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Abstract. Asynchronous task-based systems offer the possibility of mak-
ing it easier to take advantage of scalable heterogeneous architectures.
This paper extends the National Institute of Standards and Technol-
ogy’s Hedgehog dataflow graph models, which target a single high-end
compute node, to run on a cluster by borrowing aspects of Uintah’s
cluster-scale task graphs and applying them to a sample implementation
of matrix multiplication. These results are compared to implementations
using the leading libraries, SLATE and DPLASMA, for illustrative pur-
poses only. The motivation behind this work is to demonstrate that us-
ing general purpose high-level abstractions, such as Hedgehog’s dataflow
graphs, does not negatively impact performance.
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1 Introduction

Continuing innovations in hardware pose challenges to developing portable soft-
ware, particularly for new heterogeneous architectures. These challenges may be
addressed by the adoption of new programming models for efficient node use
that should represent parallel constructs and make it easier to instrument and
reason about an application’s performance, thereby allowing developers to gain
deeper insight. Two examples of such models are the Hedgehog software [1] and
the Uintah Computational Framework [7,16]. Hedgehog specializes in node-level
performance and uses C++ threads and NVIDIA CUDA. Uintah specializes in
large-scale simulations and uses an MPI+X hybrid parallelism model. Both sys-
tems use asynchronous execution to achieve. This paper shows that Hedgehog
may be extended by making use of the general philosophy of Uintah. It compares
the performance that may be achieved with a prototype version against the well-
known DPLASMA and SLATE frameworks. This work builds on the prior work
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of Holeman [10]; the vehicle for comparison is the well-studied problem of dense
matrix-matrix multiplication.

Matrix multiplication performance has improved greatly with the advance-
ment of accelerated devices. Two of the best-known libraries out there that use
out-of-core matrix multiplication on multi-GPU accelerated nodes are DPLASMA[5]
and SLATE[3]. DPLASMA provides a generic and flexible matrix-matrix mul-
tiplication algorithm C = A×B for multi-GPU accelerated distributed-memory
platforms for matrices unrestricted by the size of the GPU memory. The imple-
mentation relies on the classical tile-based outer-product algorithm but enhances
it with several control dependencies to increase data reuse and optimize com-
munication flow from/to the accelerators within each node. The implementation
uses the Parsec runtime system, another task-based runtime system. SLATE is
designed to deliver fundamental dense linear algebra capabilities for current and
upcoming distributed-memory systems. It is built on top of standards, such as
MPI and OpenMP, and de-facto industry solutions, such as NVIDIA CUDA and
AMD HIP.

The rest of the paper is organized as follows. Section 2 discusses the various
frameworks that deal with multi-GPU distributed-memory platforms. With the
matrix multiplication problem as a vehicle, the section discusses how some exist-
ing state-of-the-art techniques tackle the situation. Section 3 presents the design
principles used to implement matrix multiplication for a multi-GPU accelerated
distributed-memory platform. Section 4 discusses the design principles of matrix
multiplication using Hedgehog. After describing Hedgehog’s single-node multi-
GPU solution, the extension to multiple nodes will be given. Section 5 compares
Hedgehog’s results against those of SLATE and DPLASMA. Section 6 concludes
the paper leaving section 7 with possible future plans.

2 Existing approaches

2.1 Uintah

Part of the original motivation for the extension of the Hedgehog system to mul-
tiple nodes is the scalability of asynchronous many-task (AMT) runtime systems
and their use in helping manage the increased concurrency, deep memory hierar-
chies, and heterogeneity. Such runtime systems are advantageous for their ability
to handle increasing node-level parallelism through the task overdecomposition
of an application while also managing low-level system details necessary for ef-
ficient resource utilization behind-the-scenes. Examples include Charm++ [14],
HPX [13], Legion [6], PaRSEC [8], and Uintah [7].

While Uintah has demonstrated large scale scalability on heterogeneous archi-
tectures [16], it started as a fixed task-graph execution code and was extended to
dynamic task execution [15]. Uintah’s runtime system manages the asynchronous
and out-of-order (where appropriate) execution of these tasks and addresses the
complexities of (global) MPI and (per node) thread-based communication. Exe-
cution is managed by the task scheduler, which interacts with per-MPI process
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task queues to select and execute ready tasks (e.g., tasks with satisfied data
dependencies). In extending Uintah to heterogeneous architectures, Kokkos [9],
was used to meet the challenges posed by diverse heterogeneous systems. Uintah
application code then is decomposed into individual tasks that are executed on
either the host or device and that make use of Uintah’s intermediate portability
layer [12], with options to use Kokkos. The resulting tasks are then compiled into
a task graph and dynamically executed by the heterogeneous runtime system in
an asynchronous out-of-order manner. Scaling capabilities have been shown for
two benchmarks using Uintah’s MPI+Kokkos scheduler [11] and the accompa-
nying portable abstractions [12] to execute workloads representative of typical
Uintah applications. The recent results in [16] at scale shows good strong-scaling
to 24,576 NVIDIA V100 GPUs and 8,192 IBM POWER9 processors and demon-
strate Uintah’s preparedness for the diverse heterogeneous systems accompany-
ing Exascale computing. The key lessons from Uintah for this work are to use
separate task graphs per MPI process and to prioritize external communication
while hiding its impact using overdecomposition.

