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A B S T R A C T

The use of a limited set of signatures in nuclear forensics and nuclear safeguards may reduce the discriminating
power for identifying unknown nuclear materials, or for verifying processing at existing facilities. Nuclear
proliferomics is a proposed new field of study that advocates for the acquisition of large databases of nuclear
material properties from a variety of analytical techniques. As demonstrated on a common uranium trioxide
polymorph, α-UO3, in this paper, nuclear proliferomics increases the ability to improve confidence in identifying
the processing history of nuclear materials. Specifically, α-UO3 was investigated from the calcination of un-
washed uranyl peroxide at 350, 400, 450, 500, and 550 °C in air. Scanning electron microscopy (SEM) images
were acquired of the surface morphology, and distinct qualitative differences are presented between unwashed
and washed uranyl peroxide, as well as the calcination products from the unwashed uranyl peroxide at the
investigated temperatures. Differential scanning calorimetry (DSC), UV–Vis spectrophotometry, powder X-ray
diffraction (p-XRD), and thermogravimetric analysis-mass spectrometry (TGA-MS) were used to understand the
source of these morphological differences as a function of calcination temperature. Additionally, the SEM images
were manually segmented using Morphological Analysis for MAterials (MAMA) software to identify quantifiable
differences in morphology for three different surface features present on the unwashed uranyl peroxide calci-
nation products. No single quantifiable signature was sufficient to discern all calcination temperatures with a
high degree of confidence; therefore, advanced statistical analysis was performed to allow the combination of a
number of quantitative signatures, with their associated uncertainties, to allow for complete discernment by
calcination history. Furthermore, machine learning was applied to the acquired SEM images to demonstrate
automated discernment with at least 89% accuracy.

1. Introduction

The ability to rapidly detect and respond to a nuclear event is one of
the greatest mechanisms for deterring the future use of nuclear
weapons [1,2]. Nuclear forensics provides critical analysis of inter-
dicted nuclear materials and materials following detonation of a nu-
clear weapon to help identify signatures indicative of the materials
processing history and origin [3]. On the other hand, nuclear safe-
guards aims to prevent the spread of nuclear weapon materials and
technology through policy and treaty verification. To enable more ef-
fective safeguards and forensics, large databases of nuclear material
properties are needed and Nuclear Proliferomics is the field to acquire
that data. In nuclear forensics and nuclear safeguards, research is
driven by the need to answer specific, hypothesis driven questions. In
contrast, nuclear proliferomics research is conducted to acquire the

maximum amount of data possible. This is the same philosophy prac-
ticed in almost all fields of “omics” [4]. The investigation of these large
and varied datasets can generate additional fields of research, or lead to
the discovery of additional processing signatures.

At the core of almost all “omics” is mass spectrometry [4]. This
technique is also critical to nuclear proliferomics for measuring isotope
ratios of uranium and plutonium [5]. Nonetheless, recent advances in
nuclear investigations have demonstrated the use of mass spectrometry
for identifying many other key signatures including rare earth element
signatures of uranium ores [6], and molecular solvent signatures of
spent nuclear fuel reprocessing [7]. In addition to these mass spectro-
metric signatures, many other signatures can be realized from exploring
the vast analytical techniques available to nuclear scientists including
morphology [8], X-ray fluorescence [9], Vis/NIR reflectance spectro-
scopy [10], and thermal analysis [11,12]. It is a collection of all of these
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signatures which is needed for nuclear proliferomics.
Due to the size and complexity of data collected in all “omics” fields,

machine learning has become a pivotal tool for processing and inter-
preting the data [13–15]. Nonetheless, the application of machine
learning to any nuclear related research is very rare. Porter et al. has
worked to develop segmentation software and interactive machine
learning to interpret morphological features of nuclear materials
[16,17]. In other studies, Jones et al. utilized machine learning to
classify reactor type based on isotopic and elemental measurements
[18], and to repurpose historical industrial quality control records from
uranium ore concentrate (UOC) production to discriminate country of
origin and deposit type [19]. In all of these cases, more data would
greatly improve the application of machine learning. In fact, Luetzen-
kirchen and Mayer reported on the need of nuclear databases to aid in
combatting trafficking of nuclear materials [20]. Nonetheless, extensive
research in nuclear proliferomics is needed to develop these databases.
As the nuclear threat continues to grow, the need for novel signatures is
imperative to continue to deter nuclear material smuggling, and the use
of nuclear weapons [21].

