
DEEP NEURAL OPERATORS CAN SERVE AS ACCURATE
SURROGATES FOR SHAPE OPTIMIZATION: A CASE STUDY FOR

AIRFOILS

*Khemraj Shukla, *Vivek Oommen, *Ahmad Peyvan
Brown University, Providence, RI, 02912

*Michael Penwarden
University of Utah, Salt Lake City, UT, 84112

Luis Bravo, Anindya Ghoshal
Weapons and Materials Directorate, U.S. Army Research Laboratory

Aberdeen Proving Ground, MD, 21005

Robert M. Kirby
University of Utah, Salt Lake City, UT, 84112

George Em Karniadakis
Brown University, Providence, RI, 02912

*Equal contribution

ABSTRACT

Deep neural operators, such as DeepONets, have changed the paradigm in high-dimensional nonlinear
regression from function regression to (differential) operator regression, paving the way for significant
changes in computational engineering applications. Here, we investigate the use of DeepONets to
infer flow fields around unseen airfoils with the aim of shape optimization, an important design
problem in aerodynamics that typically taxes computational resources heavily. We present results
which display little to no degradation in prediction accuracy, while reducing the online optimization
cost by orders of magnitude. We consider NACA airfoils as a test case for our proposed approach,
as their shape can be easily defined by the four-digit parametrization. We successfully optimize
the constrained NACA four-digit problem with respect to maximizing the lift-to-drag ratio and
validate all results by comparing them to a high-order CFD solver. We find that DeepONets have
low generalization error, making them ideal for generating solutions of unseen shapes. Specifically,
pressure, density, and velocity fields are accurately inferred at a fraction of a second, hence enabling
the use of general objective functions beyond the maximization of the lift-to-drag ratio considered in
the current work.

Keywords Neural operators · DeepONet · Airfoil shape optimization · Navier-Stokes equations · Surrogate models

Nomenclature

m = Maximum camber in percentage of the chord
p = Position of maximum camber in percentage of the chord
t = Maximum thickness of the airfoil in percentage of the chord
ρ = non-dimensional density
u = non-dimensional velocity of the fluid in x direction
v = non-dimensional velocity of the fluid in y direction

ar
X

iv
:2

30
2.

00
80

7v
1

 [
ph

ys
ic

s.
fl

u-
dy

n]
 2

 F
eb

 2
02

3

p = non-dimensional pressure
T = non-dimensional temperature
G = output of the DeepONet model
θb = set of all trainable weights and biases of the branch network
θt = set of all trainable weights and biases of the trunk network
Nφ = number of basis functions learned by the DeepONet
τij = Components of viscous stress tensors
f = generalized input function to the DeepONet
ξg = Geometric parameter
c = Chord length
Ma = Mach number
ξf = Flow parameter
Re = Reynolds number
Pr = Prandtl number
α = output of the branch network
φ = output of the trunk network
τw = Wall Shear Stress
L = Lift
D = Drag−→n = Unit Normal−→
t = Unit Tangent

2

1 Introduction

Neural networks that solve regression problems map input data to output data, whereas neural operators map functions
to functions. This recent paradigm shift in perspective, starting with the original paper on the deep operator network or
DeepONet [1, 2], provides a new modeling capability that is very useful in engineering – that is, the ability to replace
very complex and computational resource-taxing multiphysics systems with neural operators that can provide functional
outputs in real-time. Specifically, unlike other physics-informed neural networks (PINNs) [3] that require optimization
during training and testing, a DeepONet does not require any optimization during inference, hence it can be used in real-
time forecasting, including design, autonomy, control, etc. An architectural diagram of a DeepONet with the commonly
used nomenclature for its components is shown in Figure 1. DeepONets can take a multi-fidelity or multi-modal input
[4, 5, 6, 7, 8] in the branch network and can use an independent network as the trunk, a network that represents the
output space, e.g. in space-time coordinates or in parametric space in a continuous fashion. In some sense, DeepONets
can be used as surrogates in a similar fashion as reduced order models (ROMs) [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].
However, unlike ROMs, they are over-parametrized which leads to both generalizability and robustness to noise that is
not possible with ROMs, see the recent work of [20].

Figure 1: Schematic of a DeepONet. f represents a general input function provided to the DeepONet. A discrete
representation of f with resolution (=res) is provided as the input to the branch network. In this figure, y(∈ Rd)
represents the domain coordinates of the output function.

In the present work, we investigate the possibility of using DeepONets for representing functions over different solutions
domains, something that has not been explored before. In particular, we focus on aerodynamic design by considering a
classical problem of optimizing the shape of an airfoil at subsonic flow conditions. Aerodynamic shape optimization
(ASO) of airfoils plays a vital role in the design of efficient modern commercial aircraft. The aerodynamic geometric
optimization process is usually applied to the airfoil shape that forms the cross sections of the three-dimensional (3D)
airfoil. The geometric optimization is performed to reduce the drag force while increasing the lift to enhance the
aircraft’s fuel efficiency, hence reducing the transportation cost. The optimization process often requires a numerical
model that predicts the flow field around a given airfoil geometry and computes the lift and drag for desired flow
conditions. Traditionally, the numerical models are compressible flow numerical solvers, which are computationally
intensive to accurately realize the flow field around a complex airfoil. Surrogate models can be introduced to circumvent
the time-consuming part of the optimization loop where the numerical solver calculates aerodynamic forces.

ASO traditionally uses two main paradigms, gradient-based and gradient-free optimization approaches. The gradient-
based approaches require the calculation of the cost function derivative with respect to the design variables. When
the number of design variables exceeds a certain threshold, the gradient-based optimization becomes infeasible due
to its expensive computational cost [21]. The adjoint formulation is derived from either the Euler or Navier-Stokes
equations to make the gradient optimization independent of the design variables [22, 23, 24, 25]. Solving the adjoint
equations can be as time-consuming as solving the governing equations (i.e., the rule-of-thumb is that forward and
adjoint solutions together is at least twice the cost of the forward solver). Also, the optimization process can fall into

3

local minima leading to a non-optimized geometry [26]. Gradient-free approaches [27, 28] can avoid local minima by
employing the direct optimization approach that uses many costly numerical simulations of the compressible flows.
The numerous simulations of the flow can help achieve the global minimum of the cost function but at the expense of
high computational costs. Surrogate models can be deployed to realize the flow field with acceptable accuracy and an
immense speedup compared to the full CFD simulations. The surrogate model can then be used in both a gradient-based
of a gradient-free global optimization process. The surrogate-based models are usually coupled with gradient-free
optimizations such as genetic algorithm and particle swarms optimization (PSO) [29] methods. Krige [30] proposed the
Kriging surrogate model that is employed in aerospace design experiments [31, 27]. The Kriging surrogate model must
be trained both before and during the optimization process since the surrogate model is usually inaccurate based solely
on the initial training. High generalization error of the Kriging surrogate model results in inaccurate model prediction
by the initial training stage. A deep operator network (DeepONet), as proposed in this work, can alleviate this issue
since it maps a function to another function, which improves the generalization error significantly [1].

