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Abstract—Semantic segmentation is the problem of assigning an object label to each pixel. It unifies the image segmentation and

object recognition problems. The importance of using contextual information in semantic segmentation frameworks has been widely

realized in the field. We propose a contextual framework, called contextual hierarchical model (CHM), which learns contextual

information in a hierarchical framework for semantic segmentation. At each level of the hierarchy, a classifier is trained based on

downsampled input images and outputs of previous levels. Our model then incorporates the resulting multi-resolution contextual

information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint

posterior probability at multiple resolutions through the hierarchy. Contextual hierarchical model is purely based on the input image

patches and does not make use of any fragments or shape examples. Hence, it is applicable to a variety of problems such as object

segmentation and edge detection. We demonstrate that CHM performs at par with state-of-the-art on Stanford background and

Weizmann horse datasets. It also outperforms state-of-the-art edge detection methods on NYU depth dataset and achieves

state-of-the-art on Berkeley segmentation dataset (BSDS 500).

Index Terms—Semantic segmentation, image segmentation, edge detection, hierarchical models, membrane detection, connectome

Ç

1 INTRODUCTION

SEMANTIC segmentation is of substantial importance for a
wide range of applications in computer vision [1]. It is the

primary step towards image understanding and integrates
detection and segmentation in a single framework [2]. For
instance, in a dataset of horse images, semantic segmentation
can be thought of as the task of labeling each pixel as part of a
horse or non-horse, i.e., background. In more complicated
cases such as outdoor scene images, it might require multiple
labels, e.g., buildings, cars, roads, sky etc. This general defini-
tion can also be extended to the edge detection problem
where each pixel is classified as edge or non-edge in a binary-
decision framework.

Pixels can not be labeled based only on a small region
around them. For example, it is almost impossible to distin-
guish a pixel belonging to sky from a pixel belonging to sea
by only looking at a small patch around them. Therefore, a
semantic segmentation framework needs to take into account
short-range and long-range contextual information. Contex-
tual information has been widely used for solving high-level
vision problems in computer vision [3], [4], [5], [6]. Contex-
tual information can refer to either inter-object configuration,
e.g., a segmented horse’s bodymay suggest the position of its
legs [3], or intra-object dependencies, e.g., the existence of
a keyboard in an image implies that there is very likely a
mouse near it [4]. From the Bayesian point of view, contextual
information can be interpreted as the probability image map

of an object, which carries prior information in the maximum
aposteriori (MAP) pixel classification problem.

An important question about any semantic segmentation
method is how it takes contextual information into account.
The main challenge is to pool contextual information from a
large neighborhood while keeping the complexity tracta-
ble [2]. A common approach is to use a series of cascaded
classifiers [3], [5], [6], [7]. In this architecture, each classifier
is sequentially trained using the outputs of the previous
classifiers as inputs. This gradually increases the area of
influence and allows later classifiers in the series to obtain
contextual information from larger neighborhood areas.
However, they have a drawback that they do not obtain
contextual information at multiple scales. Multi-scale proc-
essing of images has been proven critical in many computer
vision tasks [8], [9]. OWT-UCM [10] takes advantage of
processing the input image at multiple scales through a
hierarchy. This leads to state-of-the-art performance for
edge detection applications. Farabet et al. [2] showed that
using multi-scale convolutional networks (ConvNets) can
improve the performance of ConvNets dramatically for
semantic segmentation.

This paper presents a contextual hierarchical model
(CHM), which is able to obtain contextual information at
multiple resolutions. Similar to cascaded classifier models,
CHM learns a series of classifiers consecutively, but unlike
those models, it trains classifiers at multiple resolutions in a
hierarchy. The main advantage of CHM is that it targets a
posterior probability at multiple resolutions and maximizes
it greedily through the hierarchy. This allows CHM to cover
a large contextual window without adding intractable com-
plexity. While common approaches to semantic segmenta-
tion usually need postprocessing to ensure the consistency
of labels, the use of a large contextual window reduces the
requirement for sophisticated postprocessing methods.
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A striking characteristic of our proposed method is that it
is purely based on input image patches and does not make
use of any shape fragments or object models, therefore, it is
applicable to awide range of applications such as edge detec-
tion and image labeling.While some approaches such as [10],
[11], [12], [13] can only be applied to edge detection problems
and other approaches such as [14], [15], [16] are only
designed for the image labeling problem, CHM can handle
both problems equallywell without anymodification.

In extensive experiments, we demonstrate the perfor-
mance of CHM on a couple of challenging vision tasks:
Horse segmentation in the Weizmann dataset [17], outdoor
scene labeling in the Stanford background [18]. We also
show the performance of CHM for edge detection on the
popular BSDS 500 [19] and NYU Depth (v2) [20] datasets. In
all cases, CHM results in either state-of-the-art or near state-
of-the-art performance. In addition, we apply CHM on two
electron microscopy (EM) datasets for cell membrane detec-
tion (Drosophila VNC [21], [22] and mouse neuropil [9]).
CHM outperforms many existing algorithms for membrane
detection and can be used as the first step towards recon-
struction of the connectome, i.e., the map of neural connec-
tivity in the mammalian nervous system [23]. Some samples
of CHM results are shown in Fig. 1.

An early version of this work was first presented in [24].
This journal version reports more comprehensive experi-
ments and gives more theoretical insight into CHM.