In this present study, a common uranium trioxide polymorph, α-UO3,
was investigated from one of its many synthetic pathways. Cordfunke et al.
previously discovered that unwashed uranyl peroxide results in α-UO3

when calcined at 425 °C in air. This was in contrast to washed uranyl
peroxide resulting in amorphous-UO3 at the same temperature. The two
routes resulting in drastically different morphological forms [22]. While
this particular synthetic route is unlikely to be encountered in a legitimate
commercial operation where the uranium oxide purity is paramount, it
could result from hasty illicit production or insufficient washing during
commercial processing. Furthermore, its complex chemical behavior pre-
sents an interesting case for demonstrating nuclear proliferomics. In this
investigation, microstructural and morphological features of α-UO3 were
quantified using both manual particle segmentation and machine learning.
Quantitative powder X-ray diffractometry (p-XRD), differential scanning
calorimetry (DSC), UV–VIS spectrophotometry, and thermogravimetric
analysis–mass spectrometry (TGA-MS) were used to understand why
morphological features were changing based on the calcination conditions.
To fully illustrate the power of nuclear proliferomics, statistical analysis
was performed on a collection of the analytical data to reveal signatures
not readily visible from a single analysis.

2. Experimental methods

2.1. Materials and synthesis

The synthesis of studtite, (UO2)O2(H2O)2·2H2O, from an initial
feedstock of UO2(NO3)2·6H2O (International Bio-Analytical Industries,
Inc., 99.9%) dissolved in a 1% HNO3 solution to generate a 1.0 M ur-
anyl nitrate solution was detailed previously [8,23]. A significant molar
excess of H2O2 (30% v/v) was added rapidly to uranyl nitrate hex-
ahydrate solution at room temperature. This resulted in a 5.9:1.0 M
ratio of H2O2 to UO2(NO3)2·6H2O. The initial pH of the solution was 1.
The precipitation of studtite was allowed to occur for 30min at room
temperature. The resulting studtite in solution was not drained or wa-
shed of the residual nitrates, before being transferred into an oven at
80 °C for 24 h of drying. The resulting material was lightly ground in an
aluminum oxide mortar and pestle, and p-XRD indicated that the ma-
terial consisted of a mixture of uranyl nitrate trihydrate, metastudtite,
and diuranyl dihydroxide bis(nitrate) tetrahydrate. Utilizing the calci-
nation procedures detailed previously, the unwashed material was
calcined at temperatures of 350, 400, 450, 500, and 550 °C [8,23]. The
calcination products were stored at room temperature in a vacuum
chamber at 20 kPa.

2.2. Powder X-ray diffraction (p-XRD) analysis

Powder XRD patterns of the starting material and the various

calcination products were acquired at room temperature on a Bruker D2
PHASER diffractometer with a 1-D LynxEye detector using Cu Kα X-rays
(λ=1.5418 Å) operating at 30 kV and 10mA. The instrument was
calibrated with a CeO2 NIST SRM 674b standard using structural data
for CeO2 refinement from Kümmerle et al. [24]. A divergence slit of
0.6 mm, an anti-scattering beam knife height of 1mm, and a 3mm
receiving slit were used for the sample data acquisition. The quantita-
tive analysis patterns were collected in the Bragg-Brentano geometry
(Coupled 2θ/θ) with a scan range of 10–90° 2θ, step size increments of
0.02° 2θ, and 2.5 s per step.