The parameterization of the geometry drastically affects ASO’s computational cost and accuracy. Parameterizing the
geometry reduces the number of design variables through which the optimization algorithm must search. Reducing the
number of design variables simplifies the optimization process and decreases the sensitivity to noise. The parametric
model must reproduce a wide range of airfoil shapes and keep the number of design variables minimal. Various
geometric parametric models have been employed for ASO. Carpentieri et al. [23] employed orthogonal Chebyshev
polynomials to construct the airfoil curves. An orthogonal polynomial is used to cover the entire design space. Lepine
et al. [32] used Non-Uniform Rational Basis Spline (NURBS) to parameterize a large class of airfoil shapes by only
using 13 control points. Following the Lepine et al. [32] idea, Srinath and Mittal [25] also employed NURBS for the
parameterization. Other researchers have used B-Spline [33], and Bezier [34] curves, Hicks and Henn’s functions [35]
for airfoil shape construction. Painchaud-Ouellet et al. [36] used NURBS for the shape optimization of an airfoil within
transonic regimes. They showed that using NURBS ensures the regularity of the airfoil shape. The airfoil shape can also
be constructed using a deformation method [35]. This method adds a linear combination of bumps to a baseline airfoil
shape for parameterization [37, 38]. The Class function/shape function Transformation (CST) approach [39] employs
Bernstein polynomials [40] to parameterize airfoils and other aerodynamic geometries. Other researches employed
proper orthogonal decomposition (POD) [39] to reduce the number of design variables. In the current study, we employ
the NACA 4-digits airfoil and NURBS parameterizations for the airfoil shape construction.

With the significant advancement in computational power, Deep Neural Network (DNN) tools have gained much
attention for developing surrogate models [41, 42, 43]. The DNN approach can be readily trained for numerous input
design variables to predict the cost function of the optimization loop. Du et al. [44] trained a feed-forward DNN to
receive airfoil shapes and predict drag and lift coefficients. They also used RNN models for estimating the pressure
coefficient. The optimal airfoil design determined using the surrogate model was compared with an airfoil design
obtained with a CFD-based optimization process [44]. Liao et al. [45] designed a surrogate model using a multi-fidelity
Convolutional Neural Network (CNN) with transfer learning. This learning method transfers the information learned
in a specific domain to a similar field. The low-fidelity samples are taken as the source, and the high-fidelity ones
are assigned as targets. Tao and Sun [46] introduced a Deep Belief Network (DBN) to be trained with low-fidelity
data. The trained DBN was later combined with high-fidelity data using regression to create a surrogate model for
shape optimization. Existing surrogate models for shape optimization are all trained to predict lift, drag, or pressure
coefficients. In contrast, the flow field around the aerodynamic shape is not inferred. Here, we construct a surrogate
model that predicts the flow field around the airfoil shape using a DeepONet. Predicting the flow field provides
additional information that can be used in the cost function of the optimization loop. We aim to develop an aerodynamic
shape optimization framework using a surrogate model that can infer the flow field around the geometry. The surrogate
model is constructed using a DeepONet and is trained using high-fidelity CFD simulations of airfoils in a subsonic flow
regime. The surrogate model is then implemented in two different optimization frameworks for shape optimization.
The novelties of this study include the following:

• Generating a DeepONet-based surrogate model, which is an efficient and inexpensive instantiation of the
exorbitant CFD solver.

• The construction of the surrogate model is invariant to input space, which can be defined as low or high-
dimensional parameterizations.

• Prediction of high-dimensional flow field can be used for various cost functions in the optimization loop.

• Drag and lift coefficients are computed using the inferred high-dimensional flow field, resulting in more
accurate predictions.

• Integration of the Dakota optimization framework with the DeepOnet surrogate.

4

The rest of the article is organized as follows. We begin by defining the optimization process. We then present the
data generation for training the surrogate model using the open-source spectral/hp element Nektar++ CFD solver. The
training procedure of the DeepONet-based surrogate model is explained. Later, the optimization results using two
different methods are represented. Finally, we summarize our findings in the Conclusions section. In the Appendix,
we provide verification on the accuracy of the data generated by repeating selected simulations using different codes.
Additionally, we provide validation of the Dakota optimizer by comparing against multiple approachs, and find that all
the approaches studied converge to the same solution.

2 Problem setup

To highlight the capabilities of DeepONets as function-to-function maps that can be used within the airfoil shape
optimization process, we start by reviewing the traditional end-to-end shape optimization pipeline augmented with
DeepONet training. A schematic of the pipeline is shown in Figure 2. Reviewing the figure from upper left to lower
right, we start with an experimental setup. This represents the determination of the feasible set from which the
parametric airfoils in training will be drawn, the aerodynamic conditions, and any other engineering constraints related
to the problem. We choose NACA four-digit airfoils as our geometric representation, which provides the upper and
lower surface equations, given a random draw of parameters. This representation is then used in three places: (1) to
directly mesh the flowfield around the airfoil for which we use Gmsh; (2) to use in querying the surrogate model on
the surface of the airfoil when predicting the objective lift-to-drag ratio; and (3) as the branch input to the DeepONet
function-to-function map, which is pre-processed using NURBS to lower the dimensionality.

In terms of creating the surrogate model, this can be viewed as the following forward problem. One deciphers the
geometric and flow parameters, which are then used to create the inputs to a CFD solver: a geometric representation
of the airfoil and its corresponding mesh to be used for approximating the flowfield and a flow parameter file. These
are then input to a flow solver – in our case, the CFD solver Nektar++. Results from this solver are used to generate
training data used to train our DeepONet surrogate. Finally, the lower-right quadrant of the diagram denotes the shape
optimization process using the trained DeepONet surrogate. This process is recursive as the optimizer, for which we use
Dakota, queries the DeepOnet surrogate model with new design parameters until the objective function is sufficiently
minimized. This process differs from existing approaches because the bulk of the optimization process is done offline.
Generating data using the CFD solver can be expensive, but with the final trained DeepOnet, the online cost of geometric
optimization is orders of magnitude faster than other methods. Furthermore, as long as the objective can be created by
the DeepONet flowfields trained over, a different objective function can be defined, not only lift-to-drag, and an airfoil
can be quickly optimized with respect to the new objective without any additional cost.

For the purposes of our experiments, we have focused on using 2D compressible Navier-Stokes fields at Reynolds
number Re = 500 and Mach number Ma = 0.5 for our training. These values have been chosen to allow us to focus on
DeepONet’s ability to capture variations in domains (instead of the compounding effects of unsteadiness, etc.). Given
the success of DeepONets under this experimental setup, future work will extend this pipeline to more complex flows
and experimental conditions, such as varying the angle of attack, morphing geometry, handling unsteady flow, or going
into the high speed flow regimes.

3 Methodology

3.1 Data Generation

For each example in the dataset, we define a set of geometric parameters (ξg) and flow parameters (ξf). The geometric
parameters are then converted into another representation, such as surface coordinates derived from the NACA airfoil
equations; this transformation is given by Γ(ξg). These points are then used to mesh the flowfield domain with Gmsh
[47], which is then input into the flowfield simulation software Nektar++ [48, 49]. We obtain the solutions fields from
Nektar++ through post-processing for density, x-velocity, y-velocity, and pressure. This is saved in two sets, one in a
subdomain around the airfoil for training the DeepONet, and one at airfoil sensors on the surface for validation. We
also save the Nektar++ lift and drag forces for validation of the discrete integration of the airfoil forces.