2 RELATED WORK

2.1 Graphical Models

There have been many methods that employ graphical
models to take advantage of contextual information for

semantic segmentation. Markov random fields (MRF) [18],
[25], [26], [27] and conditional random fields (CRF) [28], [29]
are the most popular approaches. He et al. [28] used CRF to
capture contextual information at multiple scales. Larlus
and Jurie [25] used MRF on top of a bag-of-words based
object model to ensure consistency of labeling. Gould
et al. [18] defined an energy function over scene appearance
and geometry and then developed an efficient inference
technique for MRFs to minimize that energy. Kumar and
Koller [26] formulated the energy minimization as an inte-
ger programming problem and proposed a linear program-
ming relaxation to solve it. Koltun [30] proposed an efficient
approximate inference method for dense CRFs defined over
pairwise pixels. Yao et al. [31] formulated the holistic scene
understanding problem as a structure prediction in a graph-
ical model. Tighe and Lazebnik [27] proposed an MRF-
based superpixel matching that can be easily scaled to large
datasets. Ladicky et al. [29] introduced a hierarchical CRF,
which is able to combine features extracted from pixels and
segments. For inference, they used a graph-cut [32] based
method to find the MAP solution. Ren et al. [16] used a
superpixel MRF together with a segmentation tree for RGB-
D semantic segmentation.

Many of the graphical model methods rely on preseg-
mentation to superpixels [16], [27] or multiple segment
candidates [26], [33]. More powerful region-based features
can be extracted from superpixels compared to pixels. More-
over, presegmentation to superpixels improves the compu-
tational efficiency of these models. However, it is known
that superpixels might not adhere to the image bound-
aries [34] and thus can decrease labeling accuracy [16]. This
motivated approaches using multiple segments as hypothe-
sis. However, these methods can be problematic when deal-
ing with cluttered images [29]. This motivated methods
with hierarchical segmentation [29], [35].

Unlike previously cited approaches, our proposed
method does not make use of any presegmentations or
exemplars and works directly on image pixels. This allows
our model to be applied to different problems without any
modifications. Moreover, inference is simpler in our CHM
compared to graphical models. It only requires the evalua-
tion of classifier function and does not require searching the
label space as in CRFs [36].

2.2 Convolutional Networks

Deep learning is a very active area of research and has been
widely used in the computer vision field. Convolutional
networks (ConvNet) [37] are one of the most popular deep
architectures. They were initially proposed for character
recognition [37], but later applied successfully to image clas-
sification [38], [39] and object detection [40], [41]. They have
also been used for biological image segmentation [42], [43],
[44] and semantic segmentation [2], [36], [45], [46], [47].
Jain et al. [42], Turaga et al. [43], and Ciresan et al. [44] used
convnets for membrane detection and cell segmentation in
EM images. Grangier et al. [36] trained a ConvNet by itera-
tively adding new layers for scene parsing. Farabet et al. [2]
proposed a multi-scale ConvNet for scene parsing. Their
framework contains multiple copies of a single network
which are applied to a scale-space pyramid of input images.
They performed some postprocessing methods to clean up

Fig. 1. Results of CHM on different tasks. First row: Semantic segmenta-
tion (Stanford background dataset [18]. Second row: Horse segmenta-
tion (Weizmann dataset [17]. Third row: Membrane detection (mouse
neuropil dataset [9]). Fourth row: Edge detection (Berkeley dataset [19]).
See Section 4 for details.
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the outputs generated by the ConvNet. Zheng et al. [45] for-
mulated CRFs as recurrent neural networks and built a
deep network, which leverages the benefits of CRFs and
convolutional networks for semantic image segmentation.
Chen et al. [46] also combined a fully connected CRF with
deep convolutional networks to improve the localization in
semantic segmentation. Finally, Long et al. [47] employed a
fully convolutional network, which can efficiently handle
dense prediction tasks like semantic segmentation.

ConvNets can cover a large contextual area compared to
other methods, but they need several hidden layers with
many free parameters. Training the ConvNets is computa-
tionally expensive and might take months or even years on
CPUs [44]. Hence, GPU implementations, which speed up
the training process, are usually needed in practice. Unlike
ConvNets, our CHM can be trained on CPUs in a reasonable
time due to its stage by stage training process. In the experi-
ments we show the performance of CHM in comparison
with the ConvNets proposed in [2], [42], [44], [47].

2.3 Cascaded Classifiers

The idea of using multiple classifiers to model context has
been proven successful to solve different computer vision
problems. Fink and Perona [48] proposed the mutual boost-
ing framework which takes advantage of multiple detectors
in a boosting architecture for object detection. Torralba
et al. [4] proposed the boosted random field (BRF), which
uses boosting to learn the graph structure of CRFs, for
object detection and segmentation. Heitz et al. [5] proposed
a different architecture to combine multiple classifiers,
called cascaded classifier model, for holistic scene under-
standing. Li et al. [6] introduced a feedback enabled cas-
caded classification model which jointly optimizes several
subtasks in a two-layer cascade of classifiers. In a more
related work, Tu and Bai [3] introduced the auto-context
algorithm, which integrates both image features and con-
textual information to learn a series of classifiers, for image
segmentation. A filter bank is used to extract the image fea-
tures and the output of each classifier is used as the contex-
tual information for the next classifier in the series. Jurrus
et al. [7] also trained a series of artificial neural networks
(ANN) [49], which learns a set of convolutional filters from
the data instead of applying fixed filter banks to the input
image. Their series architecture was improved by employ-
ing a multi-scale representation of context during train-
ing [50]. The advantage of the cascaded classifier model
over ConvNets is its easier training due to treating each
classifier in the series one at a time.

We also introduce a segmentation framework that takes
advantage of both input image features and contextual
information. Similar to the auto-context algorithm, we use a
filter bank to extract input image features. But we use a hier-
archical architecture to capture contextual information at
different resolutions. Moreover, this multi-resolution con-
textual information is learned in a supervised framework,
which makes it more discriminative compared to the above-
mentioned methods. From the Bayesian point of view,
CHM optimizes a joint posterior probability at multiple res-
olutions simultaneously. To our knowledge, supervised
multi-resolution contextual information has not previously
been used in a semantic segmentation framework.

2.4 Edge Detection

There is a large body of work in the area of edge detection.
Many unsupervised techniques have been proposed for
edge detection [10], [51], [52], [53]. The Canny edge detec-
tor [51] is one of the earliest and gPb [53] is one of the lat-
est among these approaches. More recently, supervised
techniques have been explored to improve the edge detec-
tion performance [11], [12], [54], [55], [56], [57], [58]. Martin
et al. [54] and Doll�ar et al. [55] used a classifier on top of
extracted features to find edges.