Two methods of performing quantitative analysis of the amorphous
phase content were selected: the internal standard method with Rietveld
refinement, and the degree of crystallinity (DOC) method as im-
plemented in the X′Pert Highscore Plus v2.2d software [25]. For quan-
titative analysis sample preparation, samples of ca. 200mg were wet
ground in a high-purity Zirconia mortar and pestle with 2mL of n-pen-
tane (99+%, extra pure, anhydrous, Acros Organics). Following
grinding and room temperature drying, the powder samples were sieved
to< 20 µm with an ASTM E11 certified No. 635 test sieve. For the in-
ternal standard method, the sieved samples were spiked with 20wt%
Cr2O3 (NIST SRM 674b), and well mixed in a 5mL vial on a vortex
mixer. Samples of ca. 50mg were front-loaded on a P-type B-doped si-
licon crystal zero diffraction plate. The sample holder was rotated at
24 rpm during the scans to reduce the impact of preferred orientation
and improve the counting statistics for the acquired patterns. For the
quantification routine, a background was manually fit due to the diffi-
culty in fitting the patterns with high amorphous content. The refined
parameters for all phases were the scale factors, specimen displacement,
lattice parameters, peak shape parameters, overall isotropic displace-
ment parameters, and preferred orientation. The peak shapes were
modeled using a pseudo-Voigt function. Starting models for the struc-
tural refinements for α-UO3 (PDF#01-072-0246), α-U3O8 (PDF#01-073-
6293), Cr2O3 (PDF#01-070-3766), α-UO2(OH)2 (PDF#01-074-4842),
(UO2)4O(OH)6(H2O)5 (PDF#01-070-4765), UO2(NO3)2(H2O)3 (PDF#01-
073-4459), (UO2)2(OH)2(NO3)2(H2O)4 (PDF#01-070-0176), ((UO2)
(H2O)2)(NO3)2(H2O) (PDF#01-072-3827), and (UO2)(NO3)2(H2O)2
(PDF#01-072-2333) were acquired from the ICDD PDF-2 2008 database
[26]. Additionally the starting structural model for (UO2)O2(H2O)2 was
taken from Weck et al. [27].

2.3. Differential scanning calorimetry

Differential scanning calorimetry (DSC) was performed using a
Netzsch DSC 3500 Sirius. Calibration of the temperature and detector
sensitivity was performed at a heating rate of 10 °C/min using the onset
temperature of melting and heat curve peak areas for Adamantane,
Indium, Tin, Bismuth, and Cesium Chloride. The details of the sample
preparation and acquisition parameters were presented previously [8].

2.4. Thermogravimetric analysis-mass spectrometry (TGA-MS)

Thermogravimetric analysis combined with online mass spectro-
metry (TGA-MS) was performed using a TA Instruments SDT Q600
coupled with a Pfeiffer Thermostar GSD 320 T3 that contains a
PrismaPlus mass spectrometer. The mass spectrometer was operated in
the selected ion mode for the following ions: m/z=14 (N+), 16 (O+),
17 (OH+), 18 (H2O+), 30 (NO+), 32 (O2

+), 44 (N2O+), and 46
(NO2

+). Sample preparation and data acquisition details were pre-
sented previously [8]. The TGA was calibrated for temperature using
the melting point onset temperatures for indium (m.p.= 156.60 °C),
zinc (m.p.= 419.53 °C), aluminum (m.p.= 660.32 °C), and silver
(m.p.= 961.78 °C).

2.5. UV–Vis

In order to approximate the water-soluble nitrate concentration in
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the unwashed uranyl peroxide samples, UV–vis spectroscopy was per-
formed on a Cary 300 spectrophotometer with 1-cm path length quartz
cuvettes. A calibration curve was generated using UO2(NO3)2·6H2O
(International Bio-Analytical Industries, Inc., 99.9%) dissolved in DI
water (18.2 MΩ) and diluted to concentrations of 1, 4, 6, 8, and 10 ppm
NO3

−. A 50.2mg sample of dry unwashed uranyl peroxide sample was
added to 50mL of DI water and the water-soluble nitrates were allowed
to dissolve for 4 h at 23 °C with periodic agitation prior to dilution to
the desired concentration. The transfer of the calibration and in-
vestigated sample solutions was performed with glass pipettes packed
with glass wool to filter out any undissolved solids. Spectra were ac-
quired over the range of 190–450 nm, with an interval of 0.5 nm, and a
scan rate of 300 nm/min. Baseline correction was performed using DI
water in quartz cuvettes. Peak absorbance for NO3

− was 199.5 nm,
within the range reported in literature [28] (see Figs. A.1 and A.2).

2.6. Scanning electron microscopy (SEM)

The initial metastudtite/uranyl nitrate samples and the 15 α-UO3

calcination product samples were prepared for SEM by dusting 5–10mg
of each sample on top of a 12mm conductive carbon tab that was ad-
hered to a 12.7 mm aluminum pin stub mount. The initial metastudtite/
uranyl nitrate samples and the 350 °C calcination products required
coating with 20.2 ± 0.1 nm of Au/Pd film due to excessive surface
charging. Images of the samples were collected on a FEI Quanta 600
FEG scanning electron microscope. The acquisition parameters were
detailed previously [8]. Within each sample, 3–4 macro-particles were
selected for detailed high-magnification examination. At least 10 sec-
ondary electron images were acquired on each macro-particle surface at
magnifications ranging from 5000 to 30,000×. Over one thousand
secondary electron images were acquired for further morphological
analysis. Particles from the SEM images were segmented using the
MAMA software as previously described [8].

