Pattern Recognition 48 (2015) 976-983

journal homepage: www.elsevier.com/locate/pr

Contents lists available at ScienceDirect PATTERN
RECOGNITION

Pattern Recognition

Disjunctive normal random forests

@ CrossMark

Mojtaba Seyedhosseini ***, Tolga Tasdizen *"

2 Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
b Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA

ARTICLE INFO

Article history:

Received 17 January 2014
Received in revised form

1 July 2014

Accepted 23 August 2014
Available online 4 September 2014

Keywords:
Random forest
Decision tree
Classifier

ABSTRACT

We develop a novel supervised learning/classification method, called disjunctive normal random forest
(DNRF). A DNRF is an ensemble of randomly trained disjunctive normal decision trees (DNDT). To
construct a DNDT, we formulate each decision tree in the random forest as a disjunction of rules, which
are conjunctions of Boolean functions. We then approximate this disjunction of conjunctions with a
differentiable function and approach the learning process as a risk minimization problem that
incorporates the classification error into a single global objective function. The minimization problem
is solved using gradient descent. DNRFs are able to learn complex decision boundaries and achieve low
generalization error. We present experimental results demonstrating the improved performance of
DNDTs and DNRFs over conventional decision trees and random forests. We also show the superior

Supervised learning
Disjunctive normal form

performance of DNRFs over state-of-the-art classification methods on benchmark datasets.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Random forests became popular with Breiman's seminal paper
[1] in 2001 due to their ease of use and good classification
accuracy. The main idea of random forest classification is to grow
an ensemble of decision trees such that the correlation between
the trees remains as low as possible. This is achieved by injecting
randomness into the forest using a different set of training
samples for each tree. These sets are obtained by sampling the
original training set with replacement, ie., bagging. Another
source of randomness in random forests is the subset of features
randomly selected to consider at each node as the splitting
function. This parameter can directly control the correlation
between the trees and also affect the accuracy performance of
each individual tree. At test time, each tree in the random forest
casts a unique vote for the given input and the most popular class
among the trees is selected as the predicted label for that input.
Random forests have been shown to be effective in many applica-
tions like image segmentation/classification [2,3], object detection
[4], and biomedical image analysis [5,6].

Random forests have certain advantages over other widely used
classification algorithms. For instance, support vector machines
(SVMs) [7] offer good generalization performance due to the fact that
they guarantee maximum margin, but choosing the kernel function

* Corresponding author at: Scientific Computing and Imaging Institute, University of
Utah, Salt Lake City, UT 84112, USA. Tel.: +1 801 585 1867; fax: +1 801 585 6513.
E-mail address: mseyed@sci.utah.edu (M. Seyedhosseini).

http://dx.doi.org/10.1016/j.patcog.2014.08.023
0031-3203/© 2014 Elsevier Ltd. All rights reserved.

and the kernel parameters can be time consuming. Boosting [8] is
another popular classification approach, which trains a single strong
classifier by combining multiple weak classifiers. However, conver-
gence of the learning algorithm can be slow for problems with
complex decision boundaries. Artificial neural networks (ANNs) [9]
are powerful but slow at training due to the computational cost of
backpropagation [10]. In addition to all the aforementioned short-
comings of ANNs, SVMs, and boosting methods, these techniques do
not naturally handle multi-class problems [11-13]. On the other hand,
random forests are fast to train and handle multi-class problems
intrinsically [14]. Moreover, they perform consistently well for high
dimensional problems [15].

The weak learner used at each node of the decision trees plays
an important role in the behavior and performance of random
forests. The conventional random forest exploits axis-aligned
decision stumps, which partition the feature space with orthogo-
nal hyperplanes. While this type of partitioning can be suitable for
certain types of datasets, it results in overfitting and produces
“blocky artifacts” in general datasets [14]. It has been shown that
using linear discriminants that can be at any arbitrary orientation
to the axes improves the performance of random forests [16].
Nonlinear weak learners like conic sections have also been proved
successful in increasing the accuracy and generalization perfor-
mance of random forests [14].

A lot of work has been put into improving the random forest,
through the use of more powerful node models and less correlated
trees. Rodriguez et al. [17] used PCA to make a linear combination of
features at each node. Bernard et al. [18] focused on the number of
features randomly selected at each node of the tree. They showed that

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2014.08.023
http://dx.doi.org/10.1016/j.patcog.2014.08.023
http://dx.doi.org/10.1016/j.patcog.2014.08.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.08.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.08.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2014.08.023&domain=pdf
mailto:mseyed@sci.utah.edu
http://dx.doi.org/10.1016/j.patcog.2014.08.023

M. Seyedhosseini, T. Tasdizen / Pattern Recognition 48 (2015) 976-983

using a random number of features, which can be different at each
node, can improve the performance. Tripoliti et al. [19] improved the
prediction peformance of random forests by modifying the node split
function as well as the voting procedure in the forest.

