𝑥 > 𝑝
𝜃 = tan−1

(

𝑑𝑦𝑐
𝑑𝑥

)

(2)

𝑥𝑢 = 𝑥 − 𝑦𝑡 sin(𝜃), 𝑦𝑢 = 𝑦𝑐 + 𝑦𝑡 cos(𝜃)

𝑥𝑙 = 𝑥 + 𝑦𝑡 sin(𝜃), 𝑦𝑙 = 𝑦𝑐 − 𝑦𝑡 cos(𝜃) (3)

where 𝑎0 = 0.2969, 𝑎1 = −0.1260, 𝑎2 = −0.3516, 𝑎3 = 0.2843, 𝑎4 =
−0.1015. We can, therefore, define our geometry as a point cloud with
coordinate sets

(

𝑥𝑢, 𝑦𝑢, 𝑥𝑙 , 𝑦𝑙
)

parametrized by 𝜉𝑔 = (𝑡, 𝑝, 𝑚). A series of 𝑥
locations are found using cosine spacing with 100 points; this increases
the geometric fidelity around the leading and trailing edge, increasing
the accuracy of the mesh and flowfield simulation at these important
locations. To simplify the problem and reduce the likelihood of flow
separation or turbulence, we constrain 𝜉𝑔 . The maximum thickness (𝑡)
is set to a constant 0.15, and the domain of the parametric space
left by the position of maximum camber (𝑝) and maximum camber
(𝑚) is 𝑝 × 𝑚 ∈ [0.2, 0.5] × [0.0, 0.09]. Therefore, for one geometric
example in either the train or test set, we draw a 𝜉𝑔 tuple where
the variable parameters are drawn from a uniform distribution within
their domains. We perform this draw 50 times and obtain the surface
coordinates from Eqs. (1)–(3), splitting it into 40 training and 10 testing
examples as seen in Fig. 3. The test/train split is an essential aspect of
deep learning; here, we choose a relatively sparse sampling highlighting
the ability of DeepONets to generalize well to unseen parameters.

Next, to lower the input dimensionality into the DeepONet branch,
we fit the airfoil surface with Non-Uniform Rational B-Splines (NURBS)
with 30 control points using geomdl (Bingol and Krishnamurthy, 2019).
This reduces the input dimensionality from 200 (𝑥, 𝑦) pairs to only
30.

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Fig. 3. Train and test set geometries sampled over the 𝜉𝑔 domain. Note that the numbers correspond to NACA airfoils, and duplicate numbers are due to rounding to the nearest
integer for readability. Therefore, the true NACA parameters are drawn from a uniform distribution and are real-valued.
3.1.2. Mesh generation
The meshes are generated using Gmsh (Geuzaine and Remacle,

2020-06-22) for parametrized airfoil geometry with a minimum char-
acteristic length of 0.01 at parametrized locations. The airfoil flowfields
are meshed using the 200 surface points exactly from the NACA equa-
tions, not the NURBS fit, which contains some inaccuracy. A spline
function is used to represent the 1D geometry of the boundaries of
airfoils. To resolve the flow at leading and trailing edges, meshes are
refined by using the splitting approach (Mark et al., 2008). The NURBS
low-dimensional representation is a step to reduce overparameteriza-
tion in the DeepONet, which is unnecessary for generating high-fidelity
training data. The mesh generation for all 50 airfoils is automated using
Gmsh’s Python API integrated with the geometry generation in Python,
so no manual operations are needed. Fig. 4 shows the mesh of the entire
simulated domain 𝛺𝑆 , which is then input into Nektar++ along with
the flow parameters to generate the DeepONet training data. As seen in
the figure, only a subset of the solved steady-state domain 𝛺𝑇 is used
in training the DeepONet. This is because the DeepOnet is a function-
to-function map and does not strictly obey boundary conditions or is
affected by phenomena such as reflections due to the boundaries. It
performs regression on the dataset and not the solving of the system
of equations and, therefore, can be taken as a smaller domain, even
without freestream conditions. Since the objective is geometric opti-
mization, this subdomain simplifies the DeepONet training problem and
cost of training.

3.1.3. Flowfield simulation
We used a compressible flow solver implemented in Nektar++ to

generate the flow field data. Nektar++ (www.nektar.info) is an open-
source software framework (Cantwell et al., 2015; Moxey et al., 2020)
designed to support the development of high-performance, scalable
solvers for partial differential equations using the spectral/hp element
method. The 2D compressible flow solver uses the two-dimensional
compressible Navier–Stokes equations expressed as,
𝜕𝜌
𝜕𝑡

+
𝜕𝜌𝑢
𝜕𝑥

+
𝜕𝜌𝑣
𝜕𝑦

= 0

𝜕𝜌𝑢
𝜕𝑡

+
𝜕𝜌𝑢2 + 𝑝

𝜕𝑥
+

𝜕𝜌𝑢𝑣
𝜕𝑦

= 1
𝑅𝑒

(

𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥
𝜕𝑦

)

𝜕𝜌𝑣
𝜕𝑡

+
𝜕𝜌𝑢𝑣
𝜕𝑥

+
𝜕𝜌𝑣2 + 𝑝

𝜕𝑦
= 1

𝑅𝑒

(𝜕𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝜏𝑦𝑦
𝜕𝑦

)

𝜕𝐸
𝜕𝑡

+
𝜕(𝐸 + 𝑝)𝑢

𝜕𝑥
+

𝜕(𝐸 + 𝑝)𝑣
𝜕𝑦

= 1
𝑅𝑒

⎡

⎢

⎢

⎢

⎣

𝜕
(

𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝜅 𝜕𝑇
𝜕𝑥

)

𝜕𝑥
+

𝜕
(

𝑢𝜏𝑥𝑦 + 𝑣𝜏𝑦𝑦 + 𝜅 𝜕𝑇
𝜕𝑦

)

𝜕𝑦

⎤

⎥

⎥

⎥

⎦

,

(4)

where 𝑝 = 𝑅𝜌𝑇 , 𝑅 = 1
𝛾𝑀𝑎2

, 𝑘 = 𝛾
𝛾−1

𝜇𝑅
𝑃𝑟 , with 𝜇 being the non-

dimensional viscosity and computed by using the Sutherland law as
5

𝜇 = 𝑇 3∕2

𝑅𝑒
1 + 𝐶∕𝑇∞
𝑇 + 𝐶∕𝑇∞

. (5)

Expressions for 𝜏𝑥𝑥, 𝜏𝑦𝑦, and 𝜏𝑥𝑦 are as follows

𝜏𝑥𝑥 = 2𝜇
(

𝑢𝑥 −
𝑢𝑥 + 𝑣𝑦

3

)

,

𝜏𝑦𝑦 = 2𝜇
(

𝑣𝑦 −
𝑢𝑥 + 𝑣𝑦

3

)

,

𝜏𝑥𝑦 = 𝜇
(

𝑢𝑦 + 𝑣𝑥
)

.

We aim to simulate the flow past airfoils by solving the compressible
Navier–Stokes equations given by Eq. (4) with free-stream parameters
𝑀∞ = 0.5, 𝑅𝑒𝐿=1 = 500, 𝑢∞ = 1, 𝑣∞ = 0, 𝑇∞ = 1, AoA = 0 and 𝑃𝑟 =
0.72. The flow domain in non-dimensional units is [−3, 11] × [−3, 3]
and discretized by conforming triangular elements. To solve (4), we
use the discontinuous Galerkin spectral element method (DGSEM) with
basis functions spanned in 2D by Legendre polynomials of the second
degree. For advection and diffusion terms, weak and interior penalty-
based dG approach with Roe upwinding is used in space. A diagonally
implicit Runge–Kutta (DIRK) method is used as a time integrator for
the advection and diffusion terms. The boundary conditions of inflow,
outflow, adiabatic wall at the airfoil surface, and high-order boundary
conditions at the top and bottom are imposed weakly. For detailed
descriptions of the solvers and methods, readers are encouraged to
read (Mengaldo et al., 2014).

3.2. Surrogate model: DeepONet

3.2.1. Brief review of DeepONets
Neural operators are neural network models developed based on

the universal operator approximation theorem (Chen and Chen, 1995).
The neural operators learn the mapping between spaces of function and
directly learn the underlying operator from the available training data.
DeepONets (Lu et al., 2021) and Fourier Neural Operators (FNO) (Li
et al., 2020) are the two popular neural operators extensively used
for solving a wide spectrum of problems in diverse scientific areas. A
DeepONet consists of a branch network that encodes the input function
and a trunk network that learns a collection of basis functions. The
DeepONet output is computed by taking the inner product between the
branch and trunk network outputs.

3.2.2. Training and testing of DeepONets
We train four different DeepONet models to learn the pressure (𝑝),

density (𝜌), and velocity (𝑢, 𝑣) fields for a given airfoil geometry (𝜉𝑔)
from the training data. The trunk network learns a collection of basis
(𝝓) as functions of spatial coordinates, and the branch network learns

http://www.nektar.info

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Fig. 4. Discretization of an airfoil with bounding domain. 𝛺S represents the entire domain over which the compressible Navier–Stokes equations are solved. 𝛺T (inset image with
red border) represents the domain for which a DeepONet is trained. The inset image with yellow boundary represents the subdomain (𝛺W), showing the mesh refinement around
the airfoil.
Table 1
Hyperparameters of NURBS-DeepONet and the Parameter DeepONet.