2.2 DPLASMA

DPLASMA is a distributed parallel linear algebra software targeted toward mul-
ticore architectures. The matrix multiplication algorithm uses the Parameterized
Task Grap (PTG), a type of Domain Specific Language (DSL), and exposes it
in a compact and problem-size independent format that is queried on-demand
to discover data dependencies in a distributed fashion. It depicts algorithms us-
ing data flow principles as pure data dependencies between BLAS kernels. The
resulting dataflow depiction uses PaRSEC, a state-of-the-art runtime system, to
run it in a distributed environment. The algorithm uses several control depen-
dencies like b and c (block sizes for matrix C), d (depth), and l (look-ahead)
to increase the data reuses and optimize the communication flow from/to ac-
celerators within each node. It uses cuBLAS’s General Matrix Multiplication
(GEMM) kernel for computation and MPI for nodal communication.

2.3 SLATE

Software for Linear Algebra Targeting Exascale, also known as SLATE, aims to
provide newer linear algebra packages targeting modern many-node HPC clus-
ters. It uses a newer matrix storage format where tiles are the first-class objects,
thus leaving the traditional dense linear algebra software like ScaLAPACK, Ele-
mental, and DPLASMA to use contiguous memory to represent the local matrix
in each process. SLATE uses a collection of individual tiles to represent the
matrices, with no correlation between the tile’s position in the matrix versus in
memory. SLATE uses MPI for distributed node parallelism, OpenMP for explicit
thread parallelism within nodes, implicit thread parallelism within the vendor’s
node-level BLAS, and SIMD vector instructions for vector parallelism. SLATE
relies on explicit dataflow information for communication, where it will broad-
cast the required tiles to the processes where it is needed. This approach yields
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a multicore performance of 170 TFLOP/s on 16 nodes and a peak accelerator
performance of 339.2 TFLOP/s when processing double-precision matrices [4].

2.4 Hedgehog

Hedgehog [20] is a C++header-only library without any dependencies for develop-
ing general purpose coarse-grained parallel algorithms. It targets a heterogeneous
single-node compute units with one or multiple CPUs and one or multiple GPUs.
Its execution model works without any added scheduler; the inner threads, at-
tached to Hedgehog nodes, are only managed by the operating systems, and
execute based on the presence of data.

The Hedgehog nodes are attached with edges representing the flow of data
using queues that store unprocessed data. The nodes and edges are structured
under the form of a dataflow graph. These nodes are independent persistent en-
tities that accept and produce data. A node starts its execution as soon as input
data are available. Because a node can be linked to another node and each of
them are living on different threads they form an inherent parallel asynchronous
data pipeline. This pipeline is used to get performance: it simplifies paralleliz-
ing I/O, data motion, and computation, and It maximizes system utilization
by leveraging data streaming. This implementation aims to design portable per-
forming graphs for heterogeneous nodes (e.g., featuring multiple GPUs).

Hedgehog operates with a variety of nodes. Multi-threaded tasks are respon-
sible for doing heavy computation. These tasks form a group, which share the
same input and output edges consisting of queues and synchronization contexts.
State manager tasks use localized state, which are thread-safe shareable envi-
ronments, used for data synchronization. A graph is also a node, allowing graph
composition and code sharing. This separation of concerns is considered as a
first-class citizen as it facilitates the programmability of the library.

Diverse metaprogramming techniques secure the graph by checking its con-
sistency and validity at compile-time. It is also possible to build a compile-time
representation of the graph allowing user-defined tests execution on this repre-
sentation while compiling and consequently modifying the outcome of the com-
pilation.