In this paper, we propose a novel approach for learning linear
discriminants of arbitrary orientation at each node of a decision
tree. However, the main advantage of our approach over the above-
mentioned methods such as [16,17] is that it learns all the weak
learners of the decision tree in a unified framework. To be clear,
unlike conventional decision trees and their variants that learn the
splitting function at each node independently, our approach allows
weak learners of different nodes to interact with each other during
the training because it minimizes a single global objective function.
To achieve this goal, we formulate each decision tree as a single
disjunction of conjunctions [20] and approximate it with a differ-
entiable function. Next, we use this approximation in a quadratic
error cost to construct a single unified objective function. Finally, we
minimize this objective function using the gradient descent rule
to update the parameters of the discriminants in the decision tree.
We call this type of decision tree a disjunctive normal decision
tree (DNDT).

Many researchers have proposed converting decision trees into a
differentiable form and performing some global parameter tuning to
make a smooth decision boundary with high generalization perfor-
mance. For example [21-24] propose to convert decision trees into
artificial neural networks (ANN) and use back-propagation to fine
tune the weights and improve the performance. These methods
speed up the training of ANNs by using decision trees to initialize the
weights of ANNs. However, it would be hard to generalize these

-15
-10

-8

-6 -4 -2 0 2 4 6 8

10

977

methods to random forest framework due to the slowness of back-
propagation. Our approach is different from these methods in the
sense that unlike the neural networks that have at least two layers of
adaptive weights, our disjunctive normal form has only one adaptive
layer and thus is faster than back-propagation. Moreover, we will
show that DNDTs outperform ANNS.

Fuzzy/soft decision trees are another technique that have been
developed to improve the performance of decision trees. Olaru and
Wehenkel [25] build a decision tree by introducing a third state at
each node. The samples which fall in the third state go to both
children nodes. Using this strategy, a sample might contribute to the
final decision through multiple paths. Irsoy et al. [26] also propose a
soft decision tree that uses a gate function to redirect each sample to
all the children with a certain probability. This strategy results in more
accurate and simpler trees. The fundamental difference of our
approach with soft decision trees is that we propose a global objective
function and learn all the splits simultaneously. We will show that
DNDTs outperform soft decision trees.

We follow the idea of random forests and use DNDTs as
building blocks of a new random forest, called a disjunctive
normal random forest (DNRF). While DNRFs have all the advan-
tages of conventional random forests, they outperform them due
to their stronger building blocks, i.e., DNDTs. Fig. 1 demonstrates
the superior performance of DNRF over conventional random
forest with artificial examples. We observe that conventional
random forest results in box-like decision boundaries and overfits
to the training data while DNRF produces a smooth boundary with
lower generalization error. In the results section, we show that,
similar to random forests, DNRFs are able to handle multi-class

-15
-10

-8

-6 -4 -2 0 2 4 6 8 10

Fig. 1. Comparison of DNRF (left panel) with random forest (right panel) on the banana dataset [29] (upper panel) and two-spiral dataset (lower panel). DNRF results in a

smoother decision boundary and, unlike random forests, does not overtrain.

978 M. Seyedhosseini, T. Tasdizen / Pattern Recognition 48 (2015) 976-983

classification problems, but with improved accuracy. We also show
that DNRFs outperform state-the-art algorithms such as space
partitioning method [27] and multiclass boosting [28].

2. Disjunctive normal random forests

The disjunctive normal random forest (DNRF) is a forest of simpler
structures called disjunctive normal decision trees (DNDTs). DNDT is a
special form of decision tree in which different nodes interact with
each other during training and are learned simultaneously.

In this section, we first describe DNDTs and then show how
they can be used in constructing a DNRF. For the sake of simplicity,
we consider only the binary classification problem in this section.
In the next section, we show how DNRF can be generalized to
multi-class problems.

Notation: Unless specified otherwise, we denote vectors with
lower case bold symbols, e.g., wy, elements of vectors with lower
case symbols, e.g., wy;, and sets with script symbols, e.g., S.

2.1. Disjunctive normal decision tree

A decision tree is a set of “rules” organized hierarchically in a
tree-like graph [14]. An example is shown in Fig. 2. The goal is to
predict the label of an input data point based on these rules.
During the training, a “split function/rule” is learned at each node
of the decision tree. This split function is a binary function, which
determines whether incoming data points are sent to the left or
right child node. The split function of node k for a d dimensional
data point x can be written as follows:

Fr(x, W) = ﬂ<<I>(x)ka > o) CRAHT RAF1 40, 1), 1)

where wj is an axis-aligned line (it only has two nonzero
elements: the bias and a 1 for the chosen splitting axis), which
is learned during the training. (-) is the binary indicator function
and @(X) is [¢1, ..., pas1)" =K1, ... xg, 1]7. We drop wy and use
frx) instead of f (x,wy) for notational simplicity. Each decision
tree can be written as a disjunction of conjunctions which is also
known as the disjunctive normal form [20]:

n
hx) =V (A Fix) A _'fj(x)>a (2)
i=1\jeR; jel;

where n is the number of positive leaf nodes, R; denotes the set of
nodes visited from the root to the ith positive leaf node for which
the right child is taken on the path, and similarly L; denotes the set
of visited nodes for which the left child is taken on the same path.
For example, for the tree given in Fig. 2, n=3, Ry ={2}, L; = {1},
Ry = {1}, L, = {3}, R3 = {1, 3}, L3 = {4}, and h(x) can be written as

hx) = (_'fl (x) /\fz(x)) v (fl(x) A _‘f3(x))
v (F10) A f3(X) A =f4(0)). 3)