NURBS-DeepONet

Branch Network Architecture: [30,100,100,50]
Branch Network Activation: tanh
Trunk Network Architecture: [2,100,100,50]
Trunk Network Activation: tanh
𝑁𝜙: 50
Optimizer: Adam
Learning Rate: 1.00E−04

Parameter-DeepONet

Branch Network Architecture: [2,100,100,50]
Branch Network Activation: tanh
Trunk Network Architecture: [2,100,100,50]
Trunk Network Activation: tanh
𝑁𝜙: 50
Optimizer: Adam
Learning Rate: 1.00E−04

the corresponding coefficients (𝜶) as a function of the airfoil geometry.
The DeepONet output is defined as

𝑞(𝜉𝑔)(𝑥, 𝑦) =
𝑁𝜙
∑

𝑖=1
𝛼𝑖(𝜉𝑔 ; 𝜃

𝑞
𝑏)𝜙𝑖(𝑥, 𝑦; 𝜃

𝑞
𝑡) 𝑞 ∈ {𝑝, 𝜌, 𝑢, 𝑣}. (6)

In the case of airfoils, the geometry can be fed into the branch network
by directly providing the geometric parameter, 𝜉𝑔 . However, 𝜉𝑔 need
not exist explicitly for a general arbitrary geometry. Under such a
scenario, the geometry is often represented using the NURBS control
points. To demonstrate the effectiveness of using a DeepONet in either
of the situations, we investigate parameter-DeepONet that directly
takes 𝜉𝑔 as the branch network input and NURBS-DeepONet that takes
NURBS control points of the airfoil geometry as the input to the branch
network. The hyperparameters of the DeepONet used in this study are
provided in Table 1.

3.2.3. Lift and drag calculation
We present two ways to evaluate the objective function — in our

case, lift-to-drag. The map created by the trained DeepONets takes
an input geometry and spatial (𝑥, 𝑦) location in the output space and
6

returns the field’s value at that location. So it follows that to estimate
the lift and drag, we evaluate the discrete integral over the surface of
the airfoil, for which the (𝑥, 𝑦) points are easily generated for objective
function queries by Eqs. (1)–(3). The discrete integrals for lift and drag
are given by Eqs. (8) and (9) subject to the approximation of wall shear
stress in Eq. (7).

𝜏𝑤 = 𝜇 𝑑𝑈
𝑑⃖⃗𝑛

(7)

𝐿 = ∫ 𝑑𝐹𝑦 =
∑

𝑝⃖⃖⃖⃗𝑛𝑦𝑑𝑠 +
∑

𝜏𝑤 ⃖⃖⃗𝑡𝑦𝑑𝑠 (8)

𝐷 = ∫ 𝑑𝐹𝑥 =
∑

𝑝⃖⃖⃖⃗𝑛𝑥𝑑𝑠 +
∑

𝜏𝑤 ⃖⃖⃗𝑡𝑥𝑑𝑠 (9)

The pressure is directly obtained from one of the DeepONet pre-
dictions for the first term in the aerodynamics forces. In the second
term, the viscosity 𝜇(𝑝, 𝜌) is obtained by Eq. (5) as a function of the
DeepONets for pressure and density. Finally, the change in speed of
the flow over the airfoil surface 𝑑𝑈

𝑑�⃗�
, is obtained in two ways:

1. Finite-difference (A):

𝑑𝑈
𝑑⃖⃗𝑛

=
−𝑈2 + 4𝑈1 − 3𝑈0

2ℎ
(10)

2. Automatic-differentiation (B):
𝑑𝑈
𝑑⃖⃗𝑛

= (𝑣𝑦 − 𝑢𝑥)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 − 𝑣𝑥𝑠𝑖𝑛
2𝜃 + 𝑢𝑦𝑐𝑜𝑠

2𝜃 (11)

where ℎ = 0.001 and 𝜃 is the angle between the x-y axis and each seg-
ment’s normal-tangential axis. Approach (A) is a second-order forward
finite difference approximation obtained by sampling the x-velocity
and y-velocity DeepONets at the appropriate locations defined by the
surface normal and spacing ℎ. Approach (B), derived in Appendix A.4,
utilizes the now well-known development in automatic differentia-
tion (Baydin et al., 2018), primarily utilized in physics-informed ma-
chine learning for approximating partial derivatives to obtain the PDE
residual. Here, since the DeepONet directly takes in the spatial (𝑥, 𝑦)
coordinates and outputs the velocity components (𝑢, 𝑣), the computa-
tional graph is complete, and the partials (𝑢𝑥, 𝑢𝑦, 𝑣𝑥, 𝑣𝑦) can be estimated
with this method. The required sampling for each method is shown in
Fig. 5. While (A) takes three times the number of point evaluations, (B)
requires the gradients to be computed so the cost of each can be viewed

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Fig. 5. Illustration of the discrete integral for lift and drag. The points in red indicate the surrogate model samples used in the construction of the approximation to 𝑑𝑈
𝑑�⃗�

with a
finite difference approximation of the gradient or the automatic differentiation approximation using the direct network gradients.
Table 2
Relative 𝐿2 errors of the state variables trained DeepONet models.

NURBS-DeepONet Parameter-DeepONet

Train rel. 𝐿2 error Test rel. 𝐿2 error Train rel. 𝐿2 error Test rel. 𝐿2 error

𝑝 4.68e−03 6.05e−03 5.23e−03 6.85e−03
𝑢 4.97e−03 6.21e−03 4.12e−03 5.38e−03
𝑣 3.73e−03 4.60e−03 3.31e−03 4.25e−03
𝜌 4.57e−03 5.89e−03 4.00e−03 5.18e−03
as comparable. However, the flexibility of using automatic differentia-
tion in this way may allow for more complex objective functions in the
future, given the right mapping and subsequent computational graph.

4. Results

4.1. Results from DeepONet model

The training and testing relative 𝐿2 error of the NURBS and
parameter-based DeepONets for all four different fields are reported in
Table 2. We observe that the NURBS and parameter-based DeepONets
predict fields with similar accuracy. NURBS-DeepONet has marginally
better predictions of the pressure field, while parameter-DeepONet
generates marginally better predictions for velocity and density fields.
The main takeaway is that either representation is sufficient for the
geometry optimization of this experiment. However, we must consider
that, in the future, more complex geometries may be used, particularly
in the sense of local morphing. Therefore, the NURBS representation
will likely be necessary as a direct parameter mapping may miss local
nuances. The predicted fields and the absolute pointwise error by the
best DeepONet models for the flowfield parameters are shown in Fig. 7.
It can be seen that the global prediction is, in general, accurate; the
error is primarily localized to the airfoil’s leading edge. In the future,
adaptive weighting schemes will be used to improve the DeepONet
training, particularly at the points of difficulty, such as the surface and
leading edge. The corresponding relative 𝐿2 error of the fields over the
entire dataset is shown in Fig. 13. We observe minimal generalization
error and that DeepONets are globally accurate (see Fig. 6).

Regarding geometry optimization, we must concern ourselves not
only with the global flowfield accuracy but also with the accuracy on
the surface of the airfoil in particular. Fig. 8 shows the corresponding
surface prediction plots for the same airfoil presented in Fig. 7 as a
function of the 𝑥-direction over the airfoil. We observe good accuracy
in the pressure and density fields, which will provide very accurate
predictions of the lift and drag force components due to pressure as
well as the viscosity 𝜇(𝑝, 𝜌), which is a function of these fields per
Eq. (5). The surface’s 𝑥 and 𝑦 velocity fields do not agree because
the DeepONet does not strictly obey a no-slip condition. However,
aside from the leading edge, the prediction errors are close to zero.
Furthermore, the fields are not directly related to the objective lift-
to-drag but indirectly related through the estimate of the change in
flow speed over the surface 𝑑𝑈

𝑑�⃗�
obtained by approaches (A) and (B)

in Eq. (10) and (11). Therefore, the inaccuracy does not significantly
affect the overall objective prediction. This is corroborated by Fig. 9,
which shows the sorted lift-to-drag ratio for the entire dataset. The
results of both numerical integration approaches (A) and (B) are very
7

accurate when compared to the stored lift-to-drag results from the
Nektar++ data generation step. We can also see in the error plot that
it is quite uniform, and there are no discernible biases in the geometric
parameter space, indicating that we have learned the entire space well
enough for the final optimized result to be accurate.

4.2. Constrained shape optimization results

The objective of constrained shape optimization is to maximize the
lift-to-drag ratio over a feasible region of parameters, which are 𝑚 and 𝑝
for this case. Eq. (12) gives this objective in the form of a minimization
problem, as is standard for most optimizers that perform gradient-based
or gradient-free optimization. Therefore, the definition of a constrained
optimization problem for airfoil is expressed as

minimize
𝑚,𝑝

−𝑓 (𝑚, 𝑝)

subject to 𝑚min ≤ 𝑚 ≤ 𝑚max
𝑝min ≤ 𝑝 ≤ 𝑝max,

(12)

where 𝑓 (𝑚, 𝑝) represents ratio of lift to drag and [𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥] and
[𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥] are bounds for feasible search region.