3.1.1 Geometry generation

NACA 4-digit airfoils provide an excellent testbed application for geometry optimization using DeepONets since they
can represent a wide range of shapes from well-known and studied parameterized geometric equations. Our geometry
optimization framework could be easily extended to any parameterized geometry, such as NACA 5-digits or beyond.

5

Figure 2: Diagram of airfoil geometry optimization with a DeepONet surrogate model. The blue ovals indicate the
beginning and end states of the method. The main intermediate steps are highlighted in colored boxes, whereas the
auxiliary steps are grey parallelograms.

Following [50], we define the parametric equations for the surface of an airfoil with a chord length of one, as follows:

yt =
t

0.2

(
a0
√
x+ a1x+ a2x

2 + a3x
3 + axx

4
)

(1)

yc =

{
m
p2

(
2px− x2

)
if x < p

m
(1−p)2

(
1− 2p+ 2px− x2

)
if x > p

θ = tan−1
(
dyc
dx

)
(2)

xu = x− yt sin(θ), yu = yc + yt cos(θ)

xl = x+ yt sin(θ), yl = yc − yt cos(θ) (3)

where a0 = 0.2969, a1 = −0.1260, a2 = −0.3516, a3 = 0.2843, a4 = −0.1015. We can therefore define our
geometry as a point cloud with coordinate sets (xu, yu, xl, yl) parameterized by ξg = (t, p,m). A series of x locations
are found using cosine spacing with 100 points; this increases the geometric fidelity around the leading and trailing
edge, increasing the accuracy of the mesh and flowfield simulation at these important locations. To simplify the problem
and reduce the likelihood of flow separation or turbulence, we constrain ξg. The maximum thickness (t) is set to a
constant 0.15, and the domain of the parametric space left by the position of maximum camber (p) and maximum
camber (m) is p×m ∈ [0.2, 0.5]× [0.0, 0.09]. Therefore, for one geometric example in either the train or test set, we
draw a ξg tuple where the variable parameters are drawn from a uniform distribution within their domains. We perform
this draw 50 times and obtain the surface coordinates from Equations 1 - 3, splitting it into 40 training and 10 testing
examples as seen in Fig. 3. The test/train split is an essential aspect of deep learning; here, we choose a relatively sparse
sampling highlighting the ability of DeepONets to generalize well to unseen parameters.

Next, to lower the input dimensionality into the DeepONet branch, we fit the airfoil surface with Non-Uniform Rational
B-Splines (NURBS) with 30 control points using geomdl [51]. This reduces the input dimensionality from 200 (x, y)
pairs to only 30.

3.1.2 Mesh generation

The meshes are generated using Gmsh [47] for parametrized airfoils geometry with a minimum characteristic length of
0.01 at parametrized locations. The airfoil flowfields are meshed using the 200 surface points exactly from the NACA
equations, not the NURBS fit, which contains some inaccuracy. A spline function is used to represent the 1D geometry
of the boundaries of airfoils. To resolve the flow at leading and trailing edges, meshes are refined by using the splitting
approach [52]. The NURBS low-dimensional representation is a step to reduce overparameterization in the DeepONet,
which is unnecessary for generating high-fidelity training data. The mesh generation for all 50 airfoils is automated
using Gmsh’s Python API integrated with the geometry generation in Python, so no manual operations are needed. Fig.

6

Figure 3: Train and test set geometries sampled over the ξg domain. Note that the numbers correspond to NACA airfoils
and duplicate numbers are due to rounding to the nearest integer for readability. The true NACA parameters are drawn
from a uniform distribution and are, therefore, real-valued.

Figure 4: Discretization of an airfoil with bounding domain. ΩS represents the entire domain over which the compress-
ible Navier-Stokes equations are solved. ΩT (inset image with red border) represents the domain for which a DeepONet
is trained. Inset image with yellow boundary represents the subdomain (ΩW) showing the mesh refinement around the
airfoil.

4 shows the mesh of the entire simulated domain ΩS , which is then input into Nektar++ along with the flow parameters
to generate the DeepONet training data. As seen in the figure, only a subset of the solved steady-state domain ΩT
is used in training the DeepONet. This is because the DeepOnet is a function-to-function map and does not strictly
obey boundary conditions or is affected by phenomena such as reflections due to the boundaries. It is performing
regression on the dataset, not solving the system of equations, and therefore can be taken as a smaller domain, even
without freestream conditions. Since the objective is geometric optimization, this subdomain simplifies the DeepONet
training problem and cost of training.

3.1.3 Flowfield simulation

We used a compressible flow solver implemented in Nektar++ to generate the flow field data. The Nektar++
(www.nektar.info) is an open-source software framework [48, 49] designed to support the development of high-
performance, scalable solvers for partial differential equations using the spectral/hp element method. The 2D compress-

7

ible flow solver uses the two-dimensional compressible Navier-Stokes equations expressed as,

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
= 0

∂ρu

∂t
+
∂ρu2 + p

∂x
+
∂ρuv

∂y
=

1

Re

(
∂τxx
∂x

+
∂τyx
∂y

)
∂ρv

∂t
+
∂ρuv

∂x
+
∂ρv2 + p

∂y
=

1

Re

(
∂τxy
∂x

+
∂τyy
∂y

)
∂E

∂t
+
∂(E + p)u

∂x
+
∂(E + p)v

∂y
=

1

Re

∂ (uτxx + vτxy + κ∂T∂x
)

∂x
+
∂
(
uτxy + vτyy + κ∂T∂y

)
∂y

 ,
(4)

where p = RρT , R = 1
γMa2 , k = γ

γ−1
µR
Pr , with µ being the non-dimensional viscosity and computed by using the

Sutherland law as

µ =
T 3/2

Re

1 + C/T∞
T + C/T∞

. (5)

Expressions for τxx, τyy, and τxy are as follows

τxx = 2µ

(
ux −

ux + vy
3

)
,

τyy = 2µ

(
vy −

ux + vy
3

)
,

τxy = µ (uy + vx) .

We aim to simulate the flow past airfoils by solving the compressible Navier-Stokes equations given by Equation (4) with
free-stream parameters M∞ = 0.5, ReL=1 = 500, u∞ = 1, v∞ = 0, T∞ = 1, AoA = 0 and Pr = 0.72. The flow
domain is [−3, 11]× [−3, 3] and discretized by conforming triangular elements. To solve (4), we use the discontinuous
Galerkin spectral element method (DGSEM) with basis functions spanned in 2D by Legendre polynomials of the second
degree. For advection and diffusion terms, weak and interior penalty-based dG approach with Roe upwinding is used
in space. A diagonally implicit Runge–Kutta (DIRK) method is used as a time integrator for advection and diffusion
terms. The boundary conditions of inflow, outflow, adiabatic wall at airfoil surface, and high-order boundary conditions
at the top and bottom are imposed weekly. For detailed descriptions of solvers and methods, readers are advised to read
the article by [53].