Bardakoff et al. have demonstrated the performance of this approach with
single-node computations in [1]. The Hedgehog LU decomposition with partial
pivoting performed on par with the Linear Algebra Package (LAPACK) dgetrf
routine compiled with OpenBLAS in multi-threaded mode. For the matrix-
multiplication (BLAS-like GEMM routine), running specific matrix sizes, Hedge-
hog achieves > 95 % of theoretical peak across 4 NVIDIA V100 GPUs, outper-
forming cuBLASMg and cuBLAS-XT baseline libraries.

3 Extending Hedgehog to Multiple Nodes

Hedgehog executes the dataflow graph entirely scheduler-free based on the flow
of data. The order in which this execution model passes data to tasks is non-
deterministic, relying entirely on the order in which the operating system context



Extending Hedgehog’s dataflow graphs to multi-node GPU architectures 5

switches threads. This out-of-order design is a staple in how Hedgehog obtains
performance but poses some design challenges for getting performance on dis-
tributed systems. For example, typical MPI programs expect a structured ap-
proach that embeds a specific ordering of messages between nodes. Additionally,
Hedgehog nodes are designed in its model for non-overlapping usage to achieve
a separation of concerns. For instance, the state manager in Hedgehog is a spe-
cialized task that manages the state between two or more tasks. We follow the
same separation of concerns design and maintain Hedgehog’s execution model
when augmenting Hedgehog’s abstractions to support multi-node scaling with
two new specialty tasks: (1) Sender and (2) Receiver tasks. Similarly to Uintah
[7], each node has its own local task graph instead of having a global task graph
to manage work across the nodes for scalability. Each of these local graphs con-
tains these two new specialty tasks to establish a form of communication. In
Section 4 the Sender and Receiver tasks are implemented for matrix multiplica-
tion and deal with point-to-point communication. Though these tasks use MPI
underneath as their communication framework, they are designed to be agnos-
tic of such communication models. In the following section, the term data will
signify data that flow within a local Hedgehog task graph, whereas the term
message will represent the data that travel across nodes.

3.1 DataPacket

Serialization/deserialization of data converts complex data structures into a byte
stream and vice versa. DataPacket has a buffer to help store these byte streams.
We define a MatrixTile class that composes and uses the DataPacket class to
store the tile’s metadata and the two dimensional matrix-tile data for matrix
multiplication. By making DataPacket part of the MatrixTile, we use the Dat-
aPacket’s buffer to store and use the metadata and data directly. This helps
circumvent the overhead of allocating a new DataPacket object and copying the
serialized bytes from the tile to the DataPacket.

3.2 Sender Task

A Sender task processes data from within the graph and sends them to Receiver
tasks across processes/nodes. The incoming data to the sender task specify the
destination node; the sender does not implement any logic to decide where the
message should go. In addition to sending the message, it also sends a context ID
as metadata. In MPI, this is possible in the form of tags. The context ID helps the
receiver task to deduce the type of message. In the case of matrix multiplication,
the ”output state” feeds the accumulated tile along with the destination node
for the Sender task to pack the data into a DataPacket and send it across to the
Receiver task of the receiving node.

3.3 Receiver Task

Similar to the Sender task, the Receiver task registers all possible data types
involved in inter-node communication in the form of template parameters. The
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receiver task is a daemon thread, which polls for any incoming messages without
actually receiving the message. The receiver task obtains the context ID from
the polling (tags in MPI), deduces the appropriate data type and buffer size, and
enqueues an asynchronous receive call for the incoming message. The receiver
task periodically checks this queue for any completed received messages, and
based on the data type, it deserializes and pushes the data out through the
appropriate outgoing edge. These connections are established when adding edges
in the graph between the receiver tasks and their endpoints. The Receiver task
is defined in this way in order to handle the out-of-order execution and handle
spurious sends based on the flow of data within other processes. There is room for
improvement in this approach as the daemon becomes a thread that periodically
sleeps. One potential optimization will be if a communicator uses a monitor-
based implementation when sending/receiving messages. This would allow for
the receiving thread to enter into a wait state until a message is incoming.

4 Matrix Multiplication using Hedgehog

The algorithm implemented here is an extension of the single node setup im-
plemented in section 4.3 of Alexandre’s thesis [20]. The thesis explores the
algorithm’s evolution from CPU only to CPU+GPU to CPU+multiple GPUs
using Hedgehog. We briefly revisit the single-node setup and then its subsequent
evolution to multiple nodes using the abstractions mentioned in section 3. While
the approach used here lays down the general approach to extend Hedgehog to
multiple nodes, the communication model used here is hardwired to this case
for matrix multiplication. While the peer-to-peer and one-sided communication
requirement is more aligned with Hedgehog’s design principle, it makes scaling
more challenging, which needs to be addressed in future work.