One of the present study’s goals is to optimize the shape for any
arbitrary geometry. Therefore, we integrated the DeepONet-based sur-
rogate model with Dakota, which is a multilevel parallel object-oriented
framework for design optimization, parameter estimation, uncertainty
quantification, and sensitivity analysis (Adams et al., 2022). Dakota is
freely available and offers a very efficient and scalable implementation.
We integrated the DeepONet with Dakota in a modular approach as
shown in Algorithm 1, where is an algorithm chosen from a set
of optimizers provided by Dakota and DeepONet-based model 𝛷 is
passed as an argument to . For example, to achieve the solution
of Eq. (12), we use an efficient global algorithm (EGO), which is a
derivative-free approach that uses a Gaussian process model for the
optimization of the expected improvement function and is based on the
NCSU Direct algorithm (Finkel and Kelley, 2004). The reason behind
choosing this method is to avoid tuning various hyperparameters. To
use the algorithm to solve the problem in Eq. (12), we set a seed,
which is to be used for Latin Hypercube Sampling (LHS) to generate
the initial set of points for constructing the initial Gaussian process.
To gain efficiency, we used batch-sequential parallelization offered by
Dakota on an eight-core CPU (2.3 GHz Intel core i9).

The constrained optimization landscapes for approaches (A) and
(B) are shown in Fig. 10 obtained by brute force evaluation of the
respective objectives. Also plotted are the locations of the dataset
in the parameter space (𝑝, 𝑚) ∈ [0.2, 0.5] × [0.0, 0.09], displaying the
sparse sampling used to obtain accurate optimization results. We also
observe that the landscape for this experimental setup is simple and

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Fig. 6. Error Scatter Plots. The relative 𝐿2 error corresponding to each of the train and test samples for pressure, velocity, and density fields, with respect to the DeepONet
predictions, are shown in this figure.
Algorithm 1: Integration of DeepONet-based surrogate model with
Dakota.
Require: 𝑚, 𝑝, 𝑥, 𝑦: maximum camber, the position of maximum

camber, spatial coordinates for flow-field prediction
Require: Trained DeepONet: (𝑚, 𝑝, 𝑥, 𝑦)
Require: : ∈ Algorithms in Dakota
Require: 𝛹 (𝑢, 𝑣, 𝜌, 𝑝, 𝜉𝑔): Function producing the lift 𝐿 and drag 𝐷
Require: 𝑁 : Number of objective function evaluations
Require: 𝑚min, 𝑚max, 𝑝𝑚𝑖𝑛, 𝑝max: Bounds of feasible region
𝑛 ← 0, 𝑚opt ← 𝑚0, 𝑝opt ← 𝑝0 ⊳ Initialize
while 𝑛 ! = 𝑁 do

𝑚opt, 𝑝opt ← (−𝑓 (𝑚opt, 𝑝opt), 𝑚min, 𝑚max, 𝑝𝑚𝑖𝑛, 𝑝max,, 𝛹) ⊳
Optimization process for parameters

𝑛 ← 𝑛 + 1
end while

convex. In future work, more complex conditions like local morphing
will make the landscape more complex, likely nonconvex, requiring
more sophisticated optimization methods. While not needed here, we
still utilize state-of-the-art optimization in our framework with Dakota.
Additionally, we can see that the local minimum given the constrained
parameter bounds, set to the dataset sampling bounds, is at the bound-
ary. This implies that the global minimum lies outside of our trained
bounds, which is not known a priori when generating data. In fu-
ture work, we hope to evaluate DeepONets potential for extrapolating
outside the trained bounds, potentially using transfer learning.

The optimization process finds the minimizer of function in 15
evaluations, and the optimum value which maximizes 𝐿∕𝐷 is (𝑚∗, 𝑝∗) =
(0.2, 0.067). To achieve consistency in the optimization process, we
ran the EGO algorithm 15 times with different seeds and observed
the same optimal point. Furthermore, we validated the optimization
results with a comparison to other approaches in Appendix A.3. The
results obtained from all the approaches are in excellent agreement
and are reported in detail in Table 7 along with their wall clock times.
Finally, the most significant contribution of the paper is shown in
Table 3. As we can see, the integration of DeepONet into an airfoil
geometry optimization framework has lowered the online cost of new
objective evaluations by 32, 000+ times. This makes it entirely possible
to have almost real-time optimization results, costing a few minutes
instead of days. Furthermore, the trained models can be put on any
hardware, such as a standard laptop, and real-time accurate flowfields
can be predicted in seconds, meaning the geometry optimization is
not hardware dependent at test time. We have demonstrated that
8

Table 3
Relative cost of single objective function evaluation during geometry optimization A
Flowfield mapping with finite-difference approximation. B Flowfield mapping with
automatic-differentiation approximation.

Model type Relative cost of single objective function evaluation

Baseline CFD (Nektar++) 32,253
DeepONet (A) 1.34
DeepONet (B) 1

integrating DeepONets into a geometry optimization pipeline suffers
little in accuracy and provides the tradeoff of obtaining and training on
an offline dataset with almost instantaneous optimization results when
used online compared to a traditional CFD method.

To validate the parameters of optimized airfoil (𝑝 = 0.2, 0.067), we
compare the 𝑢 velocity field in Fig. 11 obtained from trained DeepONet
and Nektar++. In general, the velocity contour plots show an excellent
agreement and therefore validate the workflow of shape optimization
presented in this work. A closer look at error plot suggests higher
errors along the surface of the airfoil, with a maximum of 0.046 for
normalized x-velocity. The results can be further improved by giving
more importance to the region near the airfoil surface (via proper
weighting) during training of the DeepONet.

5. Hypersonic waverider study

To demonstrate DeepONet’s capability to generate an accurate sur-
rogate model on three-dimensional complex fields, hypersonic aerother-
modynamic data was generated using the US3D commercial CFD pack-
age. The analysis was based on the 3D waverider model and ex-
perimental data measured at the Arnold Engineering Development
Center (AEDC) Hypervelocity Wind Tunnel Number 9 (Kammeyer and
Gillum, 1994). This geometry will be hereafter referred to as the
AEDC waverider (see Fig. 12). US3D is a state-of-the-art analysis tool
developed as a collaborative effort between NASA Ames, the University
of Minnesota, and VirtusAero, Inc. This code is massively parallel using
the Message Passing Interface (MPI) libraries and has been deployed
on the Department of Defense (DoD) High-Performance Computing
(HPC) system Warhawk, which was used in this work. US3D solves
the compressible Navier–Stokes equations on an unstructured finite-
volume mesh with high-order, low-dissipation fluxes. The solver has
been tailored to excel at the complex evaluation of hypersonic flows
including strong shocks, shock boundary layer interactions, and plasma
dynamics, and has well-demonstrated accuracy for applied hypersonic
configurations (Candler et al., 2015).

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Fig. 7. DeepONet Predictions. The pressure, density, and velocity fields around the test set airfoil NACA 7315 predicted by the DeepONet, and the corresponding pointwise absolute
errors are also provided.
In this effort, the free stream and surface boundary conditions
were selected, consistent with the reported experimental conditions as
follows: 𝜌inf = 0.5644 kg∕m3, 𝑇inf = 72.77 K, and 𝑣inf = 1279.25 m/s
with Mach number of 7.36. The surface temperature of the AEDC
waverider is isothermal and held at 300 K based on experimental
conditions. Turbulence was modeled using the classical Menter-SST
Reynolds Averaged Navier Stokes (RANS) formulation (with a vorticity
9

source term) along with 5 species of chemical kinetics to handle the
non-equilibrium chemistry. The angle of attack was modified in 1-
degree increments between −10 and +10 to provide a wide range of
aerothermodynamic loading reported in the AEDC wind tunnel. The
grid was created using the meshing software LINK3D and consisted of
50.4 million cells, with wall spacing producing y+ values well below
one. In addition, the wake region behind the waverider was excluded,

Engineering Applications of Artificial Intelligence 129 (2024) 107615

10

K. Shukla et al.

Fig. 8. Plot of the flowfield variables on the surface of the test set airfoil NACA 𝟕𝟑𝟏𝟓. All plots display accurate predictions on the surface, which are then used to compute the
lift and drag forces. The no-slip condition is not directly enforced by the DeepONet, which results in the velocity plot difference. However, it can be seen by the y-scale that the
prediction is close to zero, aside from the leading edge, and does not greatly affect the overall lift and drag computation.

Fig. 9. Plot of the computed lift-to-drag objective for the entire dataset sorted by the Nektar++ reference values. As seen in both plots, the approximation to the high-fidelity
CFD solution is very accurate and consistent throughout the entire parametric domain. In particular, we note that the testing set performs comparably to the training set, meaning
there is little to no generalization error, which is necessary when inferring unseen queried geometries during optimization.

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Fig. 10. Visualization of the lift/drag landscape obtained from brute force sampling of 𝑝 and 𝑚 using a 10 × 10 grid. The train and test sets are also plotted to show the sparse
dataset used by the DeepONet (A) Landscape obtained using finite difference approximation. (B) Landscape obtained using automatic differentiation approximation.
Fig. 11. Optimized airfoil. The 𝑢 velocity field of the flow past the optimized airfoil with (𝑝, 𝑚) = (0.2, 0.067) in 𝛺𝑊 . The velocity field simulated in Nektar++ and predicted by
the DeepONet are shown here.
and the fluid domain ends at the rear of the vehicle. The simulations
were run to 20+ flowthrough times to ensure that shock structures
and boundary layers are well established and that the flow solution is
stable.