The data point x is classified in class “0” if h(x) = 0 and is classified
in class “1” if h(x) = 1. To be precise, a sample will be classified in
class “1” if and only if it ends up in one of positive leaf nodes.
According to Fig. 2, there are only three paths from root to positive
leaf nodes and each of these three paths is represented with one
conjunction term in Eq. (3). If one of these terms becomes “1”,
which means that path is active in the tree, then the whole
expression is equal to “1” and if all of them become “0” then the
expression is “0”.

2.1.1. The differentiable disjunctive normal form

Once the decision tree is initialized in the conventional manner,
we would like to modify Eq. (2) to be able to fine tune it with
gradient descent. The first step is to replace Eq. (2) with a

Fig. 2. An example of a decision tree. Non-leaf nodes are denoted with circles and
leaf nodes are denoted with squares. A split function is learned at each non-leaf
node. Each leaf node represents a class label, “+” for class “1” and “—" for class “0”.
The first, second, and third positive leaf nodes are colored in red, green, and blue
respectively. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

differentiable approximation. First, any conjunction of binary vari-
ables A;b; can be replaced by their product [];b;. Also, using De
Morgan's laws we can replace the disjunction of binary variables \/;b;
with —/\;=b; which in turn can be replaced by the expression
1—TTi(1 —b;). Note that, we use (1—b;) to compute —b;. Finally, we
can approximate the split function with the logistic sigmoid function:

1
]+e_zjd;rllwkl‘/’l.

Frx,wi) = @)

This gives in the differentiable disjunctive normal form approxima-
tion of h:

hoo=1- 1 [1- IT ¢ wp I (1=Fxwy)

i=1 jeR: Jjel;

8i(%)
n

=1-[] (1-g®).)

i=1

For the example in Fig. 2 the approximation of h can be written as
hx)=1- (1 —fz(x)(l —f1(x)))

x(1-F100(1-F500))

% (1=F1007500(1-F40)). ®)

The next step is to update the weights wy to improve the
performance of the classifier. Unlike decision trees for which
weights at each node are learned separately, the disjunctive normal
form allows us to update all weights simultaneously; therefore, the
obtained decision boundary will be smoother and the general-
ization performance will be higher compared to decision tree.

Given a set of training samples S={(Xm,V,;;);m=1,...,M}
where y,, € {0, 1} denotes the desired binary class corresponding
to Xm, M denotes the number of training samples and a disjunctive
normal classifier fi(x), the quadratic error over the training set is

- M - 2

ERS)= 3 (ym—hom)"
m=1

This error function can be minimized using gradient descent. The

gradient of the error function with respect to the parameter wy; in

the disjunctive normal form, evaluated for the training pair (X, y), is

Q)

E r ~
5= 20y~) x (b (H (1-g,(X)g (1 —fk(x))>
4 kg \r#1
> <Hl(1 —gr(x))gl(xik(x))) . ®
ke‘Ll r#

M. Seyedhosseini, T. Tasdizen / Pattern Recognition 48 (2015) 976-983 979

Fig. 3. Comparison of DNRF (left panel) with conventional random forest (right panel) on the four-spiral dataset. DNRF is robust against overfitting and results in better

testing performance.

The derivation of Eq. (8) is given in Appendix A. At test time, the
weights found by gradient descent are used in Eq. (5) followed by
thresholding to predict the label for a new data point.

2.2. Decision tree to random forest

Random forests are an ensemble of randomly trained decision
trees [1]. The randomness comes from the fact that each tree is
trained using a random subset of training samples. Moreover, at
each node of tree a random subset of input features is used to
learn the split function. The main idea is to make the decision
trees as independent as possible. This improves the robustness
and generalization of the ensemble.

Using the same idea, we can use an ensemble of DNDT to
generate a DNRF. DNRF takes advantage of more powerful DNDTSs
compared to the conventional random forest and thus results in
better performance. The overall training algorithm for the DNRF is
given in Algorithm 1. Note that, in the first step a conventional
random forest is trained, which allows DNRFs to take advantage of
the randomness existing in the random forest.

Algorithm 1. Training algorithm for the DNRF.

Input: Training data, §$ = {(Xm,Y,,);m=1,...,
node, F.
Output: A set of weights, (W, t=1,...,N}.
e Train a conventional random forest with parameters N, 1, F.
for t=1to N do

These classifiers can be converted to disjunctive normal form and
the optimization in Algorithm 1 remains the same.