The terms M , N , and K represent the dimensions of the matrices. T repre-
sents the tile size, and MT , NT , and KT represent the number of tiles along the
M , N , and K dimensions of the matrices, respectively.

4.1 Single-node setup

Figure 1 highlights the data and work distribution. Each matching pair of
columns and rows from matrices A and B depicts a unit of work per GPU.
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(a) Data Distribution (b) Work Distribution

Fig. 1: Fig. (a) represents the data distribution. For each GPU, only 1 column
of tiles from A and 1 row of tiles from B are considered at a time. For matrix C,
each GPU gets p partial product tiles (reusable), for storing the partial GEMM
computations. Fig. (b) represents the work distribution on the GPUs. It is quite
similar to the data distribution, where each GPU calculate the partial result for
all the elements in matrix C.

The workload is offloaded to each GPU in a round-robin fashion to ensure
equal distribution of work. Tiles from matrices A and B are copied to the re-
spective GPUs, where all the tiled-GEMM kernel execution occurs. One thing to
note here is that all the GPUs work independently. As we use the outer-product
approach, each unit of work asynchronously outputs a partial result for the whole
matrix C in the form of tiles. These tiles, called product tiles, are copied back
to host memory from the GPU memory for accumulation with matrix C. The
accumulation is done on the CPU. There are MT ∗ NT ∗KT such tile accumu-
lations, i.e., M ∗ N ∗ K

T addition operations in total. It is important to note

that the factor K
T here keeps these CPU-side accumulation tasks from being the

bottleneck. The GPU memory needs to be large enough to accommodate MT

tiles from a column of matrix A, Nt tiles from a row of matrix B, and 4-8 tiles
for storing the product tiles. For detailed information on the Hedgehog data flow
graph and its working, refer to section 4.3.1 from Alexandre’s thesis [20].

In Hedgehog, the task graph is instantiated only once during its creation.
When a task receives new data, the data simply wait in a queue if all the threads
concerning the tasks are busy. This differs from traditionally used task graphs in
systems like StarPU [18], PLASMA, and CILK [19], where the directed acyclic
graph (DAG) gets unrolled as it keeps receiving data. The actual performance
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in this approach comes from pipelining the memory copies and kernel execution
tasks using NVIDIA’s streams and asynchronous API calls. The CUDA streams
help synchronize the host-to-device memory copies of tiles from matrices A and
B, cuBLAS GEMM kernel execution using those tiles, and device-to-host mem-
ory copy of the product tiles outputted by the kernels.

4.2 Multiple node setup

Figure 2 highlights the data distribution in a multi-node setup. Matrices A and
B are partitioned in a 1D column and row block-cyclic fashion, respectively. This
nature of the data distribution allows us to treat these sub-matrices of A and B
as matrices themselves and use the previous single-node setup to independently
compute partial results for every element in matrix C. In the current design,
every node calculates a partial result for all the elements in matrix C. We need
to reduce the matrix C present on each node to get the final result. There are two
types of accumulations happening here, one within a node, which we will simply
call accumulation, and the other is inter-node, which we will call reduction, to
help distinguish between the two. The cost of reducing matrices is significant and
grows as the matrix size and/or the number of nodes increase. The accumulation
of matrix C tiles (within a node) happens in stages. So instead of waiting for the
whole matrix C to get accumulated, we asynchronously send the accumulated tile
as soon as it is ready. Figure 2 depicts the round-robin target distribution of the
tiles in matrix C. This distribution of matrix C helps evenly distribute the sends
and receives. Using this approach helped spread the communication cost over
the execution of the hedgehog graph instead of dealing with a costly singular
reduction call. To achieve this asynchronicity, we use the sender and receiver
task approach, as detailed in Section 3. For the receiver task we had first-hand
knowledge of the type of messages and their count from the beginning. Since
only 1 type of message was involved, namely, the tiles from matrix C, we could
skip the polling step and directly initiate/enqueue an asynchronous receive call.

4.3 Communications

As discussed above, no inter-node communication occurs for matrices A and B.
The only communication that takes place is for matrix C. Even with the above
asynchronous approach for reducing the matrix C, the communication volume
is equivalent to a collective reduction call, which is MT ∗ NT ∗ (n − 1) number
of tiles, where n is the number of nodes.
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Fig. 2: Data distribution of matrices across multiple nodes. Matrices A and B
are distributed in a 1D Block Column and 1D Block Row fashion respectively.
Matrix C, as a whole, redundantly resides all the nodes with the ownership
marked in 2D Block cyclic fashion.