3.2 Surrogate model: DeepONet

3.2.1 Brief review of DeepONets

Neural operators are neural network models developed on the basis of the universal operator approximation theorem
[54]. The neural operators learn the mapping between spaces of function and directly learn the underlying operator
from the available training data. DeepONets [1] and Fourier Neural Operators (FNO) [55] are the two popular neural
operators extensively used for solving a wide spectrum of problems in diverse scientific areas. A DeepONet consists of
a branch network that encodes the input function and a trunk network that learns a collection of basis functions. The
DeepONet output is computed by taking the inner product between the branch and trunk network outputs.

3.2.2 Training and Testing of DeepONets

We train four different DeepONet models to learn the pressure (p), density (ρ), and velocity (u, v) fields for a given
airfoil geometry (ξg) from the training data. The trunk network learns a collection of basis (φ) as functions of spatial
coordinates, and the branch network learns the corresponding coefficients (α) as a function of the airfoil geometry. The
DeepONet output is defined as

Gq(ξg)(x, y) =

Nφ∑
i=1

αi(ξg; θ
q
b)φi(x, y; θqt) q ∈ {p, ρ, u, v}. (6)

In the case of airfoils, the geometry can be fed into the branch network by directly providing the geometric parameter,
ξg. However, ξg need not exist explicitly for a general arbitrary geometry. Under such a scenario, the geometry

8

Table 2: Hyperparameters of NURBS-DeepONet and the Parameter DeepONet

NURBS-DeepONet Parameter-DeepONet
Branch network architecture: [30,100,100,50] Branch network architecture: [2,100,100,50]
Branch network activation: tanh Branch network activation: tanh
Trunk network architecture: [2,100,100,50] Trunk network architecture: [2,100,100,50]
Trunk network activation: tanh Trunk network activation: tanh
Nφ: 50 Nφ: 50
Optimizer: Adam Optimizer: Adam
Learning rate: 1.00E-04 Learning rate: 1.00E-04

is often represented using the NURBS control points. To demonstrate the effectiveness of using a DeepONet in
either of the situations, we investigate parameter-DeepONet that directly takes ξg as the branch network input and
NURBS-DeepONet that takes NURBS control points of the airfoil geometry as the input to the branch network. The
hyperparameters of the DeepONet used in this study are provided in Table 2.

3.2.3 Lift and Drag calculation

We present two ways to evaluate the objective function – in our case, lift-to-drag. The map created by the trained
DeepONets takes an input geometry and spatial (x, y) location in the output space and returns the value of the field at
that location. So it follows that to estimate the lift and drag, we simply evaluate the discrete integral over the surface of
the airfoil, for which the (x, y) points are easily generated for objective function queries by Equations 1-3. The discrete
integrals for lift and drag given by Equations 8 & 9 subject to the approximation of wall shear stress in Equation 7.

τw = µ
dU

d−→n
(7)

L =

∫
dFx =

∑
p−→nxdS +

∑
τw
−→
txdS (8)

D =

∫
dFy =

∑
p−→nydS +

∑
τw
−→
tydS (9)

For the first term in the aerodynamics forces, the pressure is directly obtained from one of the DeepONet predictions. In
the second term, the viscosity µ(p, ρ) is obtained by Equation 5 as a function of the pressure and density DeepONets.
Finally, the change in speed of the flow over the airfoil surface dU

d−→n , is obtained in two ways:

1. Finite-difference (A):
dU

d−→n
=
−U2 + 4U1 − 3U0

2h
(10)

2. Automatic-differentiation (B):
dU

d−→n
= (vy − ux)sinθcosθ − vxsin2θ + uycos

2θ (11)

where h = 0.001 and θ is the angle between the x-y axis and each segment’s normal-tangental axis. Approach
(A) is a second-order forward finite difference approximation obtained by sampling the x-velocity and y-velocity
DeepONets at the appropriate locations defined by the surface normal and spacing h. Approach (B) utilizes the now
well-known development in automatic differentiation [56], primarily utilized in physics-informed machine learning for
approximating partial derivatives to obtain the PDE residual. Here, since the DeepONet directly takes in the spatial
(x, y) coordinates and outputs the velocity components (u, v), the computational graph is complete and the partials
(ux, uy, vx, vy) can be estimated with this method. The required sampling for each method is shown in Fig. 5. While
(A) takes three times the amount of point evaluations, (B) requires the gradients to be computed, so the cost of each
can be viewed as similar. However, the flexibility of using automatic differentiation in this way may allow for more
complex objective functions in the future given the right mapping and subsequent computational graph.

4 Results

4.1 Results from DeepONet model

The training and testing relative L2 error of the NURBS and parameter-based DeepONets for all four different fields
are reported in table 3. We observe that the NURBS and parameter-based DeepONets predict fields with similar

9

Figure 5: Illustration of the discrete integral for lift and drag. The points in red indicate the surrogate model samples
used in the construction of the approximation to dU

d−→n with a finite difference approximation of the gradient or the
automatic differentiation approximation using the direct network gradients.

Table 3: Relative L2 errors of the state variables trained DeepONet models

NURBS-DeepONet Parameter-DeepONet
Train rel. L2 Error Test rel. L2 Error Train rel. L2 Error Test rel. L2 Error

Gp 4.68e-03 6.05e-03 5.23e-03 6.85e-03
Gu 4.97e-03 6.21e-03 4.12e-03 5.38e-03
Gv 3.73e-03 4.60e-03 3.31e-03 4.25e-03
Gρ 4.57e-03 5.89e-03 4.00e-03 5.18e-03

accuracy. NURBS-DeepONet has marginally better predictions on the pressure field, while parameter-DeepONet
generates marginally better predictions for velocity and density fields. The main takeaway is that either representation
is sufficient for the geometry optimization of this experiment. However, we must consider that in the future more
complex geometries may be used, particularly in the sense of local morphing. Therefore, the NURBS representation
will likely be necessary as a direct parameter mapping may miss local nuances. The predicted fields and the absolute
pointwise error by the best DeepONet models for the flowfield parameters are shown in Fig. 7. It can be seen that the
global prediction is, in general, accurate; the error is primarily localized to the airfoil’s leading edge. In the future,
adaptive weighting schemes will be used to improve DeepONet training, particularly at the points of difficulty, such as
the surface and leading edge. The corresponding relative L2 error of the fields over the entire dataset is shown in Fig. 6.
We observe minimal generalization error and that DeepONets are globally accurate.

Regarding geometry optimization, we must concern ourselves not only with the global flowfield accuracy, but also
with the accuracy on the surface of the airfoil in particular. Fig. 8 shows the corresponding surface prediction plots
for the same airfoil presented in Fig. 7 as a function of the x-direction over the airfoil. We observe good accuracy
in the pressure and density fields, which will provide very accurate predictions of the lift and drag force components

Figure 6: Error Scatter Plots. The relative L2 error corresponding to each of the train and test samples for pressure,
velocity, and density fields, with respect to the DeepONet predictions, are shown in this figure.