Mairal et al. [56] proposed to learn discriminative sparse
dictionaries to distinguish between “patches centered on an
edge pixel” and “patches centered on a non-edge pixel”.
Ren and Bo [12] used gradients over learned sparse codes
instead of hand designed gradients of [54] to achieve state-
of-the-art performance. Lim et al. [58] defined a set of sketch
tokens by clustering the patches extracted from groundtruth
images. Then, they trained a random forest (RF) to detect
those tokens at test time. Finally, Doll�ar and Zitnick [11]
made use of different edge patterns, e.g., T-junctions and Y-
junctions, present in images, and used a structured random
forest to learn those patterns. Their method is fast and gen-
eralizes well between different datasets. Their method was
inspired by [59], which uses topological information in ran-
dom forests for semantic segmentation.

We also approach the edge detection problem as a label-
ing problem. Our CHM is trained to distinguish between
“patches centered on an edge pixel” and “patches centered
on a non-edge pixel”. We will show that CHM achieves
near state-of-the-art performance on the Berkeley data-
set [19] and outperforms state-of-the-art methods [11], [12]
on NYU depth dataset. Moreover, we will demonstrate that
generalization performance of CHM across different data-
sets is better compared to [11], [12].

3 CONTEXTUAL HIERARCHICAL MODEL

The contextual hierarchical model is illustrated in Fig. 2.
First, a multi-resolution representation of the input image is
obtained by applying downsampling sequentially. Next, a
series of classifiers are trained at different resolutions from
the finest resolution to the coarsest resolution. At each reso-
lution, the classifier is trained based on the outputs of the
previous classifiers in the hierarchy and the input image at
that resolution. Finally, the outputs of these classifiers are
used to train a new classifier at original resolution. This clas-
sifier exploits the rich contextual information from multiple
resolutions. The whole training process targets a joint poste-
rior probability at multiple resolutions (see Section 3.3). We
describe different steps of the model separately in the fol-
lowing subsections.

3.1 Bottom-Up Step

LetX ¼ ðxðm;nÞÞ be the 2D input image with a correspond-
ing ground truth Y ¼ ðyðm;nÞÞ where yðm;nÞ 2 f0; 1g is
the class label for pixel ðm;nÞ. For notational simplicity, we
use 1D vectors X ¼ ðx1; x2; . . . ; xnÞ and Y ¼ ðy1; y2; . . . ; ynÞ
to denote the input image and corresponding ground truth,
respectively1. The training dataset then contains K input

1. For notational simplicity we do not use features in out notations.
The details about features can be found in Section 3.5.
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images, X ¼ fX1;X2; . . . ;XKg, and corresponding ground
truth images, Y ¼ fY1; Y2; . . . ; YKg2. We also define the
Fð�; lÞ operator which performs down-sampling by a factor
of l by averaging the pixels in each 2� 2 window, and the
Gð�; lÞ operator which performs max-pooling by a factor of l
by finding the maximum pixel value in each 2� 2 window.
Each classifier in the hierarchy has some internal parame-
ters ul, which are learned during training

ûl ¼ argmax
ul

P ðGðY; l� 1Þ jFðX; l� 1Þ;

GðŶ1; l� 1Þ; . . . ;GðŶl�1; 1Þ; ulÞ;
(1)

where Ŷ1; . . . ; Ŷl�1 are the outputs of classifiers at the lower
levels of the hierarchy. The classifier output of each level is
obtained using inference

Ŷ l ¼ argmax
Y

P ðY jFðX; l� 1Þ;

GðŶ 1; l� 1Þ; . . . ;GðŶ l�1; 1Þ; ûlÞ:
(2)

Each classifier in the l’th level of the hierarchy takes outputs

of all lower level classifiers, i.e., Ŷ 1; . . . ; Ŷ l�1, which provide
multi-resolution contextual information. For l ¼ 1 no prior
information is used and the classifier parameters, u1, are
learned only based on the input image.

It is worth mentioning that classifiers at higher levels
of the hierarchy have access to contextual information
from larger areas because they are trained on down-
sampled images.

3.2 Top-Down Step

Unlike the bottom-up step where multiple classifiers are
learned, only one classifier is trained in the top-down step.
Once all the classifiers are learned in the bottom-up step, a
top-down path is used to feed coarser resolution contextual
information into a classifier, which is trained at the finest
resolution. We define Vð�; lÞ operator that performs up-
sampling by a factor of l by duplicating each pixel. For a
hierarchical model with L levels, the classifier is trained
based on the input image and the outputs of stages 1 to L
obtained in the bottom-up step. The internal parameters of
the classifier, b, are learned using the following:

b̂ ¼ argmax
b

P ðY jX; Ŷ1;VðŶ2; 1Þ; . . . ;

VðŶL; L� 1Þ;bÞ:
(3)

The output of this classifier can be obtained using the fol-
lowing for inference:

Ẑ ¼ argmax
Y

P ðY jX; Ŷ 1;VðŶ 2; 1Þ; . . . ;

VðŶ L; L� 1Þ; b̂Þ:
(4)

The top-down classifier takes advantage of prior informa-
tion from multiple resolutions. This multi-resolution prior
is an efficient mixture of both local and global information
since it is drawn from different scales. In a related work,
Seyedhosseini et al. [50] proposed a multi-scale contextual
model that exploits contextual information from multiple
scales. The advantage of the model proposed here is that
the context images are learned at different scales in a super-
vised framework while the multi-scale contextual model
uses simple filtering to create context images at different
scales. This allows CHM to optimize a joint posterior at
different scales. The overall learning and inference algo-
rithms for the contextual hierarchical model are described
in Algorithm 1 and 2, respectively.

Algorithm 1. Learning Algorithm for the CHM

Input: A set of training images together with their binary
groundtruth images, S ¼ fðXi; YiÞ; i ¼ 1; . . . ;Kg and the
height of the hierarchy, L.