Regarding surrogate neural operators, our literature survey suggests
that DeepONet can serve as accurate surrogates for 3D or higher
dimensional parametric PDEs. For example, in the paper Kontolati et al.
(2023), a DeepONet is used to infer 3D atmospheric flows over the
globe. In the paper by Meng et al. (2022), a DeepONet is used to solve
the stochastic Darcy equation in 100 dimensions. Herein, we demon-
strate the application of DeepONet for approximating shear stress (𝜏𝑦)
and heat flux (𝑄𝑤) fields around an AEDC waverider whose geometry
is provided in Fig. 13.

The dataset consists of 𝜏𝑦 and 𝑄𝑤 fields at the surface of the
waverider geometry corresponding to 21 angles of attack varying from
−10◦ to 10◦ with an increment of 1◦. Details regarding the partitioning
of the dataset into training and testing categories and the corresponding
11
relative 𝐿2 errors are reported in Table 4 and visualized in
Fig. 14.

In Figs. 15 and 16, subfigure (a) represents the predicted heat fluxes
on the top and bottom surfaces of the waverider, and subfigure (b)
represents the true and the DeepONet predicted heat flux profiles along
the top and bottom centerlines respectively. For the top and the bottom
centerline profiles, we observe relative 𝐿2 errors of 5.23% and 3.00%,
respectively.

Next, we compare 𝑄𝑤 and 𝜏𝑦 fields simulated by the US3D solver
with the surrogate 3D DeepONet’s predictions, across the entire surface
of the waverider. In Fig. 17, we present the flux and shear stress
fields at the surface of the AEDC waverider at 2◦ angle of attack. The
right column represents a zoomed-in view of the leading edge of the
waverider to better visualize the quality of the surrogate 3D DeepONet
prediction at the region where the variance of the fields is the largest.
We observe that the maximum absolute errors for heat flux and shear
stress are 9.7% and 4.1% respectively, for this test sample.

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Fig. 12. Different views of the AEDC Waverider geometry.
Fig. 13. The AEDC waverider geometry is used to compute the flowfields at 21 angles of attack. Diverse colors were assigned to distinct quadrants, aiding in mesh optimization
and refinement, specifically targeting precise representation of regions with significant curvature.
6. Computational complexity of the DeepONet

DeepONets exhibit quick and cost-effective inference but require
pre-training. The cost of the training process is comprised of two
components: the first is related to dataset creation, involving the com-
putation of numerous numerical solutions of the compressible Navier–
Stokes equation for different geometrical parameters. The second cost
element pertains to the gradient descent-based training procedure itself.
12
To understand these distinct costs, Di Leoni et al. (2023) have intro-
duced a set of three metrics that focus on tackling the computational
complexity. These metrics are outlined as follows:

𝑅𝑡 =
𝐶𝑡

𝑁𝑠𝐶𝑠
, 𝑅𝑒 =

𝐶𝑒
𝐶𝑠

, 𝑁∗
𝑒 = 𝑁𝑠 +

𝐶𝑡
𝐶𝑠

,

where 𝑅𝑡, 𝑅𝑒, and 𝑁∗
𝑒 are the training ratio, evaluation ratio, and

break-even number, respectively. 𝐶𝑡 is the cost in time of training the
DeepONet, 𝑁 is the number of simulations needed to generate the
𝑠

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Fig. 14. The 𝐿2 norm of relative error for training and testing samples in (a) Total shear stress 𝜏𝑦 and heat flux 𝑄𝑤. Train and test mean errors for 𝜏𝑦 and 𝑄𝑤 are (0.38%, 0.39%)
and (2.53%, 2.78%), respectively.
Fig. 15. In subfigure (a), a comparison is shown in the calculated heat flux (𝑄𝑤) at an angle of attack (AoA) of 2◦ (test case) along the bottom surface profile of the waverider,
indicated by a white line. Subfigure (b) presents a comparison between the heat flux values (𝑄𝑤) obtained using the US3D solver and those predicted by the DeepONet model.
The 𝐿2 relative error between actual and predicted value is 5.23%.
Fig. 16. In subfigure (a), a comparison is shown in the calculated heat flux (𝑄𝑤) at an angle of attack (AoA) of 2◦ (test case) along the lower surface profile of the waverider,
indicated by a white line. Subfigure (b) presents a comparison between the heat flux values (𝑄𝑤) obtained using the US3D solver and those predicted by the DeepONet model.
The 𝐿2 relative error between actual and predicted value is 3.00%.
dataset, 𝐶𝑠 is the cost in time of running each simulation, and 𝐶𝑒 is
the cost in time of evaluating a DeepONet.
13
The most important number here is the break-even number, which
signifies the count of evaluations at which the DeepONet starts to offer

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Fig. 17. Heat flux (𝑄𝑤) (upper panel) and total shear stress (𝜏𝑦) (lower panel) distributions on the surface of the AEDC waverider. We compare the fields simulated by the US3D
solver against those predicted by the surrogate DeepONet for an unseen 2◦ angle of attack.
advantages over the numerical solver. This analysis is based on the
total cost ratio and helps determine this threshold. Therefore, the total
computational complexity for DeepONet is expressed as Di Leoni et al.
(2023) 𝑅𝑐 =

𝑁𝑠𝐶𝑠+𝐶𝑡+𝑁𝑒𝐶𝑒
𝑁𝑒𝐶𝑠

.
Specifically, we will use the AEDC waverider as an example to

illustrate the aforementioned values. Here 𝐶𝑡 = 8 Hrs on single A100,
80 GB GPU, 𝐶𝑠 = 20.5 × 103 Core-hours, 𝑁𝑠 = 21, 𝐶𝑒 = 0.001 s.
Therefore 𝑅𝑡 = 1.86 × 10−5, 𝑅𝑒 = 4.88 × 10−8 and 𝑁∗

𝑒 = 21.00039. These
numbers indicate that the training duration of a DeepONet is both
controllable and significantly reduced compared to the data generation
stage in the current scenario. To summarize: if we require more than
14
𝑁∗
𝑒 ≥ 21 simulations then it is computationally more efficient to train

and deploy surrogate DeepONet but at the cost of lower accuracy in
comparison to the numerical solver. However, it is crucial to note
that these estimates could significantly differ based on the specific
application, smoothness, and regularity of the solutions.

7. Conclusions

We have successfully integrated DeepONets as a surrogate model
into the shape optimization framework for airfoils. Having summarized
prior work in this field, we empirically demonstrate the efficacy of

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.

c
a
t

a
i
p
–
R
E
a

D

c
i

D

A

w
w
p
i
c
b
e
U
a
c

A

A

t
t
t
v
t
i
l
l
h

Table 4
The 𝐿2 norm of relative error between actual and predicted total shear stress 𝜏𝑦 and
heat flux 𝑄𝑤 from DeepoNet for the AEDC waverider.

AoA Sample type 𝐿2 error in 𝜏𝑦 𝐿2 error in 𝑄𝑤

−10 Train 0.38% 3.50%
−9 Train 0.34% 3.39%
−8 Test 0.34% 3.55%
−7 Test 0.38% 4.07%
−6 Train 0.30% 3.35%
−5 Test 0.33% 3.30%
−4 Train 0.29% 3.24%
−3 Test 0.28% 3.05%
−2 Train 0.28% 2.57%
−1 Train 0.29% 2.44%
0 Train 0.28% 2.24%
1 Train 0.32% 2.11%
2 Test 0.36% 2.42%
3 Train 0.37% 2.08%
4 Test 0.40% 2.04%
5 Train 0.45% 2.01%
6 Test 0.50% 1.97%
7 Train 0.51% 1.93%
8 Test 0.54% 1.87%
9 Train 0.57% 1.91%
10 Train 0.61% 2.08%