3. Multi-class DNRF

The concept of DNDT can be extended to multi-class problems.
In this case, given a single decision tree, instead of binary leaf
nodes, i.e., “+” and “—" leaf nodes, there are leaf nodes with labels
1,...,C, where C is the number of classes. Each tree can be
represented with C disjunctive normal functions of type Eq. (2):
h00 = Vi< (Aerfi 0N e i), c=1.....C, (10)
where n. denotes the number of leaf nodes with label ¢ and Rf, L
are similar to the binary case for the leaf nodes with label c. Each
of these h°(x) then can be converted to the differentiable form of
Eq. (5). Finally, the weights of each of these functions can be

updated using Eq. (8). Note that, each R (x) is updated indepen-
dently and thus the update process can be done in parallel. At test

M}, number of trees, N, ratio of training samples per tree, r, and number of features per

e p— Number of nodes which are visited to reach positive leaf nodes in tree t.

o Convert tree t to disjunctive normal form using Eq. (5).
e Compute updated weights, wy, ...,
oW« {Wy, ..., Wp}.

end for

At test time, the predicted label for a given data point X can be
computed as follows:

N N
= H<t§1 Il(ht(x) > 0.5) > f)’ 9)

where N denotes the number of trees in DNRF and f;(x) is computed
using the weights 1V, obtained from the training in Eq. (5).

It must be emphasized that our method can be applied to other
variants of random forests that use a feature selection strategy to
pick the informative features instead of random sampling [30-32].

Wy, using gradient descent (Eq. (8)).

time, the label of an input data point x can be predicted as follows:

§ = arg maxh' (x), (11)
Ao =1~ 1 |1~ I ¢ wp) = JLa-Fcw)) (12)
i= jeRS

Note that, in the above equatlon the updated weights from the
training are used to compute e (x). It must be emphasized that
although different classes share the same initial weights, the final

980 M. Seyedhosseini, T. Tasdizen / Pattern Recognition 48 (2015) 976-983

updated weights, ie., wf, can be different since the gradient
descent is run for different classes separately.

Similar to the binary case, the multi-class DNDT can be used in
a forest structure. The training algorithm for multi-class DNRF is
described in Algorithm 2.

Algorithm 2. Training algorithm for the multi-class DNRF.

(10% of these samples were used for validation) and 1 of the
samples for testing.
We compared the performance of DNDT with decision trees, ANNSs,
and soft decision trees [26]. The test errors are reported in Table 2.
DNDT outperforms decision trees with a large margin. It also
outperforms both ANNs and soft decision trees. These results
assert that the superior performance of DNDT comes from both

Input: Training data, S = {(Xm,Y,;,); M= 1, ..., M}, number of trees, N, ratio of training samples per tree, r, and number of features per

node, F.
Output: A set of weights, {W;, t=1,..,N, c=1,...,C}.
oC « Number of classes.
eTrain a conventional random forest with parameters N, 1, F.
for t=1to N do
for c=1 to Cdo

op — Number of nodes which are visited to reach leaf nodes with label c in tree t.

e Form FIZ(X) in eq. (12).
eCompute updated weights,wg, ...,
Wi —{wy, s WRL
end for
end for

At test time, the label for a given data point is computed using
voting among all trees:

N ~

y= argmax Y I]<arg math(x) = l). (13)
1 t=1 c

A comparison of DNRF against random forest on the four-spiral

dataset is shown in Fig. 3. The superior performance of DNRF can

be seen in the areas where the spirals end. Furthermore, the

decision boundaries are more equidistant to the different classes.

4. Experimental results

We performed experimental studies to evaluate the perfor-
mance of DNDTs and DNRFs in comparison to different classifica-
tion techniques. The experiments were performed on both binary
and multi-class classification problems. We used six datasets for
the binary case and four datasets for the multi-class case from the
UCI repository [33] and LIBSVM datasets [34]. Before training, the
data was normalized by subtracting the mean of each dimension
and dividing by the standard deviation of that dimension.

4.1. Binary classification

The eight datasets tested for binary classification are listed in
Table 1. For each datasets, we used 2 of the samples for training

Table 1
Description of the binary datasets used in the experiments.

Dataset Training Testing No. of Categorical
samples samples features
lonosphere 234 117 33 No
Wisconsin breast 380 189 30 No
cancer
German credit 667 333 24 Yes
PIMA diabetes 513 255 8 No
Hearts 180 90 13 Yes
[JCNN 49,990 91,701 22 No
Australian credit 461 229 14 Yes
Sonar 139 69 60 No

wj, by updating ﬁi(x) using gradient descent (eq. (8)).

non-orthogonal splits in a tree structure, as opposed to the
decision tree, and unified learning of all the learners, as opposed
to the soft decision tree. For soft decision trees, we used the code
publicly available by the authors of [26]. The training times of
different methods for each dataset are given in Table 3. While
DNDT is slower than decision trees, it is faster compared to soft
decision trees and ANNSs. It is worth mentioning that each epoch of
update in DNDT is nearly 4 times faster than the back-propagation
in ANNs due to the simpler structure of the disjunctive normal
form compared to ANN. This simplicity comes from the fact that
there is only one set of parameters, wy, in the differentiable
disjunctive normal form (Eq. (5)) while in ANNs there are at least
two sets of parameters, i.e., weights from the input layer to the
hidden layer and weights from the hidden layer to the output
layer. The time complexities of decision trees and DNDTs at test
time are similar.