Output: Q ¼ fû1; . . . ; ûL; b̂g.
� Learn the first classifier, u1, using eq. (1) without any

prior information and only based on the input image
features.

� Compute the output of first classifier, Ŷ1, using
equation (2).

for l ¼ 2 to L do
� Learn the l’th classifier, ûl, using equation (1).
� Compute output of the l’th classifier, Ŷl, using

equation (2).
end for

� Learn the top-down classifier, b̂, using eq. (3).

Fig. 2. Illustration of the contextual hierarchical model. The blue classi-
fiers are learned during the bottom-up step and the red classifier is
learned during the top-down step. In the bottom-up step, each classifier
takes the outputs of lower classifiers as well as the input image as input.
The height of the hierarchy, L, is three in this model but it can be
extended to any arbitrary number.

2. Unless specified otherwise, upper case symbols, e.g., X, Y , denote
a particular vector, lower case symbols, e.g., x, y, denote the elements
of a vector, and bold-face symbols, e.g., X , Y, denote a set of vectors.
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Algorithm 2. Inference Algorithm for the CHM

Input: An input imageX, Q, L.
Output: Ẑ.

� Compute the output of first classifier, Ŷ 1, using
equation (2).

for l ¼ 2 to L do
� Compute output of the l’th bottom-up classifier, Ŷ l,

using eq. (2).
end for

� Compute output of the top-down classifier, Ẑ, using
eq. (4).

3.3 Probabilistic Interpretation

Given the training set X, containing T ¼ K � n samples, and
corresponding labels Y, a common approach is to find the
optimal solution by solving the MAP equation

log
Y

t

P ðYt jXt;QÞ: (5)

There are two common strategies to solve this optimization.
The first strategy, i.e., generative approach, decomposes
the posterior to likelihood, P ðXt jYtÞ, and prior, P ðYtÞ. The
second strategy, i.e., discriminative approach, targets the
posterior distribution directly. Our hierarchical model falls
into the second category. However, it differs from other
approaches in a sense that it optimizes a joint posterior at
multiple resolutions, i.e.,

log
Y

t

P Yt;GðYt; 0Þ; . . . ;GðYt; L� 1Þ jXt;Qð Þ

¼
X

t

logP Yt;GðYt; 0Þ; . . . ;GðYt; L� 1Þ jXt;Qð Þ;
(6)

where G is the maxpooling operator and L is the number of
levels in the hierarchy. This multi-resolution optimization
allows us to pool more contextual information from input
image. Using P ðA;B jCÞ ¼ P ðA jB;CÞP ðB jCÞ, eq. (6) can
be rewritten as

X

t

log
�
P
�
Yt jXt;GðYt; 0Þ; . . . ;GðYt; L� 1Þ;Q�

� P
�
GðYt; L� 1Þ jXt;GðYt; 0Þ; . . . ;GðYt; L� 2Þ;Q�

� � � � � P
�
GðYt; 0Þ jXt;Q

��

¼
X

t

logP
�
Yt jXt;GðYt; 0Þ; . . . ;GðYt; L� 1Þ;Q�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Top-down:J2ðX;Y;QÞ

þ
X

l

X

t

logP
�
GðYt; lÞ jXt;GðYt; 0Þ; . . . ;GðYt; l� 1Þ;Q�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bottom-up:J1ðX;Y;QÞ

:

(7)

Note that the optimization problems nicely splits down to
two subproblems, i.e., J1ðX;Y;QÞ and J2ðX;Y;QÞ, which are
solved during bottom-up and top-down steps respectively.

In practice, the optimization is done in a greedy way,
which means each term in the summation is optimized sep-
arately. The output of the classifier at level l, Ŷ l, is used as
an approximation of the groundtruth at that resolution,

GðY; l� 1Þ. Therefore, the following optimization problems
are solved during training

Bottom-up :

max
Q

J1ðX;Y;QÞ
¼ max

Q

X

l

X

t

logP
�
GðYt; lÞ jXt; Ŷ

1
t ; . . . ; Ŷ

l
t Þ;Q

� (8)

Top-down :max
Q

J2ðX;Y;QÞ

¼ max
Q

X

t

logP
�
Yt jXt; Ŷ

1
t ; . . . ; Ŷ

L
t ;Q

�
: (9)

This greedy approach makes the training simple and tracta-
ble. It is noteworthy that each of the terms of the outer sum-
mation in J1 is corresponding to one level of the hierarchy.
Due to the greedy optimization, a second stage of CHM can
improve the results. In the second stage, the top-down clas-
sifier of the previous stage is used as the first classifier in
the bottom-up step.

3.4 Classifier Selection

Even though our problem formulation is general and not
restricted to any specific type of classifier, in practice we
need a fast and accurate classifier that is robust to overfitting.
Among off-the-shelf classifiers, we consider ANNs, support
vector machines (SVM), and random forests. ANNs are slow
at training time due to the computational cost of backpropa-
gation. SVMs offer good generalization performance, but
choosing the kernel function and the kernel parameters can
be time consuming since they need to be adopted for each
classifier in the CHM. Furthermore, SVMs are not intrinsi-
cally probabilistic and thus are not completely suitable for
our CHM model. Random forests provide an unbiased esti-
mate of testing error, but our experiments show that they are
prone to overfitting for noisy data. In Section 4.1.1 we show
that overfitting can disrupt learning in the CHMmodel.

We adopt logistic disjunctive normal networks (LDNN)
[24] as the classifier in CHM. LDNN is a powerful classifier,
which consists of one adaptive layer implemented by logis-
tic sigmoid functions followed by two fixed layers of logical
units that compute conjunctions and disjunctions, respec-
tively. LDNN allows an intuitive initialization using k-
means clustering and outperforms neural networks, SVMs,
and random forests on several standard datasets [24].
Finally, LDNNs are fast to train due to the single adaptive
layer, which makes them suitable for the CHM architecture.
The details of LDNN can be found in the supplementary
materials.