DeepONets in terms of retaining sufficient flowfield accuracy used
in evaluating the objective function of lift-to-drag, as well as the
significant computational speed up as a replacement for a traditional
CFD solver during online constrained geometry optimization. We
have provided thorough validation of the results presented as well as
extensive experimentation such as two approaches (A) and (B) when
approximating the wall shear stress and two forms of DeepONet inputs
(NURBS and 𝜉𝑔) to ensure a robust pipeline. The NURBS-DeepONet
enables the surrogate model to accurately predict the flow around arbi-
trary geometries and not only the NACA 4-series geometries considered
in this study. Importantly, DeepONets exhibit almost no generalization
error over the dataset, so it follows that the resulting optimized ge-
ometry (𝑝 = 0.2, 𝑚 = 0.067) is accurate and achieved 32,253 speed-up
ompared to the CFD baseline. This behavior is expected because, as
data-driven model, the DeepONet is capable of accurately predicting

he flow fields around an unseen geometry sampled from the same 𝑝×𝑚
space used during training. The error in prediction may increase when
airfoil geometries are sampled from a different distribution. Ideally,
if we were to have a larger training dataset comprising samples that
span a broader distribution, the proposed framework would perform
well in practical applications. However, generating such a training
dataset can be computationally expensive. Therefore, incorporating the
physics (Raissi et al., 2019) while training the surrogate DeepONet
can be a way to make the framework robust to out-of-distribution
cases. Nevertheless, the computational complexity pertaining to train-
ing a DeepONet/Physics-Informed DeepONet can be alleviated by easily
extending the training routines across multiple GPUs across multiple
nodes in a data-parallel (Goyal et al., 2017) sense. The framework is
general and can address more complex problems with multiple inputs,
e.g. different Mach numbers and different angles of attack that can be
input to either the branch or the trunk networks. Hence, with relatively
small modifications, such a framework can handle optimization in the
high-speed flow regimes that exhibit flow unsteadiness, shocks, non-
equilibrium chemistry, and even morphing geometry. Furthermore, the
approaches presented are flexible due to the integration of machine
learning in the form of function-to-function maps using DeepONet.
Therefore, improvements such as the introduction of multi-fidelity
training and physics-informed machine learning can be leveraged to
reduce the cost of data generation. We also successfully show the
application of automatic differentiation, which performs comparably to
the traditional approach of finite differences in the wall shear stress cal-
15

culation. We also validated the ability of DeepONet to handle a complex f
3D geometry under challenging hypersonic conditions. This experiment
showcases the ability of our framework to be able to translate to
more challenging shape optimization problems in the future. Finally,
we hope to utilize transfer learning and uncertainty quantification
using the recently developed library NeuralUQ (Zou et al., 2022) to
extrapolate outside of the trained geometric parameter domain to find
global optima with confidence.

CRediT authorship contribution statement

Khemraj Shukla: Methodology, Software, Validation, Data cura-
tion, Visualization, Writing – original draft. Vivek Oommen: Method-
ology, Software, Validation, Data curation, Visualization, Writing –
original draft. Ahmad Peyvan: Methodology, Software, Validation,
Data curation, Visualization, Writing – original draft. Michael Penwar-
den: Methodology, Software, Validation, Data curation, Visualization,
Writing – original draft. Nicholas Plewacki: Data curation, Formal
nalysis. Luis Bravo: Supervision, Conceptualization, Resources, Fund-
ng acquisition, Writing – review & editing. Anindya Ghoshal: Su-
ervision, Conceptualization, Resources, Funding acquisition, Writing
review & editing. Robert M. Kirby: Supervision, Conceptualization,
esources, Funding acquisition, Writing – review & editing. George
m Karniadakis: Supervision, Conceptualization, Resources, Funding
cquisition, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

The research reported in this document is performed in connection
ith cooperative agreement contract/instrument W911NF-22-2-0047
ith the U.S. Army Research Laboratory. L.B., A.G., and N.P. were sup-
orted by the US Army Research Laboratory 6.1 basic research program
n vehicle power and propulsion sciences. The views and conclusions
ontained in this document are those of the authors and should not
e interpreted as representing the official policies or positions, either
xpressed or implied, of the U.S. Army Research Laboratory or the
.S. Government. The U.S. Government is authorized to reproduce
nd distribute reprints for Government purposes notwithstanding any
opyright notation herein.

ppendix

.1. Nektar++ cross-verification

We selected the flow parameters as 𝑀 = 0.5 and 𝑅𝑒 = 500
o ensure a steady-state solution. Calculating the steady-state solu-
ion requires careful consideration. To ensure the steady state solu-
ion, for each NACA profile, we recorded the value of conservative
ariables at six different locations in the wake. We then examined
he conservative variables’ time history to ensure the steady state
s reached and the solution update has stopped. Fig. 18 shows the
ocation of the history points, where the transient flow could last
onger than other spatial locations. As a sample, we plot the time
istory of variables at point 5 (Fig. 19), which experiences the highest

low fluctuations in time. According to Fig. 19, the solution reached a

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Fig. 18. History points locations in the wake for NACA airfoils. The conservative variable values are stored in time at these locations to monitor the steady-state solution.
Fig. 19. Time history of (a) 𝜌, (b) 𝜌𝑢, (c) 𝜌𝑣, and (d) 𝐸 at point 5 (see Fig. 18) for the NACA7315 airfoil. The profiles show that the simulation has reached a steady-state solution
where the flow variables reach constant states.
stationary state when the conservative variables approached constant
values.

We also validated the simulation setup of NACA airfoils in Nek-
tar++ with the results obtained by an in-house code based on the
discontinuous spectral element method of Kopriva and Kolias (1996),
Peyvan et al. (2021). We selected the NACA0020 airfoil for cross-
verification. The steady-state solutions of the flow with 𝑀 = 0.5 and
𝑅𝑒 = 500 are computed, and the results are shown in Fig. 20. The
flow field primitive variables computed by both solvers agree and show
the validity of the Nektar++ simulation setup, including mesh and
simulation parameters. According to Fig. 20, the number of elements
employed for the NekTar++ simulations is sufficient for an accurate
prediction. After validating the flow field, we performed an extra flow
simulation around the NACA4402 airfoil. The drag and lift coefficients
of this airfoil are reported by Kunz (2003) but for an incompressible
flow at 𝑅𝑒 = 1000.

We employed the automatic mesh generation setup used for the
training set to create the mesh and used the same simulation setup
as the training set. We computed the drag and lift coefficients and
compared them with the literature. Table 5 compares the drag and
lift coefficients computed by Nektar++ with values reported by Kunz
(2003) for a similar but not exactly the same setup.
16
Table 5
Comparison between the drag and lift coefficients computed by Nektar++ with Kunz
(2003). For the reference solution, the setup is different, i.e., the Reynolds number is
1000, and the flow is assumed to be incompressible.

𝐶𝑑 𝐶𝑙 Error

Nektar++ 0.1050 0.1700 1.7%
Kunz (2003) 0.1032 0.1852 8.2%

A.2. DeepONet hyperparameter optimization experiments

We perform an experiment on the neural network architecture of
the DeepONet model. For this study, we use the Parameter DeepONet,
which approximates the density field around the airfoil. We train
different DeepONet models with the number of hidden layers in branch
and trunk networks as d = 2, 4, 6. We also vary the width of the
network, that is, the number of neurons in each hidden layer as w =
20, 50, 100.

From Table 6, we observe that the prediction error shows a decreas-
ing trend with respect to the width of the networks. The prediction
error saturates near a depth of 4. Nevertheless, hyperparameter opti-
mization with respect to the width and depth of the networks does
yield an optimal architecture that achieves an order of magnitude
improvement in terms of the relative 𝐿2 error.

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Fig. 20. Cross verification of steady state flow around NACA0020 obtained by the DSEM code and Nektar++. The flow parameters are set as 𝑅𝑒 = 500 and 𝑀 = 0.5.
Table 6
Rel. 𝐿2 norm of 𝜌.

w = 20 w = 50 w = 100

d = 2 9.94E−03 6.13E−03 5.18E−03
d = 4 4.97E−03 2.88E−03 2.74E−03
d = 6 4.41E−03 3.49E−03 3.55E−03

Next, we perform an experiment to investigate the convergence of
the model by changing the learning rate. In this study, we consider
Adam optimizer with learning rates = 10−2, 10−3 and 10−4.

The DeepONet model that approximates the density field is trained
for 200000 epochs. From Fig. 21, we observe that learning rate =
10−2 and 10−3 are too large for the approximation task, causing the
17
Mean Squared Error computed between the true and predicted density
fields to oscillate without converging. The results suggest that a lower
learning rate could be a better choice to minimize oscillations.

A.3. Geometry optimization validation

To validate the main geometry optimization findings in the
manuscript using Dakota, we also evaluate the objective function
using brute force and SciPy’s (Virtanen et al., 2020) dual-annealing
method. Brute force is evaluated using a 10 × 10 grid on the geometric
parameter space (𝑝, 𝑚) ∈ [0.2, 0.5] × [0.0, 0.09], and therefore requires
100 evaluations of the objective. The dual-annealing method is set to
have a maximum amount of 50 evaluations but likely could be set to
fewer. As seen in Table 7, all methods discover the same optimal set

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Fig. 21. The error convergence plot of DeepONet models with learning rates = 10−2, 10−3 and 10−4.
⃗

Table 7
Geometry optimization results for different DeepONet methodologies. (A) Flowfield
mapping with finite-difference approximation. (B) Flowfield mapping with automatic-
differentiation approximation and DAKOTA framework uses a gradient-free approach
for the optimization. (C) and (D) uses local and global gradient based optimization
algorithm for shape optimization. The cost of these methods was obtained on an
eight-core CPU (2.3 GHz Intel core i9) with 16 GB 2667 MHz DDR4 of MacBook
Pro 2019.