2.7. Machine learning analysis

In addition to the manual particle segmentation, machine learning
was performed using convolutional neural networks to classify α-UO3

images according to their respective calcination temperatures. Lecun
et al. first demonstrated the capacity of multilayer neural networks
trained with the backpropagation algorithm to classify high-dimen-
sional patterns [29]. The backpropagation algorithm makes use of a
gradient descent to iteratively update a network's weight values, cal-
culating the gradient of a pre-determined loss function with respect to
the weights in each step. It propagates backwards in the sense that the
gradient is calculated for the network's layers in reverse order, begin-
ning from its final layer. The training process uses the disparities be-
tween the known labels of input training data and the network's outputs
to evaluate the loss function. Once appropriately trained, a multilayer
neural network can recognize patterns among features that may not be
immediately identifiable to humans. While the descriptions of these
features may prove difficult to later reconstruct from an analysis of the
networks’ operation, they can already provide for image classification
via statistical comparison of the similarities found among the images in
different databases. Performing this kind of experimentation requires
only a Visual Geometry Group (VGG) model such as that proposed by
Simonyan and Zisserman [30].

The architecture of the network (VGG-16) that was utilized for these
experiments consists of sixteen layers. The VGG model contains thirteen
convolutional layers (i.e., layers that apply the inner product of a
square weight mask to image neighborhoods prior to passing the results
to the succeeding layers) with rectified linear unit (ReLU) activations
(i.e., activations of the form ReLU(x) =max(x, 0)). Convolutional
layers without a nonlinear activation are linear filters. A cascade of
multiple convolutional layers without nonlinear functions is still a
linear filter; therefore, ReLU activations follow each convolutional layer

to allow the network to learn highly non-linear functions. In the VGG
model, convolutional layers are followed intermittently by max pooling
(i.e., a pruning process in which each square image neighborhood of a
fixed size is collapsed to a single pixel having an intensity value equal to
the maximum intensity value found in the original image neighbor-
hood). The role of max pooling is to reduce the spatial size of the in-
termediate feature representations and to build translation invariance
into the network. The VGG model also incorporates three fully-con-
nected layers after the convolutional layers (i.e., layers with connec-
tions from every neuron to every neuron in the preceding layer, also
with ReLU activations), and finally followed by a softmax (i.e., a pro-
cedure that, by normalizing the exponentials of each value in a given
vector, converts that vector into a discrete probability distribution). The
role of fully-connected layers is to learn the classification function using
the output of the final convolutional layer as a feature space. The
softmax function normalizes the outputs of the network such that they
can be interpreted as class probabilities. A diagrammatic description of
the VGG-16 network that was utilized for these experiments, drawn to
scale according to the sizes of each of the layers, appears in
Supplemental information Fig. A.3. Please refer to this diagram for
more information regarding the precise features of the neural network.
Having already been trained to correctly classify a variety of everyday
images including images of various types of animals, vehicles, and
household objects, the model comes equipped with a set of pre-de-
termined weight values [31].

Using the VGG-16 network, four binary classifications were per-
formed. Images at the calcination temperature of 350 °C were classified
against those at each of the other calcination temperatures (i.e. 400 °C,
450 °C, 500 °C, and 550 °C). For consistency, only images acquired at
15,000× magnification and with a resolution of 2048×1887 pixels
were used. All images were pre-processed in MathWork's MATLAB
Version R2017a and Apple's Preview Version 10.0 [32]. Pre-processing
consisted of making the images monochromatic, removing their data
labels, equalizing their pixel intensity value histograms (if necessary),
and breaking each into four separate, non-overlapping images of size
1024×863 pixels. Additionally, the images of size 1024×863 were
converted from the .tif to the .jpeg format. This resulted in 468 images
at 350 °C, 364 images at 400 °C, 128 images at 450 °C, 140 images at
500 °C, and 36 images at 550 °C. Ten images were randomly selected
from each temperature group and set aside for the purposes of testing
the four resultant classifiers. These images were not used when training
the four neural networks.