3.5 Feature Selection

In this section, we describe the set of features extracted
from input and context images in CHM. The features that
we extract from input images include Haar features [60]
and histogram of oriented gradients (HOG) features [61].
These features are efficient to compute and somewhat com-
plementary to each other [3]. For color images, Haar and
HOG features are computed for each channel separately.
We also use dense SIFT features [62] computed at each
pixel. In addition, we apply a set of Gabor filters with dif-
ferent parameters and Canny edge detector to obtain more
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features. Beside these appearance features, we also use
position and its higher orders (up to second order), which
are known to be informative for semantic segmenta-
tion [16], [35]. These contain the normalized coordinates of
each pixel with respect to a certain reference and all the
possible multiplications of them. Finally, we use a 15� 15
sparse stencil structure [7], which contains 57 samples, to
sample the neighborhood around each pixel. In summary,
we extract 647 features from color images and 457 features
from gray scale images.

Context features are obtained from the outputs of classi-
fiers in the hierarchy. We used a 15� 15 stencil to sample
context images around each pixel. We also tried larger and
more dense sampling structures, e.g., 21� 21 patch, but
they had negligible impact on the performance. We do not
extract any other features beside the neighborhood samples
from context images.

4 EXPERIMENTAL RESULTS

We perform experimental studies to evaluate the perfor-
mance of CHM on three different applications: Semantic
segmentation, edge detection, and biomedical image seg-
mentation. The diversity among these applications shows
the broad applicability of our method. In all the applica-
tions, we used a set of nearly identical parameters, including
the number of levels in CHM and the features parameters.
Following the reproducible research instructions [63],
we maintain a web page containing the source codes and
scripts used to generate the results in this section3.

4.1 Semantic Segmentation

We show the performance of CHM on a binary semantic
segmentation dataset, i.e., Weizmann dataset [17], as well as
an outdoor scene labeling dataset with multiple classes, i.e.,
Stanford background dataset [18].

4.1.1 Weizmann Dataset

The Weizmann dataset [17] contains 328 gray scale horse
images with corresponding foreground/background truth
maps. Similar to Tu and Bai [3], we used half of the images
for training and the remaining images were used for test-
ing. The task is to segment horses in each image. We used
the features described in Section 3.5. Note that we do not

use location information for this dataset since horses are
mostly centered in the images, which would create an
unfair advantage.

We used a 24� 24 LDNN as the classifier in a CHM with
two stages and five levels per stage. To improve the general-
ization performance, we adopted the dropout idea. Hinton
et al. [64] showed that removing 50 percent of the hidden
nodes in a neural network during the training can improve
the performance on the test data. Using the same idea, we
randomly removed half of the nodes in the second layer
and half of the nodes per group in the first layer at each iter-
ation during the training. At test time, we used the LDNN
that contains all of the nodes with their outputs square
rooted to compensate for the fact that half of them were
active during the training time.

For comparison, we trained a CHM with random forest
as the classifier. To avoid overfitting, only 1

20 of samples
were used to train 100 trees in the random forest. We tried
different settings for the random forest and picked the best
set of parameters. We also trained a multi-scale series of
artificial neural networks (MSANN) as in [50]. Three
metrics were used to evaluate the segmentation accuracy:

Pixel accuracy, F-value ¼ 2�precision�recall
precisionþrecall , and G-mean

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
recall� TNR

p
where TNR ¼ true negative

true negativeþfalse positive.

Unlike F-value, G-mean is symmetric with respect to posi-
tive and negative classes. In Table 1 we compare the perfor-
mance of CHMwith some state-of-the-art methods.

CHM outperforms other state-of-the-art methods. It is
worth noting that CHM does not make use of fragments
and it is based purely on discriminative classifiers that use
neighborhood information.

The CHM-LDNN performs at par with the state-of-the-
art methods, while the CHM-RF performs worse. The train-
ing and testing F-value of the classifiers trained at the origi-
nal resolution in the CHM, i.e., the classifiers at the bottom
of hierarchy, for both LDNN and random forest are shown
in Fig. 3. It shows how overfitting propagates through the
stages of the CHM when the random forest is used as the
classifier. The overfitting disrupts the learning process
because there are too few mistakes in the training set com-
pared to the testing set as we go through the stages. For
example, the overfitting in the first stage does not permit
the second stage to learn the typical mistakes from the first
stage that will be encountered at testing time. We tried

TABLE 1
Testing Performance of Different Methods on the Weizmann

Horse Dataset

Method F-value G-mean Pixel accuracy

KSSVM [14] ? ? 94:60%
TWM [15] ? ? 94:70%
Auto-context [3] 84% ? ?

Levin &Weiss [65] ? ? 95:2%
MSANN [50] 87:58% 92:76% 94:34%
HGM [66] ? ? 95:9%
CHM-RF 83:15% 90:20% 92:33%
CHM-LDNN 89:89% 94:39% 95:37%

Fig. 3. F-value of the classifiers trained at the original resolution in the
CHM with LDNN and random forest. The overfitting in the random forest
makes it useless in the CHM architecture.

3. http://www.sci.utah.edu/�mseyed/Mojtaba_Seyedhosseini/
CHM.html
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random forests with different parameters to overcome this
problem but were unsuccessful.

Fig. 4 shows four examples of our test images and their seg-
mentation results using different methods. The CHM-LDNN
outperforms the othermethods in filling the body of horses.

4.1.2 Stanford Background Dataset

The Stanford background dataset [18] contains 715 images of
urban and rural scenes, collected from other public datasets
such that each image is approximately 240� 320 pixels
and contains at least one foreground object. This dataset is
composed of eight classes, one foreground and seven other
classes, and the groundtruth images, obtained fromAmazon
Mechanical Turk, are included in the dataset. We followed

the standard evaluation procedure for this dataset, which
is performing five-fold cross-validation with the dataset
randomly split into 572 training images and 143 test images.