Model type Optimized parameters Optimized Computation cost
(p,m) 𝐿

𝐷
(s)

Brute Force (A) (0.2, 0.070) 0.272 332.63
Brute Force (B) (0.2, 0.070) 0.281 264.12
SciPy dual-annealing (A) (0.2, 0.064) 0.269 196.09
SciPy dual-annealing (B) (0.2, 0.064) 0.281 165.57
Dakota (A) (0.2, 0.067) 0.269 157.71
Dakota (B) (0.2, 0.063) 0.282 105.00
Dakota (C) (0.2, 0.068) 0.269 296.81
Dakota (D) (0.2, 0.068) 0.269 1278.6

of parameters and 𝐿
𝐷 , regardless of optimizer or partial approximation

given by (A) and (B).
In the Table 7, we have also shown the results for optimiza-

tion using local and global gradient-based methods adopted from
the DAKOTA framework. For local gradient-based optimization, we
utilize the Fletcher–Reeves conjugate gradient algorithm (Vanderplaats,
1973). This method can effectively utilize the bound constraint pro-
vided on (𝑚, 𝑝). However, for the global gradient method, we use the
multistart strategy with the method of feasible directions (MFD) (Chen
and Kostreva, 2000). This is to be noted that gradient-based optimizers
are best suited for efficient convergence to a local minimum in the
vicinity of the initial point and are not intended to find global optima in
nonconvex design spaces. Therefore, gradient-based methods are suit-
able to offer the best convergence rates, of all of the local optimization
methods, and are chosen when the cost function is smooth, unimodal,
and well-behaved. However, gradient based methods are not the first
choice when the underlying problem exhibits non-smooth, discontin-
uous, or multi-modal. In such cases, the derivative-free methods are
more appropriate and therefore chosen at first place for the present
work.
18
A.4. WSS from automatic-differentiation

The derivation for Eq. (11), which defines the term 𝑑𝑈
𝑑�⃗�

used in the
wall shear stress (WSS) calculation, is provided here. The expression is
a function of partials (𝑢𝑥, 𝑢𝑦, 𝑣𝑥, 𝑣𝑦), which are readily available using
AD and 𝜃, which is the angle between the x-y axis and the normal-
tangent axis of each airfoil segment. Let us write the unit normal and
unit tangent as

⃖⃗𝑛 = − sin(𝜃)𝑖 + cos(𝜃)𝑗 (13)

𝑡 = cos(𝜃)𝑖 + sin(𝜃)𝑗 (14)

To get U, which is the directional flow speed relative to the surface of
the airfoil section, we take the dot product of the velocity vector and
the unit tangent

𝑈 = (𝑢𝑖 + 𝑣𝑗) ⋅ (cos(𝜃)𝑖 + sin(𝜃)𝑗) = 𝑢 cos(𝜃) + 𝑣 sin(𝜃) (15)

Finally, we take the derivative of U with respect to the unit normal ⃖⃗𝑛

𝑑𝑈
𝑑⃖⃗𝑛

= ⃖⃖⃗∇𝑈.⃖⃗𝑛 = −𝑢𝑥 sin(𝜃) cos(𝜃) − 𝑣𝑥 sin
2(𝜃) + 𝑢𝑦 cos2(𝜃) + 𝑣𝑦 sin(𝜃) cos(𝜃)

⇒ (𝑣𝑦 − 𝑢𝑥) sin 𝜃 cos 𝜃 − 𝑣𝑥 sin
2 𝜃 + 𝑢𝑦 cos2 𝜃

(16)

and recover the expression in Eq. (11) of the manuscript.

References

Adams, B., Bohnhoff, W., Dalbey, K., Ebeida, M., Eddy, J., Eldred, M., Hooper, R.,
Hough, P., Hu, K., Jakeman, J., Khalil, M., Maupin, K., Monschke, J.A., Ridgway, E.,
Rushdi, A., Seidl, D., Stephens, J., Swiler, L.P., Tran, A., Winokur, J., 2022.
Dakota, a multilevel parallel object-oriented framework for design optimization,
parameter estimation, uncertainty quantification, and sensitivity analysis: Version
6.16 user’s manual.. http://dx.doi.org/10.2172/1868142, URL https://www.osti.
gov/biblio/1868142.

Akram, M.T., Kim, M.-H., 2021. CFD analysis and shape optimization of airfoils using
class shape transformation and genetic algorithm—Part I. Appl. Sci. 11 (9), 3791.

Amsallem, D., Zahr, M., Choi, Y., Farhat, C., 2015. Design optimization using
hyper-reduced-order models. Struct. Multidiscip. Optim. 51 (4), 919–940.

http://dx.doi.org/10.2172/1868142
https://www.osti.gov/biblio/1868142
https://www.osti.gov/biblio/1868142
https://www.osti.gov/biblio/1868142
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb2
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb2
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb2
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb3
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb3
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb3

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Anosri, S., Panagant, N., Champasak, P., Bureerat, S., Thipyopas, C., Kumar, S.,
Pholdee, N., Yıldız, B.S., Yildiz, A.R., 2023. A comparative study of state-of-the-
art metaheuristics for solving many-objective optimization problems of fixed wing
unmanned aerial vehicle conceptual design. Arch. Comput. Methods Eng. 1–15.

Aye, C.M., Pholdee, N., Yildiz, A.R., Bureerat, S., Sait, S.M., 2019. Multi-surrogate-
assisted metaheuristics for crashworthiness optimisation. Int. J. Veh. Design 80
(2–4), 223–240.

Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M., 2018. Automatic
differentiation in machine learning: a survey. J. March. Learn. Res. 18, 1–43.

Benner, P., Gugercin, S., Willcox, K., 2015. A survey of projection-based model
reduction methods for parametric dynamical systems. SIAM Rev. 57 (4), 483–531.

Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K., 2017. Model reduction of
parametrized systems. Springer.

Bingol, O.R., Krishnamurthy, A., 2019. NURBS-Python: An open-source object-oriented
NURBS modeling framework in Python. SoftwareX 9, 85–94. http://dx.doi.org/10.
1016/j.softx.2018.12.005.

Bui-Thanh, T., Willcox, K., Ghattas, O., 2008. Model reduction for large-scale systems
with high-dimensional parametric input space. SIAM J. Sci. Comput. 30 (6),
3270–3288.

Candler, G., Johnson, H., Nompelis, I., Gidzak, V., Subbareddy, P., Barnhardt, M.,
2015. Development of the US3D code for advanced compressible and reacting flow
simulations. In: 53rd AIAA Aerospace Sciences Meeting. http://dx.doi.org/10.2514/
6.2015-1893.

Cantwell, C., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De
Grazia, D., Yakovlev, S., Lombard, J.-E., Ekelschot, D., Jordi, B., Xu, H., Mo-
hamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R., Sherwin, S.,
2015. Nektar++: An open-source spectral/hp element framework. Comput. Phys.
Comm. 192, 205–219. http://dx.doi.org/10.1016/j.cpc.2015.02.008, URL https://
www.sciencedirect.com/science/article/pii/S0010465515000533.

Carlberg, K., Farhat, C., 2008. A compact proper orthogonal decomposition
basis for optimization-oriented reduced-order models. In: 12th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference. p. 5964.

Carpentieri, G., Koren, B., van Tooren, M.J., 2007. Adjoint-based aerodynamic shape
optimization on unstructured meshes. J. Comput. Phys. 224 (1), 267–287.

Chen, T., Chen, H., 1995. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical
systems. IEEE Trans. Neural Netw. 6 (4), 911–917.

Chen, G., Fidkowski, K., 2017. Airfoil shape optimization using output-based adapted
meshes. In: 23rd AIAA Computational Fluid Dynamics Conference. p. 3102.

Chen, X., Kostreva, M.M., 2000. Methods of feasible directions: A review. Progress in
Optimization: Contributions from Australasia 205–219.

Chernukhin, O., Zingg, D.W., 2013. Multimodality and global optimization in
aerodynamic design. AIAA J. 51 (6), 1342–1354.

Chiavazzo, E., Gear, C.W., Dsilva, C.J., Rabin, N., Kevrekidis, I.G., 2014. Reduced
models in chemical kinetics via nonlinear data-mining. Processes 2 (1), 112–140.

Choi, Y., Boncoraglio, G., Anderson, S., Amsallem, D., Farhat, C., 2020. Gradient-
based constrained optimization using a database of linear reduced-order models. J.
Comput. Phys. 423, 109787.

De, S., Hassanaly, M., Reynolds, M., King, R.N., Doostan, A., 2022. Bi-fidelity modeling
of uncertain and partially unknown systems using DeepONets. http://dx.doi.org/
10.48550/ARXIV.2204.00997, Preprint at https://arxiv.org/abs/2204.00997.

Di Leoni, P.C., Lu, L., Meneveau, C., Karniadakis, G.E., Zaki, T.A., 2023. Neural operator
prediction of linear instability waves in high-speed boundary layers. J. Comput.
Phys. 474, 111793.

Du, X., He, P., Martins, J.R., 2021. Rapid airfoil design optimization via neural
networks-based parameterization and surrogate modeling. Aerosp. Sci. Technol.
113, 106701.

Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. In:
MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and
Human Science. Ieee, pp. 39–43.

Finkel, D., Kelley, C.T., 2004. Convergence analysis of the DIRECT algorithm. Tech. rep.,
North Carolina State University. Center for Research in Scientific Computation.

Geuzaine, C., Remacle, J.-F., 2020-06-22. Gmsh. URL http://http://gmsh.info/.
Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A.,

Jia, Y., He, K., 2017. Accurate, large minibatch sgd: Training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677.

Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu, S., Cheng, Z., Song, J., Zhu, J., 2023.
GNOT: A general neural operator transformer for operator learning. In: Proceedings
of the 40th International Conference on Machine Learning. In: Proceedings of
Machine Learning Research, vol. 202, PMLR, pp. 12556–12569.