10

Figure 7: DeepONet Predictions. The pressure, density, and velocity fields around the test set airfoil NACA 7315
predicted by the DeepONet, and the corresponding pointwise absolute errors are also provided.

11

Figure 8: Plot of the flowfield variables on the surface of the test set airfoil NACA 7315. All plots display accurate
predictions on the surface, which are then used to compute the lift and drag forces. The no-slip condition is not directly
enforced by the DeepONet, which results in the velocity plot difference. However, it can be seen by the y-scale that the
prediction is close to zero, aside from the leading edge, and does not greatly affect the overall lift and drag computation.

due to pressure as well as the viscosity µ(p, ρ), which is a function of these fields per Equation 5. The surface’s x
and y velocity fields do not agree because the DeepONet does not strictly obey a no-slip condition. However, aside
from the leading edge, the predictions are close to zero. Furthermore, the fields are not directly related to the objective
lift-to-drag but indirectly related through the estimate of the change in flow speed over the surface dU

d−→n obtained by
approaches (A) and (B) in Equation 10 and 11. Therefore, the inaccuracy does not significantly affect the overall
objective prediction. This is corroborated by Fig. 9, which shows the sorted lift-to-drag ratio for the entire dataset. The
results of both numerical integration approaches (A) and (B) are very accurate to the stored lift-to-drag results from the
Nektar++ data generation step. We can also see in the error plot that it is quite uniform, and there are no discernible
biases in the geometric parameter space, indicating we have learned the entire space well enough for the final optimized
result to be accurate.

4.2 Shape Optimization Results

The objective of shape optimization is to maximize the lift-to-drag ratio over a feasible region of parameters, which
are m and p for this case. Equation 12 gives this objective in the form of a minimization problem, as is standard for
most optimizers that perform gradient-based or gradient-free optimization. Therefore, the definition of a constrained
optimization problem for airfoil is expressed as

minimize
m, p

− f(m, p)

subject to mmin ≤ m ≤ mmax,

pmin ≤ p ≤ pmax,

(12)

where f(m, p) represents ratio of lift to drag and [mmin,mmax] and [pmin,mmax] are bounds for feasible search
region.

One of the present study’s goals is to optimize the shape for any arbitrary geometry. Therefore, we integrated the
DeepONet-based surrogate model with Dakota, which is a multilevel parallel object-oriented framework for design
optimization, parameter estimation, uncertainty quantification, and sensitivity analysis [57]. Dakota is freely available
and offers a very efficient and scalable implementation. We integrated the DeepONet with Dakota in a modular
approach as shown in Algorithm 1, where D is an algorithm chosen from a set of optimizers provided by Dakota and
DeepONet-based model Φ is passed as an argument to D. For example, to achieve the solution of Equation (12), we
use an efficient global algorithm (EGO), which is a derivative-free approach that uses a Gaussian process model for
the optimization of the expected improvement function and is based on the NCSU Direct algorithm [58]. The reason
behind choosing this method is to avoid tuning various hyperparameters. To use the algorithm to solve the problem in

12

Figure 9: Plot of the computed lift-to-drag objective for the entire dataset sorted by the Nektar++ reference values. As
seen in both plots, the approximation to the high-fidelity CFD solution is very accurate and consistent throughout the
entire parametric domain. Particularly, we note that the testing set performs comparably to the training set, meaning there
is little to no generalization error, which is necessary when inferring unseen queried geometries during optimization.

Equation (12), we set a seed, which is to be used for Latin Hypercube Sampling (LHS) to generate the initial set of
points for constructing the initial Gaussian process. To gain efficiency, we used batch-sequential parallelization offered
by Dakota on an eight-core CPU (2.3 GHz Intel core i9).

Algorithm 1 Integration of DeepONet-based surrogate model with Dakota
Require: m, p, x, y: maximum camber, the position of maximum camber, spatial coordinates for flow-field prediction
Require: Trained DeepONet: G(m, p, x, y)
Require: D : D ∈ Algorithms in Dakota
Require: Ψ(u, v, ρ, p, ξg): Function producing the lift L and drag D
Require: N : Number of objective function evaluations
Require: mmin,mmax, pmin, pmax: Bounds of feasible region
n← 0, mopt ← m0, popt ← p0 . Initialize
while n ! = N do

mopt, popt ← D(−f(mopt, popt),mmin,mmax, pmin, pmax,G,Ψ) . Optimization process for parameters
n← n+ 1

end while

The optimization landscapes for approaches (A) and (B) are shown in Fig. 10 obtained by brute force evaluation of the
respective objectives. Also plotted are the locations of the dataset in the parameter space (p,m) ∈ [0.2, 0.5]× [0.0, 0.09],
displaying the sparse sampling used to obtain accurate optimization results. We also observe that the landscape for this

13

Figure 10: Visualization of the lift/drag landscape obtained from brute force sampling of p and m using a 10× 10 grid.
The train and test sets are also plotted to show the sparse dataset used by the DeepONet (A) Landscape obtained using
finite difference approximation. (B) Landscape obtained using automatic differentiation approximation.

Model Type Relative Cost of Single Objective Function Evaluation
Baseline CFD (Nektar++ placeholder) 32, 253
DeepONet (A) 1.34
DeepONet (B) 1

Table 4: Relative cost of single objective function evaluation during geometry optimization A Flowfield mapping with
finite-difference approximation. B Flowfield mapping with automatic-differentiation approximation.

experimental setup is simple and convex. In future work, more complex conditions like local morphing will make the
landscape more complex, likely nonconvex, requiring sophisticated optimization methods. While not needed here, we
still utilize state-of-the-art optimization in our framework with Dakota. Additionally, we can see that the local minimum
given the constrained parameter bounds, set to the dataset sampling bounds, is at the edge. This implies that the global
minimum lies outside of our trained bounds, which is not known a priori when generating data. In future work, we hope
to evaluate DeepONets efficacy in extrapolating outside the trained bounds, potentially using transfer learning.

The optimization process finds the minimizer of function in 15 evaluations, and the optimum value which maximizes
L/D is (m∗, p∗) = (0.2, 0.067). To achieve consistency in the optimization process, we ran the EGO algorithm 15
times with different seeds and we observed the same optimal point. Furthermore, we validated the optimization results
with a comparison to other approaches in Appendix 5.2. The results obtained from all the approaches are in excellent
agreement and reported in detail in Table 6 along with their wall clock times. Finally, the most significant contribution
of the paper is shown in Table 4. As we can see, the integration of DeepONet into an airfoil geometry optimization
framework has lowered the online cost of new objective evaluations by 32, 000+ times. This makes it entirely possible
to have almost real-time optimization results, costing a few minutes instead of days. Furthermore, the trained models
can be put on any hardware, such as a standard laptop, and real-time accurate flowfields can be predicted in seconds,
meaning the geometry optimization is not hardware dependent at test time. We have demonstrated that integrating
DeepONets into a geometry optimization pipeline suffers little in accuracy and provides the tradeoff of obtaining and
training on an offline dataset with almost instantaneous optimization results when used online compared to a traditional
CFD method.