3. Results and discussion

3.1. Thermal decomposition analysis

Investigating the chemical transitions that occur as a starting ma-
terial decomposes is critical to understanding the consequent changes
in the material's morphology. The acts of dehydration, denitration, and
reduction all likely play a role in the calcined product's morphology. To
that end, DSC, TGA-MS, and p-XRD were utilized to monitor the
thermal decomposition of an unwashed uranyl peroxide precursor.

The dried samples of unwashed uranyl peroxide appeared, to the
naked eye, to have a glassy/crystalline texture and were dark yellow in
color. In the bottom of the platinum crucible used for calcination, the
material had the appearance of almost being melted to the bottom of
the vessel. It required grinding to break up the sample prior to analysis.
In contrast, previously synthesized samples of washed uranyl peroxide
resulted in a light yellow powder with a granular texture [8]. The un-
washed uranyl peroxide starting material, through p-XRD analysis, was
found to consist of a mixture of 73.2 ± 2.1% (UO2)(NO3)2(H2O)3,
13.5 ± 2.2% (UO2)O2(H2O)2, and 13.3 ± 2.1% of the dimer
[(UO2)2(OH)2(NO3)2(H2O)3]·H2O (Fig. 1). These results suggest that
although uranyl peroxide was formed with the addition of hydrogen
peroxide, the generated excess nitric acid in solution and the resulting
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decrease in pH, shifted the chemical equilibrium towards the uranyl
nitrate species as noted by Sanderson et al. [33]. The UV–Vis analysis of
the unwashed uranyl peroxide indicated 21.5 wt% NO3

− (Figs. A.1 and
A.2), which is in close agreement with the 22.4 ± 0.9 wt% NO3

− in-
dicated from the p-XRD results.

The unreacted uranyl nitrate hexahydrate dehydrated to the uranyl
nitrate trihydrate upon heating and subsequent storage under vacuum.
Several researchers have identified the propensity for uranyl nitrate
hexahydrate to dehydrate to uranyl nitrate trihydrate in a temperature
range of 60–80 °C [34–36], under a flow of dry inert gas [37], or in
vacuo [36]. All of those conditions were experienced by the unwashed
samples in this study prior to calcination and analysis.

The hydrolysis of a portion of the UO2
2+ in solution resulted

in the formation of a polynuclear uranyl complex, an aquonitrato
complex of the dimer, [(UO2)2(OH)2(NO3)2(H2O)3]·H2O. In solution,
the dimer complex, (UO2)2(OH)22+, is the principal hydrolysis
species over a wide range of pH (2–5) and metal concentrations
(> 10−4 M) [38,39]. Woodhead et al. identified the presence of
[(UO2)2(OH)2(NO3)2(H2O)3]·H2O as a result of a disproportionation
reaction in uranyl nitrate hexahydrate due to the loss of water upon
heating to 70–80 °C [40]. Several researchers have also noted that the
production of polynuclear aquonitrato complexes can occur from the
dehydration of uranyl nitrate solutions when the NO3:UO2

2+ ratio in
solution is between 1 and 1.5 [41–43]. The addition of hydrogen per-
oxide to the uranyl nitrate solution results in the formation of solid
[UO2(O2)(H2O)2](H2O)2. As the uranyl ion continues to precipitate out
of solution, the NO3:UO2

2+ ratio in solution will increase, and could
explain the formation of the small amount of the dimer complex seen in
this study.

The thermal decomposition of uranyl nitrate hydrates has been in-
vestigated previously, and is known to occur through a complex set of
intermediates [34,35,44–48]. Several studies indicate that the decom-
position of uranyl nitrate hydrates does not result in an anhydrous ur-
anyl nitrate intermediate, but rather a hydroxynitrate species
[35,44–47]. TGA-MS and DSC were utilized to monitor the decom-
position of the multi-component starting material over the temperature
range of 25–600 °C (Fig. 2). Samples of nitrate-free metastudtite syn-
thesized under similar conditions, were investigated previously using
the same TGA-MS methodology [8].

The first endothermic transition identified from the thermal

decomposition of the starting material, occurred from 50 to 110 °C and
correlated with the loss of one water from the uranyl nitrate trihydrate
and one water from the diuranyl dihydroxide bis(nitrate) tetrahydrate
to form uranyl nitrate dihydrate and diuranyl dihydroxide bis(nitrate)
trihydrate, respectively. Utilizing the p-XRD determined initial masses
for each species, the theoretical mass loss for this transition is 3.25%,
and the actual TGA mass loss was 3.25 ± 0.20% (3σ error). The mass
spectrometer detected a significant increase in H2O vapor in conjunc-
tion with this mass loss. Previously, Dash et al. [35], Smith et al. [34],
and Bridge et al. [36] also observed conversion of the uranyl nitrate
trihydrate to the dihydrate in the same temperature range.