We trained eight CHMs in a one-versus-all architecture.
This is due to our classifier selection, which handles binary
classification. To take advantage of intra-class contextual
information, we allowed CHMs to communicate with each
other at three upper levels of the hierarchy. At those levels,
classifiers get samples of context images of other classes as
well as their own class. Thus, the feature vector for each
class is concatenation of features from all the classes at
lower levels. The performance of CHM with and without
intra-class connection is reported in Table 2.

Fig. 4. Test results of the Weizmann horse dataset. (a) Input image,
(b) MSANN [50], (c) CHM-RF, (d) CHM-LDNN, (e) ground truth images.
The CHM-LDNN is more successful in completing the body of horses.

TABLE 2
Testing Performance of Different Methods on Stanford

Background Dataset [18]: Pixelwise Accuracy,
Class-Average Accuracy, and Computation Time

Method Pixel Acc. Class Acc. CT (sec.)

Region-based Energy [18] 76:4% ? 10-600
Selecting Regions [26] 79:4% ? 600
Stacked Hierarchical
Labeling [35]

76:9% 66:2% 12

Superparsing [67] 77:5% ? 10
Recursive Neural
Networks [68]

78:1% ? ?

Pylon Model [69] 81:9% 72:4% 60
Ren et al. [16] 82:9% 74:5% ?
Singlescale ConvNet [2] 66% 56:5% 0:35
Multiscale ConvNet [2] 78:8% 72:4% 0:6
Multiscale ConvNet+
CRF on gPb [2]

81:4% 76:0% 60:5

Series-LDNN 76:35% 72:41% 110
CHM 82:30% 73:70% 60
CHMwith Intra-class
Connection

82:95% 74:32% 65

Fig. 5. Test samples of semantic segmentation on Stanford background dataset [18]. First row: Input image. Second row: CHM. Third row: CHM with
intra-class connection. Fourth row: Groundtruth. Using intra-class contextual information improves the performance.
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Our CHM achieves state-of-the-art performance in terms
of pixel accuracy. Due to the absence of any global con-
straint for label consistency, CHM performs worse than [2],
[16] in terms of class-average accuracy. Similar to [2], we
computed superpixels [70] for each image and then assign
the most common label, based on CHM output, to each
superpixel. Unlike [2], this approach had negligible impact
on the performance and improved the pixel accuracy only
to 83 percent. This shows CHM is a powerful pixel classifier.
In our experiment, inference took about 65 seconds for each
image (half of it was spent on computing the features).

A few test samples of the Stanford background dataset
and corresponding CHM results are shown in Fig. 5. Using
intra-class connection improves the label consistency in
the results.

The confusionmatrix of CHM is shown in Fig. 6. The hard
classes are mountain, water, and foreground. This is consis-
tent with the reported results in [16], [35]. Even though the
performance of CHM is similar to [16] for most of the classes,
it performs significantly better on the foreground category
compared to [16] achieving 74:1 versus 63 percent. We also
ran a series architecture with LDNN as classifier to show the
effectiveness of our hierarchical model. There were five
stages in the series and we used the same set of features as in
CHM. The performance was about 6 percent worse than
CHM,which asserts the importance of the hierarchy. Finally,
we analyzed the effect of different number of levels in CHM.
Fig. 7 shows the performance of CHMwith different number
of levels. It’s worth mentioning that the number of levels is

limited by the size of image as the the size of image decreases
by a factor of four at each level.

4.1.3 SIFT Flow Dataset

The SIFT flow dataset [71] contains 2;488 training and 200
test images. We used the standard split as in [2], [27]. There
are 33 classes in this dataset, though, only 30 of them appear
in the test set. We trained a similar CHM as in the previous
section on this dataset. The performance of CHM for each
class in comparison with [27], [72] is depicted in Fig. 8.
While the CHM outperforms [27], it performs similar
to [72]. Per pixel accuracy and class accuracy of different
methods are reported in Table 3. Generally, the CHM per-
forms worse on segmenting more frequent classes such as
sky and building, but it performs better on less frequent
classes such as bird, streetlight and Balcony. This might be
due to the imbalance nature of this dataset.

4.2 Edge Detection

In this section we show the performance of CHM on two
edge detection datasets: BSDS 500 [19] and NYU Depth
(v2) [20]. We used the popular evaluation framework avail-
able in the gPb package [53] to compare CHM performance
with other methods. The evaluation framework computes
three metrics: Fvalue computed with a fixed threshold for
the entire dataset (ODS), F-value computed with per-image
best thresholds (OIS), and the average precision (AP).

We trained a CHM with five levels for both datasets. In
addition to our regular model, we adopted a multi-scale

Fig. 6. The confusion matrix of CHM results on the Stanford background
dataset [18]. The overall class-average accuracy is 74:32%.

Fig. 7. Performance of CHM on the Stanford Background dataset using
different number of levels.

Fig. 8. Per class accuracy of different methods on SIFT flow dataset [71]. The classes are sorted from most frequent to least frequent.
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strategy similar to [11], [58] to compute edge maps. That is,
at test time, we ran the trained CHM on the original, as well
as double and half resolution versions of each input image.
We then resized the results to the original image resolution
and averaged them to obtain the edge map. We also used
the standard non-maximal suppression, suggested in [11],
[12], [53], [58], to obtain thinned edges.

4.2.1 BSDS 500 Dataset

Berkeley segmentation dataset and benchmarks (BSDS
500) [19], [53] is an extension of BSDS 300 dataset and used
widely for the evaluation of edge detection techniques. It
contains 200 training, 100 validation, and 200 testing images
of resolution 321� 481 pixels (roughly). The human annota-
tions for each image is included in the dataset. The preci-
sion-recall curves for CHM and four other methods are
shown in Fig. 9.

Note that CHM achieves high precision and recall at both
ends of the precision-recall curve. The evaluation metrics
are reported in Table 4.