We also compared the performance of DNRF with SVMs,
boosted trees, oblique random forests (ORF) [16], rotation forests
[17], and random forests. For SVMs, we used RBF kernel and the
parameters of kernel were found using the search code available in
the LIBSVM library [34]. For boosted trees, we used the code
publicly available by the authors of [35]. We also used the publicly
available R package “obliqueRF” provided by the authors of [16] to
run ORF on the binary datasets. Their code supports three different
node models: ridge regression, SVM, and logistic regression. For
rotation forest, we used the publicly available code provided as
part of Weka by the authors of [17]. For all the datasets we used
F=+/d as the number of features per node in the random forest
and used 10% of the training set as the validation set to fine tune
the number of trees, N. The same validation set was used to
control the number of epochs and tune the step size in the
gradient descent algorithm for the DNRF. We ran each classifier
50 times, except for SVMs which give deterministic results, for
each dataset, and the average testing errors for different methods
are reported in Table 4. The standard deviations are given in
parentheses. DNRFs outperform SVMs, boosted trees, random
forests, rotation forests, and ORFs. The standard deviation of DNRF
is generally lower than other methods. We also ran the paired-
sample t-test between DNRF and all the other methods. In all the
cases, the null hypothesis, i.e., both models have the same mean,

M. Seyedhosseini, T. Tasdizen / Pattern Recognition 48 (2015) 976-983 981
Table 2
Test errors of different methods for six binary datasets.
Method Ionosphere (%) Wisconsin breast cancer (%) German credit (%) PIMA diabetes (%) Hearts (%) IJCNN (%) Australian credit (%) Sonar (%)
Decision tree 12.48 6.08 32.73 31.59 27.62 4,79 19.72 29.57
ANN 12.10 2.28 26.96 2211 20.26 2.02 15.65 3043
Soft decision tree [26] 11.97 212 25.53 20.78 13.33 2.27 16.59 3043
DNDT 7.15 1.89 24.44 20.56 13.11 1.94 15.30 22.55
Table 3
Training time (seconds) of different methods for eight binary datasets.
Method Ionosphere Wisconsin breast cancer German credit PIMA diabetes Hearts [JCNN Australian Credit Sonar
Decision tree 0.009 0.009 0.010 0.008 0.022 0.500 0.018 0.015
ANN 0.395 0.854 0.746 0.356 0.956 1860.81 0.486 0.204
Soft decision tree [26] 0.267 0.657 1.858 0.410 0.073 34,958.626 0.392 0.232
DNDT 0.036 0.033 0.228 0.095 0.031 535.36 0.077 0.045
Table 4
Test errors of different methods for eight binary datasets (average over 50 iterations). The standard deviations are given in parentheses.
Method Ionosphere Wisconsin breast cancer German credit PIMA diabetes Hearts [JCNN Australian credit Sonar
SVM 4.27% (—) 1.59% (—) 26.12% (—) 22.35% (—) 21.11% (-) 1.31% (-) 14.85% (—) 17.39% (—)
Boosted trees [35] 5.16% (0.9) 2.38% (0.42) 24.29% (0.96) 23.29% (0.99) 15.00% (1.68) 1.39% (0.05) 14.23% (0.91) 18.49% (1.64)
ORF-ridge [16] 5.69% (0.56) 1.63% (0.21) 25.10% (0.94) 23.25% (0.85) 15.07% (0.90) 1.68% (0.02) 16.14% (0.46) 24.12% (1.75)
ORF-svm [16] 4.32% (0.50) 1.58% (0.07) 24.23% (0.56) 23.25% (0.81) 13.18% (0.9) 1.87% (0.04) 15.50% (0.64) 27.86% (1.74)
ORF-log [16] 4.50% (0.62) 1.74% (0.26) 25.23% (0.82) 22.43% (1.26) 15.27% (0.99) 1.62% (0.05) 15.84% (0.59) 24.52% (1.92)
Rotation forest [17] 5.04% (1.35) 1.82% (0.76) 25.23% (1.22) 21.63% (1.42) 19.05% (2.56) 2.14% (0.24) 16.09% (0.79) 23.12(3.40)

Random forest [1] 6.99% (0.94) 2.15% (0.41) 24.71% (0.82)

23.92% (0.64)

15.11% (1.14) 2.00% (0.04) 15.81% (0.74)

25.48% (2.01)

DNRF 338%(0.57) 0.53% (~0) 2291% (037) 19.41% (0.42) 1222% (~0) 1.14% (0.01) 13.56% (0.44) 18.14% (1.50)
0.32 — 0.28 :
" DNRF ——DNRF
03f M N‘]’\} {{ 0.27 :
028} T / MWN 1 026 T+ T B 1
S 026} o] O 025) |]
7] g - 1
|q_,> — — 1 -
0.24 g 0.24 1 I .
0.22 - 023F [[+ I ,
02 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.22 1 1 1 1 1 1 1 1 1 1
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 1 3 5 7 9 11 13 15 17 19