To validate the parameters of optimized airfoil (p = 0.2, 0.067), we compare the streamline plots in Fig. 11 constructed
using the flowfields (u, v) obtained from trained DeepONet and Nektar++. In general, the streamline plots show an
excellent agreement and therefore validate the workflow of shape optimization presented in this work. DeepONet is
able to successfully detect and predict the circulation near the trailing edge of the airfoil. However, a closer look reveals
non-physical streamlines originating from the surface of the airfoil. This is due to the error in the velocity fields near
the airfoil surface, predicted by the DeepONet. The results can be further improved by giving more importance to the
region near the airfoil surface (via proper weighting) during training of the DeepONet.

14

Figure 11: Optimized airfoil. The streamline plot represents the flow past the optimized airfoil with (p,m) =
(0.2, 0.067) in ΩW . The velocity fields simulated in Nektar++ and predicted by the DeepONets are shown here.

5 Conclusions

We have successfully integrated DeepONets as a surrogate model into the shape optimization framework for airfoils.
Having summarized prior work in this field, we empirically demonstrate the efficacy of DeepONets in terms of
retaining sufficient flowfield accuracy used in evaluating the objective function of lift-to-drag, as well as the significant
computational speed up as a replacement for a traditional CFD solver during online geometry optimization. We have
provided thorough validation of the results presented as well as extensive experimentation such as two approaches
(A) and (B) when approximating the wall shear stress and two forms of DeepONet inputs (NURBS and ξg) to ensure
a robust pipeline. Importantly, DeepONets exhibit almost no generalization error over the dataset, so it follows that
the resulting optimized geometry (p = 0.2,m = 0.067) is accurate and achieved 32, 253 speed-up compared to the
CFD baseline. The framework is general and can address more complex problems with multiple inputs, e.g. different
Mach numbers and different angles of attack that can be inputs to either the branch or the trunk networks. Hence, with
relatively small modifications, such a framework can handle optimization in the high speed flow regimes that exhibit
flow unsteadiness, shocks, non-equilibrium chemistry, and even morphing geometry. Furthermore, the approaches
presented are flexible due to the integration of machine learning in the form of function-to-function maps using
DeepONet. Therefore, improvements such as the introduction of multi-fidelity training and physics-informed machine
learning can be leveraged to reduce the cost of data generation. We also successfully show the application of automatic
differentiation, which performs comparably to the traditional approach of finite differences in the wall shear stress
calculation. Finally, we hope to utilize transfer learning and uncertainty quantification using the recently developed
library NeuralUQ [59] to extrapolate outside of the trained geometric parameter domain to find global optima with
confidence.

15

Acknowledgments

The research reported in this document is performed in connection with cooperative agreement contract/instrument
W911NF-22-2-0047 with the U.S. Army Research Laboratory. L.B. and A.G. were supported by the US Army Research
Laboratory 6.1 basic research program in vehicle power and propulsion sciences. The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the official policies or positions,
either expressed or implied, of the U.S. Army Research Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Appendix

5.1 Nektar++ cross-verification

To ensure a steady-state solution, we selected the flow parameters as M = 0.5 and Re = 500. Calculating the
steady-state solution requires careful consideration. To ensure the steady state solution, for each NACA profile, we
recorded the value of conservative variables at six different locations in the wake. We then examined the conservative
variables’ time history to ensure the steady state is reached and the solution update has stopped. Fig. 12 shows the
location of the history points, where the transient flow could last longer than other spatial locations. As a sample, we
plot the time history of variables at point 5 (Fig. 13), which experiences the highest flow fluctuations in time. According
to Fig. 13, the solution reached a stationary state when the conservative variables approached constant values.

Figure 12: History points locations in the wake for NACA airfoils. The conservative variable values are stored in time
at these locations to monitor the steady-state solution.

We also validated the simulation setup of NACA airfoils in NekTar++ with the results obtained by an in-house code
based on the discontinuous spectral element method of Kopriva [60, 61]. We selected the NACA0020 airfoil for
cross-verification. The steady-state solutions of the flow with M = 0.5 and Re = 500 are computed, and the results
are shown in Fig. 14. The flow field primitive variables computed by both solvers agree and show the validity of the
NekTar++ simulation setup, including mesh and simulation parameters. According to Fig. 14, the number of elements
employed for the NekTar++ simulations is sufficient for an accurate prediction. After validating the flow field, we
performed an extra flow simulation around the NACA4402 airfoil. The drag and lift coefficients of this airfoil are
reported by Kunz [62] but for an incompressible flow at Re = 1000.

We employed the automatic mesh generation setup used for the training set to create the mesh and used the same
simulation setup as the training set. We computed the drag and lift coefficients and compared them with the literature.
Table. 5 compares the drag and lift coefficients computed by Nektar++ with values reported by Kunz [62] for a similar
but not exactly the same set up.

Cd Cl Error
Nektar++ 0.1050 0.1700 1.7%
Kunz [62] 0.1032 0.1852 8.2%

Table 5: Comparison between the drag and lift coefficients computed by Nektar++ with Kunz [62]. For the reference
solution, the setup is different, i.e., the Reynolds number is 1000, and the flow is assumed to be incompressible.

16

(a) Density (b) x-momentum

(c) y-momentum (d) Total energy

Figure 13: Time history of (a) ρ, (b) ρu, (c) ρv, and (d) E at point 5 (see Fig. 12) for the NACA7315 airfoil. The
profiles show that the simulation has reached a steady-state solution where the flow variables reach constant states.

Model Type Optimized Parameters (p, m) Optimized L
D Computation Cost (sec)

Brute Force (A) (0.2, 0.070) 0.272 332.63
Brute Force (B) (0.2, 0.070) 0.281 264.12

SciPy dual-annealing (A) (0.2, 0.064) 0.269 196.09
SciPy dual-annealing (B) (0.2, 0.064) 0.281 165.57

Dakota (A) (0.2, 0.067) 0.269 157.71
Dakota (B) (0.2, 0.063) 0.282 105.00

Table 6: Geometry optimization results for different DeepONet methodologies. (A) Flowfield mapping with finite-
difference approximation. (B) Flowfield mapping with automatic-differentiation approximation. The cost of these
methods were obtained on a eight-core CPU (2.3 GHz Intel core i9) with 16 GB 2667 MHz DDR4 of MacBook Pro
2019.

5.2 Geometry optimization validation

To validate the main geometry optimization findings in the manuscript using Dakota, we also evaluate the objective
function using brute force and SciPy’s [63] dual-annealing method. Brute force is evaluated using a 10× 10 grid on
the geometric parameter space (p,m) ∈ [0.2, 0.5]× [0.0, 0.09], and therefore requires 100 evaluations of the objective.
The dual-annealing method is set to have a maximum amount of 50 evaluations but likely could be set to fewer. As
seen in Table 6, all methods discover the same optimal set of parameters and L

D , regardless of optimizer or partial
approximation given by (A) and (B).

17

(a) x-Velocity Nektar++ (b) x-Velocity DSEM

(c) y-Velocity Nektar++ (d) y-Velocity DSEM

(e) Density Nektar++ (f) Density DSEM

(g) Pressure Nektar++ (h) Pressure DSEM

Figure 14: Cross verification of steady state flow around NACA0020 obtained by the DSEM code and Nektar++. The
flow parameters are set as Re = 500 and M = 0.5.