While CHM performs about the same as SCG [12] and
SE [11] in terms od ODS and OIS, it achieves state-of-the-art
performance in terms of AP. It must be emphasized that
unlike gPb [53] and SCG [12], our CHMdoes not include any
globalization step and only relies on the local patch informa-
tion. In addition, our CHM is a general patch-based model
and unlike gPb [53], SCG [12], and SE [11] can be used in
general semantic segmentation frameworks. Finally we will
show in Section 4.2.3 that the cross-dataset generalization

performance of CHM is significantly better than other learn-
ing-based approaches, i.e., sketch tokens [58], SCG [12],
and SE [11]. A few test examples of BSDS 500 dataset and cor-
responding edge detection results are shown in Fig. 10. As
shown in our results, CHM captures finer details such as
upper stairs in the first row, steeples in the second row, and
wheels in the third row.

4.2.2 NYU Depth Dataset (v2)

The NYU depth dataset (v2) [20] is an RGB-D dataset con-
taining 1;449 pairs of RGB and depth images of resolution
480� 640 pixels, with corresponding groundtruth semantic
segmentations. We used the scripts provided by the authors
of [12] to adopt this dataset for edge detection4. They used
60 percent of the images for training (869 images) and the
remaining 40 percent for testing (580 images). The images
were also resized to 240� 320 resolution. We evaluated the
performance of CHM using RGB and RGBD modalities. For
the depth channel, we computed the same set of features
that we extract from the RGB color channels. In Table 5, we
compare CHMwith SCG [12] and SE [11].

CHM performs significantly better than other methods
and reaches an F-value of 0:649 for RGB and 0:678 for RGBD.
Unlike [11], [12], our CHM does not benefit too much from
the multi-scale strategy. This can assert that CHM takes
advantage of multi-scale information effectively that later
multi-scale strategies would have marginal impact. Qualita-
tive comparisons are shown in Fig. 11 and the precision-
recall curves are shown in Fig. 12.

4.2.3 Cross-Dataset Generalization

Inspired by the work of Doll�ar and Zitnick [11], we per-
formed a set of experiments to examine the generalization
performance of CHM in comparison to other learning-based
methods. We used the trained CHM on BSDS 500 dataset
and ran it on NYU depth dataset for RGB modality. The
authors of sketch tokens [58], SCG [12], and SE [11] have
provided their models for BSDS 500 dataset; so, we could
run the same experiment for their methods. The perfor-
mance metrics for different methods are reported in Table 6
and corresponding precision-recall curves are shown in
Fig. 13.

TABLE 3
Testing Performance of Different Methods

on the SIFT Flow Dataset

Method Pixel accuracy Class accuracy

Tighe and Lazebnik [27] 77:0% 30:1%
Tighe and Lazebnik [72] 78:6% 39:2%
Multiscale ConvNet
(natural frequencies) [2]

78:5% 29:6%

Multiscale ConvNet
(balanced frequencies) [2]

72:3% 50:8%

Pinheiro and Collobert [73] 77:7% 29:8%
Long et al. [47] 85:2% 51:7%
CHM 61:68% 40:66%

Fig. 9. Precision-recall curves of CHM in comparison with other methods
for BSDS 500 dataset [19].

TABLE 4
Testing Performance of Different Methods on BSDS

500 Dataset [19]

Method ODS OIS AP CT (sec.)

gPb-OWT-UCM [53] 0:726 0:760 0:727 240
Sketch Tokens [58] 0:728 0:746 0:780 1
SCG [12] 0:739 0:758 0:773 280
SE-SS [11] 0:73 0:75 0:77 1=30
CHM-SS 0:722 0:737 0:772 100
SE-MS [11] 0:741 0:760 0:780 1=6
CHM-MS 0:735 0:751 0:804 190

CHM achieves near state-of-the-art performance in terms of ODS and OIS,
and improves over other methods significantly in terms of AP. SS:single-scale,
MS:multi-scale, CT:computation time.

4. The scripts are available at http://homes.cs.washington.edu/
�xren/research/nips2012/sparse_contour_gradients_v1.1.zip
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CHM performs significantly better than other methods.
Note that all methods perform about the same on BSDS
500 dataset (Table 4). We believe this asserts that our CHM
can be used as a general edge detection technique.

4.3 Biomedical Image Segmentation

In the last set of experiments, we applied CHM to the mem-
brane detection problem in electron microscopy images.
This is a challenging problem because of the noisy texture,

TABLE 5
Testing Performance of Different Methods on NYU Depth

Dataset [20] Using RGB (Top), and RGBD (Bottom) Modalities

Method ODS OIS AP CT (sec.)

SCG [12] (RGB) 0:557 0:569 0:438 280
SE-SS [11] (RGB) 0:58 0:59 0:53 1=30
CHM-SS (RGB) 0:648 0:658 0:614 50
SE-MS [11] (RGB) 0:596 0:608 0:541 1=6
CHM-MS (RGB) 0:649 0:661 0:625 85

SCG [12] (RGBD) 0:621 0:632 0:534 280
SE-SS [11] (RGBD) 0:62 0:63 0:59 1=25
CHM-SS (RGBD) 0:678 0:690 0:665 90
SE-MS [11] (RGBD) 0:636 0:647 0:601 1=5
CHM-MS (RGBD) 0:678 0:690 0:665 120

CHM achieves state-of-the-art performance for both cases. SS: single-scale,
MS: multi-scale, CT: computation time.

Fig. 10. Test samples of edge detection on BSDS 500 [19] dataset. (a) Input image, (b) gPb-OWT-UCM [53], (c) Sketch tokens [58], (d) SCG [12],
(e) SE [11], (f) CHM, (g) Groundtruth. CHM is able to capture finer details like upper stairs in the first row, steeples in the second row, and wheels in
the third row.

Fig. 11. Test samples of edge detection on NYU depth (v2) dataset [20]. (a) Input image, (b) Depth image, (c) SCG (RGB) [12], (d) SCG (RGBD) [12],
(e) SE (RGB) [11], (f) SE (RGBD) [11], (g) CHM (RGB), and (h) CHM (RGBD).