No. of noise features

Fig. 4. The robustness of random forest and DNRF on problems with increasing
number of noise/random variables. The dataset, i.e., German credit dataset, has 24
features and an increasing number of noise variables were added. Each experiment
was run 50 times and the error bars illustrate the standard deviations. For all the
experiments, random forest used F = +/d as the number of features per node.

was rejected at 5% significance level. These results again assert
that the main advantage of DNRFs comes from both the non-
orthogonal splits, as opposed to random forests, and the unified
learning of all splits, as opposed to ORFs and rotation forests.
Similar to [36], we examined the effect of noise features and
tree size on the performance of random forests and DNRFs. In the
first experiment, we incrementally added noise/random features
to the German credit dataset. Fig. 4 shows the test errors for

Minimum node size

Fig. 5. The effect of tree size, i.e., tree depth, on the performance of random forest
and DNRF. The depth of tree was controlled by the minimum node size. Smaller
node size results in deeper trees. Each model was run 50 times and the error bars
represent standard deviations. The German credit dataset was used in this
experiment.

different number of noise features. As the number of noise
features increases the chance that relevant features are selected
at each node decreases. While this degrades the performance of
random forests, DNRFs remain stable due to the unified learning
strategy. Optimizing all the nodes together decreases the effect of
nodes that contain only noise features. In the second experiment,
we incrementally decreased the tree size by increasing the mini-
mum node size. We stop splitting the nodes that contain less than

982 M. Seyedhosseini, T. Tasdizen / Pattern Recognition 48 (2015) 976-983

Table 5
Description of the multi-class datasets used in the experiments.

Dataset Training Testing No. of No. of Categorical
samples samples features classes
Pendigit 7494 3498 16 10 No
Optdigit 3823 1797 62 10 No
Landsat 4435 2000 36 6 No
Letter 16,000 4000 16 26 No
Table 6

Test errors of different methods on four UCI datasets (multi-class classification).

Method Pendigit (%) Optdigit (%) Landsat (%) Letter (%)
GD-MCBoost [28] 7.06 7.68 13.35 40.35
Space partitioning [27] 4.32 4.23 13.95 13.08
Random forest [1] 3.87 3.22 10.49 4.70
DNRF 217 230 9.63 2.05

samples than the minimum node size. Fig. 5 shows the test errors
on the German credit dataset for different values of minimum
node size. DNRF is less sensitive to the size of tree compared to
random forest. This can be seen as the effectiveness of the unified
learning strategy which gives more degrees of freedom to DNRF.

4.2. Multi-class classification

The four datasets tested for multi-class classification are listed
in Table 5. Similar to binary case, we used F = +/d as the number of
features per node in the random forest and used 10% of the
training set as the validation set to fine tune the number of trees,
N, and the ratio of training samples per tree, r.

We ran the experiments 50 times for each dataset and the average
testing errors are reported in Table 6. While random forests outper-
form the state-of-the-art algorithms [27,28], DNRF reduces the error
rate even further. These results assert that DNRF idea works for multi-
class datasets as well as the binary datasets. DNRF outperforms [27],
which also takes advantage of space partitioning. This shows that our
global optimization is more effective than [27].

5. Conclusion

We introduced a new learning scheme for random forests,
called DNRF, based on the disjunctive normal form of decision
trees. Unlike conventional random forests with orthogonal axis-
aligned splits, DNRFs can learn arbitrary non-axis-aligned splits.
Moreover, DNRFs allow different nodes of a decision tree interact
with each other during training in a unified optimization frame-
work. We showed that DNRFs outperform conventional random
forests on binary and multi-class benchmark datasets. Our results
are also better than oblique random forests [16] which learns non-
orthogonal learners at each node.

It must be emphasized that optimizing all the individual trees
together in DNRF would increase the correlation between the trees
and increasing the correlation decreases the forest performance [1].
Hence, treating each tree individually, as mentioned in Algorithm 2, is
crucial to the performance of DNRF. The initialization is also important
to the performance of DNRE. If the DNREF is initialized with a random
tree, it performs poorly. The reason is that the cost function is not
convex and gradient descent might get stuck in a local minima.

DNRFs can handle categorical data similar to conventional
random forests. After a conventional RF is trained, the same
optimization approach can be applied to construct a DNRFE
However, DNRFs do not handle missing values in the current

format. One possible solution is to assign zero weight to the
missing features in the paths containing samples with missing
values, but this is a topic of future research.

DNRFs are slower to train compared to conventional random
forests due to the gradient descent step. At test time, DNRFs
computational time is similar to other multiplicative classifiers
such as ANNs and SVMs.

Finally, even though we described DNREF for the cases that weak
learners are linear, the DNRF formulation can be extended to any
differentiable nonlinear weak learners theoretically. The perfor-
mance, advantages, and disadvantages of nonlinear DNRFs can be
a topic of future research.

Conflict of interest

None declared.

Acknowledgments

This work was supported by NSF IIS-1149299 (T.T.). We thank
the editor and reviewers whose comments helped greatly improve
the paper.