18

References

[1] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear
operators via deeponet based on the universal approximation theorem of operators. Nature Machine Intelligence,
3(3):218–229, 2021.

[2] Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for identifying
differential equations based on the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193,
2019.

[3] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational physics, 378:686–707, 2019.

[4] Subhayan De, Malik Hassanaly, Matthew Reynolds, Ryan N. King, and Alireza Doostan. Bi-fidelity modeling of
uncertain and partially unknown systems using deeponets. Preprint at https://arxiv.org/abs/2204.00997, 2022.

[5] Amanda A. Howard, Mauro Perego, George E. Karniadakis, and Panos Stinis. Multifidelity deep operator
networks. Preprint at https://arxiv.org/abs/2204.09157, 2022.

[6] Lu Lu, Raphaël Pestourie, Steven G. Johnson, and Giuseppe Romano. Multifidelity deep neural operators for
efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport.
Phys. Rev. Research, 4:023210, 2022.

[7] Pengzhan Jin, Shuai Meng, and Lu Lu. Mionet: Learning multiple-input operators via tensor product. arXiv
preprint arXiv:2202.06137, 2022.

[8] Min Zhu, Handi Zhang, Anran Jiao, George Em Karniadakis, and Lu Lu. Reliable extrapolation of deep neural
operators informed by physics or sparse observations. arXiv preprint arXiv:2212.06347, 2022.

[9] Jan S Hesthaven and Stefano Ubbiali. Non-intrusive reduced order modeling of nonlinear problems using neural
networks. Journal of Computational Physics, 363:55–78, 2018.

[10] Jan S Hesthaven, Gianluigi Rozza, Benjamin Stamm, et al. Certified reduced basis methods for parametrized
partial differential equations, volume 590. Springer, 2016.

[11] Peter Benner, Mario Ohlberger, Anthony Patera, Gianluigi Rozza, and Karsten Urban. Model reduction of
parametrized systems. Springer, 2017.

[12] Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approximation of the
koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25(6):1307–1346,
2015.

[13] Eliodoro Chiavazzo, Charles W Gear, Carmeline J Dsilva, Neta Rabin, and Ioannis G Kevrekidis. Reduced models
in chemical kinetics via nonlinear data-mining. Processes, 2(1):112–140, 2014.

[14] Chad Lieberman, Karen Willcox, and Omar Ghattas. Parameter and state model reduction for large-scale statistical
inverse problems. SIAM Journal on Scientific Computing, 32(5):2523–2542, 2010.

[15] Tan Bui-Thanh, Karen Willcox, and Omar Ghattas. Model reduction for large-scale systems with high-dimensional
parametric input space. SIAM Journal on Scientific Computing, 30(6):3270–3288, 2008.

[16] Peter Benner, Serkan Gugercin, and Karen Willcox. A survey of projection-based model reduction methods for
parametric dynamical systems. SIAM review, 57(4):483–531, 2015.

[17] David Amsallem, Matthew Zahr, Youngsoo Choi, and Charbel Farhat. Design optimization using hyper-reduced-
order models. Structural and Multidisciplinary Optimization, 51(4):919–940, 2015.

[18] Kevin Carlberg and Charbel Farhat. A compact proper orthogonal decomposition basis for optimization-oriented
reduced-order models. In 12th AIAA/ISSMO multidisciplinary analysis and optimization conference, page 5964,
2008.

[19] Youngsoo Choi, Gabriele Boncoraglio, Spenser Anderson, David Amsallem, and Charbel Farhat. Gradient-based
constrained optimization using a database of linear reduced-order models. Journal of Computational Physics,
423:109787, 2020.

[20] Katiana Kontolati, Somdatta Goswami, Michael D Shields, and George Em Karniadakis. On the influence of
over-parameterization in manifold based surrogates and deep neural operators. arXiv preprint arXiv:2203.05071,
2022.

[21] Yin Yu, Zhoujie Lyu, Zelu Xu, and Joaquim RRA Martins. On the influence of optimization algorithm and initial
design on wing aerodynamic shape optimization. Aerospace Science and Technology, 75:183–199, 2018.

19

[22] James Reuther, Antony Jameson, James Farmer, Luigi Martinelli, and David Saunders. Aerodynamic shape
optimization of complex aircraft configurations via an adjoint formulation. In 34th aerospace sciences meeting
and exhibit, page 94, 1996.

[23] Giampietro Carpentieri, Barry Koren, and Michel JL van Tooren. Adjoint-based aerodynamic shape optimization
on unstructured meshes. Journal of Computational Physics, 224(1):267–287, 2007.

[24] Siva Nadarajah and Antony Jameson. Studies of the continuous and discrete adjoint approaches to viscous
automatic aerodynamic shape optimization. In 15th AIAA computational fluid dynamics conference, page 2530,
2001.

[25] DN Srinath and Sanjay Mittal. An adjoint method for shape optimization in unsteady viscous flows. Journal of
Computational Physics, 229(6):1994–2008, 2010.

[26] Oleg Chernukhin and David W Zingg. Multimodality and global optimization in aerodynamic design. AIAA
journal, 51(6):1342–1354, 2013.

[27] Jichao Li, Jinsheng Cai, and Kun Qu. Surrogate-based aerodynamic shape optimization with the active subspace
method. Structural and Multidisciplinary Optimization, 59(2):403–419, 2019.

[28] Xiaojing Wu, Zijun Zuo, and Long Ma. Aerodynamic data-driven surrogate-assisted teaching-learning-based
optimization (tlbo) framework for constrained transonic airfoil and wing shape designs. Aerospace, 9(10):610,
2022.

[29] Russell Eberhart and James Kennedy. A new optimizer using particle swarm theory. In MHS’95. Proceedings of
the sixth international symposium on micro machine and human science, pages 39–43. Ieee, 1995.

[30] Daniel G Krige. A statistical approach to some basic mine valuation problems on the witwatersrand. Journal of
the Southern African Institute of Mining and Metallurgy, 52(6):119–139, 1951.

[31] J Liu, W-P Song, Z-H Han, and Y Zhang. Efficient aerodynamic shape optimization of transonic wings using a
parallel infilling strategy and surrogate models. Structural and Multidisciplinary Optimization, 55(3):925–943,
2017.

[32] Jerome Lepine, Francois Guibault, Jean-Yves Trepanier, and Francois Pepin. Optimized nonuniform rational
b-spline geometrical representation for aerodynamic design of wings. AIAA journal, 39(11):2033–2041, 2001.

[33] Kun Wang, Shengjiao Yu, Zheng Wang, Renzhong Feng, and Tiegang Liu. Adjoint-based airfoil optimization with
adaptive isogeometric discontinuous galerkin method. Computer Methods in Applied Mechanics and Engineering,
344:602–625, 2019.

[34] Dimitrios I Papadimitriou and Costas Papadimitriou. Aerodynamic shape optimization for minimum robust drag
and lift reliability constraint. Aerospace Science and Technology, 55:24–33, 2016.