Within a node, while copying the matrix data to GPU memory, only tiles
from matrices A and B are transferred, and that too only once. In total, for a
given node, all the MT ∗ KT

n tiles from submatrix A, and NT ∗ KT

n tiles from
submatrix B are transferred from the host memory to the GPU memory. The
partial computations are stored in an uninitialized memory in GPU, called prod-
uct tiles. These product tiles are computed and copied from GPU memory to
host for MT ∗ NT ∗ KT

n times. Therefore, the total communication volume, in

terms of tiles, to and fro per node is KT

n (MT ∗NT +MT +NT ).

5 Results

All the experiments were conducted at CHPC, the Center for High-Performance
Computing at the University of Utah. We picked 6 compute nodes, each con-
taining a 64-core AMD third-generation (Milan) 7713P processor. Two nodes
consisted of 8 Nvidia RTX A6000 48GB GPUs per node; the other two nodes
consisted of 2 Nvidia A100 80 GB PCIe GPUs per node, and the remaining two
nodes consisted of 8 Nvidia A100 80GB SXM4 per node. The first four nodes
had 256GB of CPU memory, while the last two had 512 GB. Each node had con-
nectX6 HDR Infiniband cards connected with EDR Infiniband. For the 4-node
experiment, 3 GPUs per node were used, and for the 6-node experiment, 2 GPUs
per node. Both experiments used 12 GPUs in total. Every run is measured over
ten iterations and presented as mean and standard deviations of the execution
times (seconds) and performances (TFLOP/s).



10 N. Shingde et al.

Tables 1 and 2 show the performance results for single precision square matri-
ces for A, B, and C of length 192K with different node configurations. The best
tile size was selected for DPLASMA and SLATE based on all runs with variable
tile sizes on our nodes. The Hedgehog implementation performs on par with
DPLASMA and SLATE on both 4-node and 6-node experiments. The double
precision experiments were not conducted due to the lack of accelerated double
precision performance in the Nvidia RTX A6000 GPUs.

Table 1: Mean and standard deviation of run times and performance on 4 nodes,
with 3 GPUs per node configuration, using single precision 192K x 192K matri-
ces.

Algo Time (seconds) TFLOP/s

DPLASMA 85.23 ± 0.90 178.34 ± 1.87
SLATE 82.74 ± 0.18 183.70 ± 0.42
Hedgehog 85.86 ± 1.89 177.09 ± 3.87

Table 2: Mean and standard deviation of run times and performance on 6 nodes,
with 2 GPUs per node configuration, using single precision 192K x 192K matri-
ces.

Algo Time (seconds) TFLOP/s

DPLASMA 85.52 ± 0.55 177.73 ± 1.15
SLATE 82.31 ± 0.21 184.64 ± 0.49
Hedgehog 85.92 ± 2.44 177.01 ± 4.77

6 Conclusions

This work aims to extend Hedgehog’s abstractions while maintaining its pro-
gramming model to operate in a cluster environment. We have shown that it
is possible to obtain performance in multi-node Hedgehog that is on par with
well-known libraries.

The extension of Hedgehog to multiple nodes has been accomplished in a
relatively straightforward fashion. The specialized Sender and Receiver tasks
help provide a communication model that aligns with Hedgehog’s out-of-order
design while remaining agnostic of any particular communication framework like
MPI.

There are some caveats with the current approach for matrix multiplication,
as it is not yet fully scalable because of redundant copies of matrix C on every
node. This implementation also fails to apply proper load balancing for over-
subscribed GPUs. The DPLASMA and SLATE libraries outperformed Hedgehog
by a margin of 30 % and 20 %, respectively, when more GPUs were allocated for
the same matrix configuration. However, the results are a good starting point for
the proposed future work using Hedgehog on more general parallel computing
examples.
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7 Future work

The matrix multiplication algorithm could also be tackled by partitioning the
work, i.e., focusing on matrix C part by part, like a sliding window. This tech-
nique also provides the flexibility to accommodate the possible limitations of
GPU and host memory, but at the cost of increased intra-node communication.

One important next step to this work is to add two abstractions to general-
ize the approach; first, a serialization/deserialization abstraction to our Sender
and Receiver task to help deal with complicated data structures; and second,
an abstraction for defining decomposition strategies, which can be used to au-
tomatically determine where data reside across nodes.

Disclaimer Certain equipment, instruments, software, or materials, commercial or

non-commercial, are identified in this paper in order to specify the experimental pro-

cedure adequately. Such identification is not intended to imply recommendation or

endorsement of any product or service by NIST, nor is it intended to imply that the

materials or equipment identified are necessarily the best available for the purpose.
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