Appendix A. Derivation of gradient

In this section we show the derivation of Eq. (8). The gradient
for the training pair (X, y) can be computed using the chain rule for

differentiation:
oF _oE ﬂ% aff (A1)
oWy oh“T'0g; of | owyy’ '

Each of the derivatives on the right hand side can be computed as
follows:

oF -
& = —2(y—h(x)),
pr y—hx)
oh
2 1—
o, rl;[l(£ (X)),
[f 0 I A=f,x) ifjeR,
5 riR ~ g i
2= - MReTIA-fx) ifjel,
fJ Te R, T’:LJI
0 otherwise,
o ; N .
g~ xif i1 —f ().

By multiplying these derivatives the gradient in Eq. (8) is obtained.

References

[1] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5-32.

[2] F. Schroff, A. Criminisi, A. Zisserman, Object class segmentation using random
forests, in: British Machine Vision Conference, 2008.

[3] A. Bosch, A. Zisserman, X. Muoz, Image classification using random forests and
ferns, in: IEEE Eleventh International Conference on Computer Vision 2007,
ICCV 2007, pp. 1-8.

[4] P. Kontschieder, S.R. Buld, A. Criminisi, P. Kohli, M. Pelillo, H. Bischof, Context-
sensitive decision forests for object detection, in: Advances in Neural Informa-
tion Processing Systems vol. 25, 2012, pp. 440-448.

[5] A. Criminisi,]. Shotton, D. Robertson, E. Konukoglu, Regression forests for
efficient anatomy detection and localization in ct studies, in: Medical Com-
puter Vision. Recognition Techniques and Applications in Medical Imaging,
Springer, Berlin, Heidelberg, 2011, pp. 106-117..

http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref1
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref526
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref526
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref526
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref526

M. Seyedhosseini, T. Tasdizen / Pattern Recognition 48 (2015) 976-983 983

[6] D. Laptev, A. Vezhnevets, S. Dwivedi,]. Buhmann, Anisotropic sstem image
segmentation using dense correspondence across sections, in: Medical Image
Computing and Computer-Assisted Intervention MICCAI 2012, 2012, pp. 323-330.

[7] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995)
273-297.

[8] M. Kearns, L. Valiant, Cryptographic limitations on learning boolean formulae
and finite automata, J. ACM 41 (1) (1994) 67-95.

[9] S. Haykin, Neural networks—a comprehensive foundation, second ed., Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1999.

[10] S.E. Fahlman, C. Lebiere, The cascade-correlation learning architecture, in:
Advances in Neural Information Processing Systems, Volume 2, pp. 524-532.

[11] G. Ou, Y.L. Murphey, Multi-class pattern classification using neural networks,
Pattern Recognit. 40 (1) (2007) 4-18.

[12] C.-W. Hsu, C.-J. Lin, A comparison of methods for multiclass support vector
machines, IEEE Trans. Neural Netw. 13 (2) (2002) 415-425.

[13] A. Torralba, K. Murphy, W. Freeman, Sharing visual features for multiclass and
multiview object detection, IEEE Trans. Pattern Anal. Mach. Intell. 29 (5)
(2007) 854-869. http://dx.doi.org/10.1109/TPAMI.2007.1055.

[14] A. Criminisi,]. Shotton, E. Konukoglu, Decision forests: a unified framework for
classification, regression, density estimation, manifold learning and semi-
supervised learning, Found. Trends Comput. Graph. Vis. 7 (2-3) (2011) 81-227.

[15] R. Caruana, N. Karampatziakis, A. Yessenalina, An empirical evaluation of
supervised learning in high dimensions, in: Proceedings of the Twenty-fifth
International Conference on Machine Learning, ACM, 2008, pp. 96-103.

[16] B.H. Menze, B.M. Kelm, D.N. Splitthoff, U. Koethe, F.A. Hamprecht, On oblique
random forests, in: Machine Learning and Knowledge Discovery in Databases,
Springer, 2011, pp. 453-469..

[17] JJ. Rodriguez, L.I. Kuncheva, CJ. Alonso, Rotation forest: a new classifier
ensemble method, IEEE Trans. Pattern Anal. Mach. Intell. 28 (10) (2006)
1619-1630.

[18] S. Bernard, L. Heutte, S. Adam, Forest-RK: a new random forest induction
method, in: Advanced Intelligent Computing Theories and Applications with
Aspects of Artificial Intelligence, Springer, Berlin, Heidelberg, 2008, dummy
pp. 430-437..

[19] E.E. Tripoliti, D.I. Fotiadis, G. Manis, Modifications of the construction and
voting mechanisms of the random forests algorithm, Data Knowl. Eng. 87 (0)
(2013) 41-65.

[20] M. Hazewinkel, Encyclopaedia of Mathematics, Suppl. III, vol. 13, Springer,
Netherlands, 2001.

[21] K. Cios, N. Liu, A machine learning method for generation of a neural network
architecture: a continuous id3 algorithm, IEEE Trans. Neural Netw. 3 (2) (1992)
280-291.