[35] Raymond M Hicks and Preston A Henne. Wing design by numerical optimization. Journal of Aircraft, 15(7):407–
412, 1978.

[36] Simon Painchaud-Ouellet, Christophe Tribes, Jean-Yves Trépanier, and Dominique Pelletier. Airfoil shape
optimization using a nonuniform rational b-splines parametrization under thickness constraint. AIAA journal,
44(10):2170–2178, 2006.

[37] Guodong Chen and Krzysztof Fidkowski. Airfoil shape optimization using output-based adapted meshes. In 23rd
AIAA Computational Fluid Dynamics Conference, page 3102, 2017.

[38] Xiaolong He, Jichao Li, Charles A Mader, Anil Yildirim, and Joaquim RRA Martins. Robust aerodynamic shape
optimization—from a circle to an airfoil. Aerospace Science and Technology, 87:48–61, 2019.

[39] Xiaojing Wu, Weiwei Zhang, Xuhao Peng, and Ziyi Wang. Benchmark aerodynamic shape optimization with the
pod-based cst airfoil parametric method. Aerospace Science and Technology, 84:632–640, 2019.

[40] Md Tausif Akram and Man-Hoe Kim. Cfd analysis and shape optimization of airfoils using class shape transfor-
mation and genetic algorithm—part i. Applied Sciences, 11(9):3791, 2021.

[41] Xinshuai Zhang, Fangfang Xie, Tingwei Ji, Zaoxu Zhu, and Yao Zheng. Multi-fidelity deep neural network
surrogate model for aerodynamic shape optimization. Computer Methods in Applied Mechanics and Engineering,
373:113485, 2021.

[42] SUN Zhiwei, WANG Chen, Yu Zheng, BAI Junqiang, LI Zheng, XIA Qiang, and FU Qiujun. Non-intrusive
reduced-order model for predicting transonic flow with varying geometries. Chinese Journal of Aeronautics,
33(2):508–519, 2020.

[43] S Ashwin Renganathan, Romit Maulik, and Jai Ahuja. Enhanced data efficiency using deep neural networks and
gaussian processes for aerodynamic design optimization. Aerospace Science and Technology, 111:106522, 2021.

20

[44] Xiaosong Du, Ping He, and Joaquim RRA Martins. Rapid airfoil design optimization via neural networks-based
parameterization and surrogate modeling. Aerospace Science and Technology, 113:106701, 2021.

[45] Peng Liao, Wei Song, Peng Du, and Hang Zhao. Multi-fidelity convolutional neural network surrogate model for
aerodynamic optimization based on transfer learning. Physics of Fluids, 33(12):127121, 2021.

[46] Jun Tao and Gang Sun. Application of deep learning based multi-fidelity surrogate model to robust aerodynamic
design optimization. Aerospace Science and Technology, 92:722–737, 2019.

[47] Christophe Geuzaine and Jean-Francois Remacle. Gmsh.
[48] C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia, S. Yakovlev, J.-E.

Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R.M. Kirby,
and S.J. Sherwin. Nektar++: An open-source spectral/hp element framework. Computer Physics Communications,
192:205–219, 2015.

[49] David Moxey, Chris D. Cantwell, Yan Bao, Andrea Cassinelli, Giacomo Castiglioni, Sehun Chun, Emilia Juda,
Ehsan Kazemi, Kilian Lackhove, Julian Marcon, Gianmarco Mengaldo, Douglas Serson, Michael Turner, Hui Xu,
Joaquim Peiró, Robert M. Kirby, and Spencer J. Sherwin. Nektar++: Enhancing the capability and application of
high-fidelity spectral/hp element methods. Computer Physics Communications, 249:107110, 2020.

[50] Eastman N Jacobs, Kenneth E Ward, and Robert M Pinkerton. The characteristics of 78 related airfoil sections
from tests in the variable-density wind tunnel. National Advisory Committee for Aeronautics, 1933.

[51] Onur Rauf Bingol and Adarsh Krishnamurthy. NURBS-Python: An open-source object-oriented NURBS modeling
framework in Python. SoftwareX, 9:85–94, 2019.

[52] de Berg Mark, Cheong Otfried, van Kreveld Marc, and Overmars Mark. Computational geometry algorithms and
applications. Spinger, 2008.

[53] Gianmarco Mengaldo, Daniele De Grazia, Freddie Witherden, Antony Farrington, Peter Vincent, Spencer Sherwin,
and Joaquim Peiro. A guide to the implementation of boundary conditions in compact high-order methods for
compressible aerodynamics. In 7th AIAA Theoretical Fluid Mechanics Conference, page 2923, 2014.

[54] Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems. IEEE Transactions on Neural Networks,
6(4):911–917, 1995.

[55] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and
Anima Anandkumar. Neural operator: Graph kernel network for partial differential equations, 2020.

[56] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic
differentiation in machine learning: a survey. Journal of Marchine Learning Research, 18:1–43, 2018.

[57] Brian Adams, William Bohnhoff, Keith Dalbey, Mohamed Ebeida, John Eddy, Michael Eldred, Russell Hooper,
Patricia Hough, Kenneth Hu, John Jakeman, Mohammad Khalil, Kathryn Maupin, Jason A. Monschke, Elliott
Ridgway, Ahmad Rushdi, Daniel Seidl, John Stephens, Laura Painton Swiler, Anh Tran, and Justin Winokur.
Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty
quantification, and sensitivity analysis: Version 6.16 user’s manual.

[58] D Finkel and Carl Tim Kelley. Convergence analysis of the direct algorithm. Technical report, North Carolina
State University. Center for Research in Scientific Computation, 2004.

[59] Zongren Zou, Xuhui Meng, Apostolos F Psaros, and George Em Karniadakis. Neuraluq: A comprehensive library
for uncertainty quantification in neural differential equations and operators. arXiv preprint arXiv:2208.11866,
2022.

[60] David A. Kopriva and John H. Kolias. A conservative staggered-grid chebyshev multidomain method for
compressible flows. Journal of Computational Physics, 125(1):244–261, 1996.

[61] Ahmad Peyvan, Jonathan Komperda, Dongru Li, Zia Ghiasi, and Farzad Mashayek. Flux reconstruction us-
ing jacobi correction functions in discontinuous spectral element method. Journal of Computational Physics,
435:110261, 2021.

[62] Peter Josef Kunz. Aerodynamics and design for ultra-low Reynolds number flight. Stanford University, 2003.
[63] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni

Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J
Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272, 2020.

21

	1 Introduction
	2 Problem setup
	3 Methodology
	3.1 Data Generation
	3.1.1 Geometry generation
	3.1.2 Mesh generation
	3.1.3 Flowfield simulation

	3.2 Surrogate model: DeepONet
	3.2.1 Brief review of DeepONets
	3.2.2 Training and Testing of DeepONets
	3.2.3 Lift and Drag calculation

	4 Results
	4.1 Results from DeepONet model
	4.2 Shape Optimization Results

	5 Conclusions
	5.1 Nektar++ cross-verification
	5.2 Geometry optimization validation