He, X., Li, J., Mader, C.A., Yildirim, A., Martins, J.R., 2019. Robust aerodynamic shape
optimization—from a circle to an airfoil. Aerosp. Sci. Technol. 87, 48–61.

Hesthaven, J.S., Rozza, G., Stamm, B., et al., 2016. Certified Reduced Basis Methods
for Parametrized Partial Differential Equations, Vol. 590. Springer.

Hesthaven, J.S., Ubbiali, S., 2018. Non-intrusive reduced order modeling of nonlinear
problems using neural networks. J. Comput. Phys. 363, 55–78.

Hicks, R.M., Henne, P.A., 1978. Wing design by numerical optimization. J. Aircr. 15
(7), 407–412.

Howard, A.A., Perego, M., Karniadakis, G.E., Stinis, P., 2022. Multifidelity deep op-
erator networks. http://dx.doi.org/10.48550/ARXIV.2204.09157, Preprint at https:
//arxiv.org/abs/2204.09157.
19
Jacobs, E.N., Ward, K.E., Pinkerton, R.M., 1933. The characteristics of 78 related
airfoil sections from tests in the variable-density wind tunnel. Natl. Advis. Comm.
Aeronaut..

Jin, P., Meng, S., Lu, L., 2022. MIONet: Learning multiple-input operators via tensor
product. arXiv preprint arXiv:2202.06137.

Kammeyer, M., Gillum, M., 1994. Design validation tests on a realistic hypersonic wa-
verider at mach 10, 14, and 16.5 in the naval surface warfare center hypervelocity
wind tunnel no. 9. Naval Surface Warfare Center NSWCDD/TR-93/198.

Kontolati, K., Goswami, S., Karniadakis, G.E., Shields, M.D., 2023. Learning in latent
spaces improves the predictive accuracy of deep neural operators. arXiv preprint
arXiv:2304.07599.

Kontolati, K., Goswami, S., Shields, M.D., Karniadakis, G.E., 2022. On the influence
of over-parameterization in manifold based surrogates and deep neural operators.
arXiv preprint arXiv:2203.05071.

Kopriva, D.A., Kolias, J.H., 1996. A conservative staggered-grid Chebyshev multidomain
method for compressible flows. J. Comput. Phys. 125 (1), 244–261.

Krige, D.G., 1951. A statistical approach to some basic mine valuation problems on the
witwatersrand. J. South. Afr. Inst. Min. Metall. 52 (6), 119–139.

Kumar, S., Yildiz, B.S., Mehta, P., Panagant, N., Sait, S.M., Mirjalili, S., Yildiz, A.R.,
2023. Chaotic marine predators algorithm for global optimization of real-world
engineering problems. Knowl.-Based Syst. 261, 110192.

Kunz, P.J., 2003. Aerodynamics and Design for Ultra-Low Reynolds Number Flight.
Stanford University.

Lepine, J., Guibault, F., Trepanier, J.-Y., Pepin, F., 2001. Optimized nonuniform rational
B-spline geometrical representation for aerodynamic design of wings. AIAA J. 39
(11), 2033–2041.

Li, J., Cai, J., Qu, K., 2019. Surrogate-based aerodynamic shape optimization with the
active subspace method. Struct. Multidiscip. Optim. 59 (2), 403–419.

Li, Z., Huang, D.Z., Liu, B., Anandkumar, A., 2022. Fourier neural operator with learned
deformations for pdes on general geometries. arXiv preprint arXiv:2207.05209.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anand-
kumar, A., 2020. Neural operator: Graph kernel network for partial differential
equations. arXiv:2003.03485.

Liao, P., Song, W., Du, P., Zhao, H., 2021. Multi-fidelity convolutional neural network
surrogate model for aerodynamic optimization based on transfer learning. Phys.
Fluids 33 (12), 127121.

Lieberman, C., Willcox, K., Ghattas, O., 2010. Parameter and state model reduction for
large-scale statistical inverse problems. SIAM J. Sci. Comput. 32 (5), 2523–2542.

Liu, J., Song, W.-P., Han, Z.-H., Zhang, Y., 2017. Efficient aerodynamic shape optimiza-
tion of transonic wings using a parallel infilling strategy and surrogate models.
Struct. Multidiscip. Optim. 55 (3), 925–943.

Lu, L., Jin, P., Karniadakis, G.E., 2019. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of
operators. arXiv preprint arXiv:1910.03193.

Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E., 2021. Learning nonlinear operators
via DeepONet based on the universal approximation theorem of operators. Nat.
Mach. Intell. 3 (3), 218–229.

Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang, Z., Karniadakis, G.E., 2022a.
A comprehensive and fair comparison of two neural operators (with practical
extensions) based on fair data. Comput. Methods Appl. Mech. Engrg. 393, 114778.

Lu, L., Pestourie, R., Johnson, S.G., Romano, G., 2022b. Multifidelity deep neural
operators for efficient learning of partial differential equations with application
to fast inverse design of nanoscale heat transport. Phys. Rev. Res. 4, 023210.

Mark, d.B., Otfried, C., Marc, v.K., Mark, O., 2008. Computational geometry algorithms
and applications. Spinger.

Meng, Z., Qian, Q., Xu, M., Yu, B., Yıldız, A.R., Mirjalili, S., 2023a. PINN-FORM: A
new physics-informed neural network for reliability analysis with partial differential
equation. Comput. Methods Appl. Mech. Engrg. 414, 116172.

Meng, X., Yang, L., Mao, Z., del Águila Ferrandis, J., Karniadakis, G.E., 2022. Learning
functional priors and posteriors from data and physics. J. Comput. Phys. 457,
111073.

Meng, Z., Yıldız, B.S., Li, G., Zhong, C., Mirjalili, S., Yildiz, A.R., 2023b. Application of
state-of-the-art multiobjective metaheuristic algorithms in reliability-based design
optimization: a comparative study. Struct. Multidiscip. Optim. 66 (8), 191.

Mengaldo, G., De Grazia, D., Witherden, F., Farrington, A., Vincent, P., Sherwin, S.,
Peiro, J., 2014. A guide to the implementation of boundary conditions in compact
high-order methods for compressible aerodynamics. In: 7th AIAA Theoretical Fluid
Mechanics Conference. p. 2923.

Mishra, R., Choudhary, A., Fatima, S., Mohanty, A., Panigrahi, B., 2022a. A fault
diagnosis approach based on 2D-vibration imaging for bearing faults. J. Vib. Eng.
Technol. 1–14.

Mishra, R.K., Choudhary, A., Fatima, S., Mohanty, A.R., Panigrahi, B.K., 2022b. A self-
adaptive multiple-fault diagnosis system for rolling element bearings. Meas. Sci.
Technol. 33 (12), 125018.

Mishra, R.K., Choudhary, A., Mohanty, A., Fatima, S., 2022c. An intelligent bearing fault
diagnosis based on hybrid signal processing and henry gas solubility optimization.
Proc. Inst. Mech. Eng. C 236 (19), 10378–10391.

http://refhub.elsevier.com/S0952-1976(23)01799-2/sb4
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb4
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb4
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb4
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb4
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb4
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb4
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb5
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb5
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb5
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb5
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb5
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb6
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb6
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb6
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb7
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb7
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb7
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb8
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb8
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb8
http://dx.doi.org/10.1016/j.softx.2018.12.005
http://dx.doi.org/10.1016/j.softx.2018.12.005
http://dx.doi.org/10.1016/j.softx.2018.12.005
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb10
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb10
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb10
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb10
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb10
http://dx.doi.org/10.2514/6.2015-1893
http://dx.doi.org/10.2514/6.2015-1893
http://dx.doi.org/10.2514/6.2015-1893
http://dx.doi.org/10.1016/j.cpc.2015.02.008
https://www.sciencedirect.com/science/article/pii/S0010465515000533
https://www.sciencedirect.com/science/article/pii/S0010465515000533
https://www.sciencedirect.com/science/article/pii/S0010465515000533
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb13
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb13
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb13
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb13
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb13
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb14
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb14
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb14
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb15
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb15
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb15
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb15
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb15
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb16
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb16
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb16
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb17
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb17
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb17
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb18
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb18
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb18
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb19
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb19
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb19
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb20
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb20
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb20
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb20
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb20
http://dx.doi.org/10.48550/ARXIV.2204.00997
http://dx.doi.org/10.48550/ARXIV.2204.00997
http://dx.doi.org/10.48550/ARXIV.2204.00997
https://arxiv.org/abs/2204.00997
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb22
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb22
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb22
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb22
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb22
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb23
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb23
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb23
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb23
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb23
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb24
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb24
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb24
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb24
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb24
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb25
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb25
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb25
http://http://gmsh.info/
http://arxiv.org/abs/1706.02677
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb28
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb28
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb28
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb28
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb28
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb28
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb28
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb29
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb29
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb29
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb30
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb30
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb30
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb31
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb31
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb31
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb32
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb32
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb32
http://dx.doi.org/10.48550/ARXIV.2204.09157
https://arxiv.org/abs/2204.09157
https://arxiv.org/abs/2204.09157
https://arxiv.org/abs/2204.09157
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb34
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb34
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb34
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb34
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb34
http://arxiv.org/abs/2202.06137
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb36
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb36
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb36
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb36
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb36
http://arxiv.org/abs/2304.07599
http://arxiv.org/abs/2203.05071
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb39
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb39
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb39
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb40
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb40
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb40
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb41
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb41
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb41
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb41
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb41
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb42
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb42
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb42
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb43
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb43
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb43
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb43
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb43
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb44
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb44
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb44
http://arxiv.org/abs/2207.05209
http://arxiv.org/abs/2003.03485
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb47
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb47
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb47
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb47
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb47
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb48
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb48
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb48
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb49
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb49
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb49
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb49
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb49
http://arxiv.org/abs/1910.03193
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb51
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb51
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb51
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb51
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb51
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb52
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb52
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb52
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb52
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb52
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb53
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb53
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb53
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb53
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb53
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb54
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb54
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb54
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb55
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb55
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb55
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb55
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb55
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb56
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb56
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb56
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb56
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb56
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb57
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb57
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb57
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb57
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb57
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb58
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb58
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb58
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb58
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb58
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb58
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb58
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb59
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb59
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb59
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb59
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb59
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb60
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb60
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb60
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb60
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb60
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb61
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb61
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb61
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb61
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb61