[22] 1. Ivanova, M. Kubat, Initialization of neural networks by means of decision
trees, Knowl. Based Syst. 8 (6) (1995) 333-344.

[23] A. Banerjee, Initializing neural networks using decision trees, Computational
learning theory and natural learning systems 4 (1997) 3-15.

[24] R. Setiono, W.K. Leow, On mapping decision trees and neural networks,
Knowl. Based Syst. 12 (3) (1999) 95-99.

[25] C. Olaru, L. Wehenkel, A complete fuzzy decision tree technique, Fuzzy Sets
Syst. 138 (2) (2003) 221-254.

[26] O. Irsoy, O.T. Yildiz, E. Alpaydin, Soft decision trees, in: IEEE Twenty-first
International Conference on Pattern Recognition (ICPR), 2012, pp. 1819-1822.

[27] J. Wang, V. Saligrama, Local supervised learning through space partitioning,
in: NIPS, 2012, pp. 91-99.

[28] M.]. Saberian, N. Vasconcelos, Multiclass boosting: theory and algorithms, in:
Advances in Neural Information Processing Systems, 2011, pp. 2124-2132.

[29] G. Ratsch, T. Onoda, K.-R. Muller, Soft margins for adaboost, in: Machine
Learning, 2000, pp. 287-320.

[30] Y. Ye, Q. Wu, J. Zhexue Huang, M.K. Ng, X. Li, Stratified sampling for feature
subspace selection in random forests for high dimensional data, Pattern
Recognit. 46 (3) (2013) 769-787.

[31] Q. Wy, Y. Ye, Y. Liu, MK. Ng, Snp selection and classification of genome-wide snp
data using stratified sampling random forests, IEEE Trans. NanoBiosci. 11 (3) (2012)
216-227.

[32] D. Amaratunga,]J. Cabrera, Y.-S. Lee, Enriched random forests, Bioinformatics
24 (18) (2008) 2010-2014.

[33] A. Frank, A. Asuncion, UCI machine learning repository, (http://archive.ics.uci.
edu/ml)y (2010).

[34] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM
Trans. Intell. Syst. Technol. 2 (2011) 27:1-27:27, software available at ¢http://
www.csie.ntu.edu.tw/ ~ cjlin/libsvm).

[35] R. Sznitman, CJ. Becker, F. Fleuret, P. Fua, Fast object detection with entropy-
driven evaluation, in: Computer Vision and Pattern Recognition (CVPR), 2013.

[36] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning,
Springer Series in Statistics, Springer, New York Inc., USA, New York, NY, 2001.

Mojtaba Seyedhosseini received the B.S. degree in Electrical Engineering from the University of Tehran in 2007, and the M.S. degree in Electrical Engineering from the Sharif
University of Technology in 2009. He received his Ph.D. degree from the Scientific Computing and Imaging (SCI) Institute at the University of Utah in 2014. His research
interests include machine learning, computer vision, statistical pattern recognition, and image analysis.

Tolga Tasdizen received the B.S. degree in Electrical and Electronics Engineering from Bogazici University in 1995. He received his M.S. and Ph.D. degrees in Engineering from
Brown University in 1997 and 2001, respectively. After working as a postdoctoral researcher position at the Scientific Computing and Imaging (SCI) Institute at the University
of Utah, he was a Research Assistant Professor in the School of Computing at the same institution. Since 2008, he has been with the Department of Electrical and Computer
Engineering at the University of Utah where he is currently an Associate Professor. Dr. Tasdizen is also a Utah Science Technology and Research Initiative (USTAR) faculty
member in the SCI Institute. His research interests are in image processing, computer vision and pattern recognition with a focus on applications in biological and medical
image analysis. Dr. Tasdizen is a recipient of the National Science Foundation's CAREER award.

http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref7
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref7
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref8
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref8
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref9
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref9
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref11
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref11
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref12
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref12
http://dx.doi.org/10.1109/TPAMI.2007.1055
http://dx.doi.org/10.1109/TPAMI.2007.1055
http://dx.doi.org/10.1109/TPAMI.2007.1055
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref14
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref14
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref14
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref102
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref102
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref102
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref17
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref17
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref17
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref109
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref109
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref109
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref109
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref19
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref19
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref19
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref201
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref201
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref21
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref21
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref21
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref22
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref22
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref124
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref124
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref24
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref24
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref25
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref25
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref30
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref30
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref30
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref31
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref31
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref31
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref32
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref32
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref36
http://refhub.elsevier.com/S0031-3203(14)00337-9/sbref36

	Disjunctive normal random forests
	Introduction
	Disjunctive normal random forests
	Disjunctive normal decision tree
	The differentiable disjunctive normal form

	Decision tree to random forest

	Multi-class DNRF
	Experimental results
	Binary classification
	Multi-class classification

	Conclusion
	Conflict of interest
	Acknowledgments
	Derivation of gradient
	References