Fig. 12. Precision-recall curves of different methods for NYU depth data-
set [20] using RGB (solid lines) and RGBD (dashed lines) modalities.
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complex intracellular structures, and similar local appear-
ances among different objects [42], [74]. In these experi-
ments, we used a CHM with two stages and five levels per
stage. A 24� 24 LDNN was used as the classifier. In addi-
tion to the feature set described in Section 3.5, we included
Radon-like features (RLF) [75], which proved to be informa-
tive for membrane detection.

4.4 Mouse Neuropil Dataset

This dataset is a stack of 70 images from the mouse neuropil
acquired using serial block face scanning electron micros-
copy (SBFSEM [76]). It has a resolution of 10� 10� 50 nm/

pixel and each 2D image is 700 by 700 pixels. An expert
anatomist annotated membranes, i.e., cell boundaries, in
these images. From those 70 images, 14 images were ran-
domly selected and used for training and the 56 remaining
images were used for testing. The task is to detect mem-
branes in each 2D section.

Since the task is detecting the boundary of cells, we com-
pared our method with two general boundary detection
methods, gPb-OWT-UCM (global probability of boundary
followed by the oriented watershed transform and ultra-
metric contour maps) [10] and boosted edge learning
(BEL) [55]. The testing results for different methods are
given in Table 7. The CHM-LDNN outperforms the other
methods with a notably large margin.

One example of the test images and corresponding mem-
brane detection results using different methods are shown
in Fig. 14. As shown in our results, the CHM outperforms
MSANN in removing undesired parts from the background
and closing some gaps.

4.5 Drosophila VNC Dataset

This dataset contains 30 images from Drosophila first instar
larva ventral nerve cord (VNC) [21], [22] acquired using
serial-section transmission electron microscopy [77], [78].
Each image is 512 by 512 pixels and the resolution is
4� 4� 50 nm/pixel. The membranes are marked by a
human expert in each image. We used 15 images for train-
ing and 15 images for testing. The testing performance for
different methods are reported in Table 7. It can be seen that
the CHM outperforms the other methods in terms of pixel

Fig. 13. Precision-recall curves of different methods for NYU depth data-
set [20] using BSDS 500 dataset [19] for training. Cross-dataset general-
ization performance of CHM is better compared to other methods.

TABLE 7
Testing Performance of Different Methods for the Mouse

Neuropil and Drosophila VNC Datasets

Mouse neuropil Drosophila VNC

Method F-value G-mean F-value G-mean

gPb-OWT-
UCM [10]

45:68% 64:75% 49:90% 69:57%

BEL [55] 71:68% 84:46% 70:21% 84:20%
MSANN [50] 81:99% 90:48% 78:89% 88:74%
CHM 86:00% 92:48% 80:72% 90:02%

TABLE 6
Testing Performance of Different Methods on NYU Depth
Dataset [20] Using BSDS 500 Dataset [19] for Training

Method ODS OIS AP

Sketch Tokens [58] 0:567 0:581 0:490
SCG [12] 0:568 0:579 0:441
SE [11] 0:552 0:566 0:462
CHM 0:595 0:606 0:528

CHM outperforms other learning-based approaches significantly.

Fig. 14. Test results of the mouse neuropil dataset (first row) and the Drosophila VNC dataset (second row). (a) Input image, (b) gPb-OWT-UCM [10],
(c) BEL [55], (d) MSANN [50], (e) CHM-LDNN, (f) ground truth images. The CHM is more successful in removing undesired parts and closing small
gaps. Some of the improvements are marked with red rectangles. For gPb-OWT-UCM method, the best threshold was picked and the edges were
dilated to the true membrane thickness.
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error. One test sample and membrane detection results for
different methods are shown in Fig. 14.

The same dataset was used as the training set for the ISBI
2012 EM challenge [79]. The participants were asked to sub-
mit the results on a test set (the same size as the training set)
to the challenge server. We trained the same model on the
whole 30 images and submitted the results for the testing
volume to the server. The pixel error (1-F-value) of different
methods are reported in Table 8. CHM achieved pixel error
of 0:063 which is better than the human error, i.e., how
much a second human labeling differed from the first one.
It also outperformed the convolutional networks proposed
in [42] and [44]. It is noteworthy that CHM is significantly
faster than deep neural networks (DNN) [44] at training.
While DNN needs 85 hours on GPU for training, CHM only
needs 30 hours on CPU. At test time, CHM can be slower
due to the feature computation time.

5 CONCLUSION AND FUTURE WORK

We develop a discriminative learning scheme for semantic
segmentation, called CHM, which takes advantage of con-
textual information at multiple resolutions in a hierarchy.
The main advantage of CHM is its ability to optimize a pos-
terior probability at multiple resolutions. To our knowledge,
this is the first time that a posterior at multiple resolutions
is optimized for semantic segmentation. CHM performs this
optimization efficiently in a greedy manner. To achieve this
goal, CHM trains several classifiers at multiple resolutions
and leverages the obtained results for learning a classifier at
the original resolution. We applied our model to several
challenging datasets for semantic segmentation, edge detec-
tion, and biomedical image segmentation. Results indicate
that CHM achieves state-of-the-art performance on all of
these applications.

An important characteristic of CHM is that it is only
based on patch information and does not make use of any
exemplars or shape models. This enables CHM to serve as a
general labeling method with high accuracy. The other
advantage of CHM is its simple training. Even though our
model needs to learn hundreds of parameters, the training
remains tractable since classifiers are trained separately.

We conclude by discussing a possible extension of the
CHM. Even though CHM is able to model global contextual
information within a scene, it can be prone to error due to
absence of any global constrains. Therefore, CHM can be
used as a first step in a semantic segmentation pipeline.
Postprocessing such as CRF proposed in [2] can be used to
enforce label consistency and global constraints
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