Engineering Applications of Artificial Intelligence 129 (2024) 107615K. Shukla et al.
Moxey, D., Cantwell, C.D., Bao, Y., Cassinelli, A., Castiglioni, G., Chun, S., Juda, E.,
Kazemi, E., Lackhove, K., Marcon, J., Mengaldo, G., Serson, D., Turner, M., Xu, H.,
Peiró, J., Kirby, R.M., Sherwin, S.J., 2020. Nektar++: Enhancing the capability
and application of high-fidelity spectral/hp element methods. Comput. Phys.
Comm. 249, 107110. http://dx.doi.org/10.1016/j.cpc.2019.107110, URL https://
www.sciencedirect.com/science/article/pii/S0010465519304175.

Nadarajah, S., Jameson, A., 2001. Studies of the continuous and discrete adjoint
approaches to viscous automatic aerodynamic shape optimization. In: 15th AIAA
Computational Fluid Dynamics Conference. p. 2530.

Painchaud-Ouellet, S., Tribes, C., Trépanier, J.-Y., Pelletier, D., 2006. Airfoil shape
optimization using a nonuniform rational b-splines parametrization under thickness
constraint. AIAA J. 44 (10), 2170–2178.

Papadimitriou, D.I., Papadimitriou, C., 2016. Aerodynamic shape optimization for
minimum robust drag and lift reliability constraint. Aerosp. Sci. Technol. 55, 24–33.

Peyvan, A., Komperda, J., Li, D., Ghiasi, Z., Mashayek, F., 2021. Flux reconstruction
using Jacobi correction functions in discontinuous spectral element method. J.
Comput. Phys. 435, 110261.

Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. J. Comput. Phys. 378, 686–707.

Renganathan, S.A., Maulik, R., Ahuja, J., 2021. Enhanced data efficiency using deep
neural networks and Gaussian processes for aerodynamic design optimization.
Aerosp. Sci. Technol. 111, 106522.

Reuther, J., Jameson, A., Farmer, J., Martinelli, L., Saunders, D., 1996. Aerodynamic
shape optimization of complex aircraft configurations via an adjoint formulation.
In: 34th Aerospace Sciences Meeting and Exhibit. p. 94.

Serrano, L., Vittaut, J.-N., et al., 2023. Operator learning on free-form geometries. In:
ICLR 2023 Workshop on Physics for Machine Learning.

Srinath, D., Mittal, S., 2010. An adjoint method for shape optimization in unsteady
viscous flows. J. Comput. Phys. 229 (6), 1994–2008.

Tao, J., Sun, G., 2019. Application of deep learning based multi-fidelity surrogate model
to robust aerodynamic design optimization. Aerosp. Sci. Technol. 92, 722–737.

Vanderplaats, G.N., 1973. CONMIN: A FORTRAN program for constrained function
minimization: User’s manual. Tech. rep.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M.,
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R.,
Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Lax-
alde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R.,
Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contrib-
utors, 2020. SciPy 1.0: Fundamental algorithms for scientific computing in python.
Nature Methods 17, 261–272. http://dx.doi.org/10.1038/s41592-019-0686-2.
20
Wang, K., Yu, S., Wang, Z., Feng, R., Liu, T., 2019. Adjoint-based airfoil optimization
with adaptive isogeometric discontinuous Galerkin method. Comput. Methods Appl.
Mech. Engrg. 344, 602–625.

Williams, M.O., Kevrekidis, I.G., Rowley, C.W., 2015. A data–driven approximation of
the koopman operator: Extending dynamic mode decomposition. J. Nonlinear Sci.
25 (6), 1307–1346.

Wu, X., Zhang, W., Peng, X., Wang, Z., 2019. Benchmark aerodynamic shape optimiza-
tion with the POD-based CST airfoil parametric method. Aerosp. Sci. Technol. 84,
632–640.

Wu, X., Zuo, Z., Ma, L., 2022. Aerodynamic data-driven surrogate-assisted teaching-
learning-based optimization (TLBO) framework for constrained transonic airfoil and
wing shape designs. Aerospace 9 (10), 610.

Xiao, Z., Xu, X., Xing, H., Luo, S., Dai, P., Zhan, D., 2021. RTFN: a robust temporal
feature network for time series classification. Inf. Sci. 571, 65–86.

Xing, H., Xiao, Z., Zhan, D., Luo, S., Dai, P., Li, K., 2022. SelfMatch: Robust
semisupervised time-series classification with self-distillation. Int. J. Intell. Syst.
37 (11), 8583–8610.

Yıldız, B.S., Mehta, P., Panagant, N., Mirjalili, S., Yildiz, A.R., 2022. A novel chaotic
runge kutta optimization algorithm for solving constrained engineering problems.
J. Comput. Design Eng. 9 (6), 2452–2465.

Yu, Y., Lyu, Z., Xu, Z., Martins, J.R., 2018. On the influence of optimization algorithm
and initial design on wing aerodynamic shape optimization. Aerosp. Sci. Technol.
75, 183–199.

Zhang, X., Xie, F., Ji, T., Zhu, Z., Zheng, Y., 2021. Multi-fidelity deep neural network
surrogate model for aerodynamic shape optimization. Comput. Methods Appl.
Mech. Engrg. 373, 113485.

Zhao, T., Qian, W., Lin, J., Chen, H., Ao, H., Chen, G., He, L., 2023. Learning mappings
from iced airfoils to aerodynamic coefficients using a deep operator network. J.
Aerosp. Eng. 36 (5), 04023035.

Zhiwei, S., Chen, W., Zheng, Y., Junqiang, B., Zheng, L., Qiang, X., Qiujun, F.,
2020. Non-intrusive reduced-order model for predicting transonic flow with varying
geometries. Chin. J. Aeronaut. 33 (2), 508–519.

Zhu, M., Zhang, H., Jiao, A., Karniadakis, G.E., Lu, L., 2022. Reliable extrapolation of
deep neural operators informed by physics or sparse observations. arXiv preprint
arXiv:2212.06347.

Zou, Z., Meng, X., Psaros, A.F., Karniadakis, G.E., 2022. Neuraluq: A comprehensive
library for uncertainty quantification in neural differential equations and operators.
arXiv preprint arXiv:2208.11866.

http://dx.doi.org/10.1016/j.cpc.2019.107110
https://www.sciencedirect.com/science/article/pii/S0010465519304175
https://www.sciencedirect.com/science/article/pii/S0010465519304175
https://www.sciencedirect.com/science/article/pii/S0010465519304175
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb63
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb63
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb63
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb63
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb63
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb64
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb64
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb64
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb64
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb64
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb65
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb65
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb65
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb66
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb66
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb66
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb66
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb66
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb67
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb67
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb67
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb67
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb67
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb68
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb68
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb68
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb68
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb68
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb69
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb69
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb69
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb69
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb69
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb70
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb70
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb70
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb71
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb71
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb71
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb72
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb72
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb72
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb73
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb73
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb73
http://dx.doi.org/10.1038/s41592-019-0686-2
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb75
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb75
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb75
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb75
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb75
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb76
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb76
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb76
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb76
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb76
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb77
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb77
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb77
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb77
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb77
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb78
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb78
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb78
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb78
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb78
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb79
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb79
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb79
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb80
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb80
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb80
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb80
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb80
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb81
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb81
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb81
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb81
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb81
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb82
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb82
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb82
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb82
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb82
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb83
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb83
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb83
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb83
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb83
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb84
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb84
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb84
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb84
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb84
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb85
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb85
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb85
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb85
http://refhub.elsevier.com/S0952-1976(23)01799-2/sb85
http://arxiv.org/abs/2212.06347
http://arxiv.org/abs/2208.11866

	Deep neural operators as accurate surrogates for shape optimization
	Introduction
	Problem setup
	Methodology
	Data Generation
	Geometry generation
	Mesh generation
	Flowfield simulation

	Surrogate model: DeepONet
	Brief review of DeepONets
	Training and Testing of DeepONets
	Lift and Drag calculation

	Results
	Results from DeepONet model
	 Constrained Shape Optimization Results

	Hypersonic Waverider Study
	Computational Complexity of the DeepONet
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix
	Nektar++ cross-verification
	DeepONet hyperparameter optimization experiments
	Geometry optimization validation
	WSS from Automatic-differentiation

	References