The second endothermic transition occurs from 110 to 175 °C, and
appears to consist of at least two separate dehydration events occurring
in close proximity in temperature. The mass spectrometer signal shows
two separate H2O peaks, and the DSC endotherm is broadened. One of
the dehydration events is due to the loss of 1.5 waters from the uranyl
nitrate dihydrate, as documented by Dash et al. [35]. The other dehy-
dration event would appear to correlate with the loss of 2.5 waters from
the diuranyl dihydroxide bis(nitrate) trihydrate. The total theoretical
mass loss for these transitions being 5.19%, with an actual transition
mass loss of 5.19 ± 0.07%. Previously, little to no mass loss was re-
corded up to this temperature for nitrate-free (UO2)O2·2H2O [8]. From
175 to 250 °C, the (UO2)O2·2H2O loses two hydrates and converts to an
x-ray amorphous UOx (3≤ x≤ 3.5) as has been documented previously
for the thermal decomposition of washed uranyl peroxide hydrates

Fig. 1. Powder X-ray diffraction patterns for the initial unwashed uranyl per-
oxide precipitate compared against the reference patterns for (UO2)
(NO3)2(H2O)3 from PDF #01-073-4459, (UO2)O2(H2O)2 from PDF #00-016-
0207, and (UO2)2(OH)2(NO3)2(H2O)4 from PDF #01-070-0176. Rietveld re-
finement of three samples indicates that the unwashed precipitate consists of
73.2 ± 2.1% (UO2)(NO3)2(H2O)3, 13.5 ± 2.2% (UO2)O2(H2O)2, and
13.3 ± 2.1% (UO2)2(OH)2(NO3)2(H2O)4. Additional refinement details can be
found in Table A.17.

Fig. 2. A) TGA mass loss for the multi-component starting material, and the
associated derivative of the mass loss. B) DSC thermogram with exothermic
transitions occurring in the upward direction, three replicates were performed
with similar results. C) Mass spectrometer readings for H2O, O2, and NO as the
starting sample was heated from 25 °C to 600 °C at 10 °C/min with 100mL/min
He flow. A complex series of dehydration events occur up to 250 °C, including
the conversion of (UO2)O2·2H2O to am-UOx (3≤ x≤ 3.5). Nitrate decomposi-
tion occurs at 300 °C with the associated conversion to UO3. At 550 °C, the
conversion to U3O8 is registered with the associated increase in MS O2 signal.
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[8,49–52].
To assess intermediates formed from the uranyl nitrate hydrates, a

sample of unwashed uranyl peroxide was calcined for 8 h in air at
200 °C, cooled to room temperature, and subsequently analyzed by p-
XRD. No UO2(O2)·2H2O was detected, having been converted to x-ray
amorphous material (Fig. A.4). An additional DSC endotherm occurs at
225 °C with a slight increase in the H2O signal on the mass spectrum.

The third endothermic transition is the largest, resulting from ni-
trate decomposition at 250 °C (see Fig. 2B). The mass spectrum shows
significant signals for NO (m/z 30) and NO2 (m/z 46) at 306 °C
(Fig. 2C). Significant H2O and O2 signals also correlate with the de-
composition of the uranyl nitrate hydrate and the dimer complex ac-
cording to the reactions:

⋅ → + + + +UO NO xH O UO NO NO O xH O( )2 3 2 2 3 2 2 2 (1)

→ + + + +UO OH NO UO NO NO O H O( ) ( ) ( ) 22 2 2 3 2 3 2 2 2 (2)

Interestingly, the nitric oxide mass spectrometer signal does not
return to baseline until 525 °C. This second stage release of nitric oxide
out to 525 °C was also seen by Dash et al. during the thermal decom-
position of uranyl nitrate hexahydrate at the same heating rate of 10 °C/
min and was attributed to product barrier layer formation delaying the
release of entrained nitrates [35]. The theoretical total mass loss for the
conversion of all the initial species to UO3 is 31.91%, and the actual
TGA mass loss by 360 °C was 29.28 ± 0.47%. The 2.6% mass loss
discrepancy can be accounted for by the residual nitrates and/or the
slow conversion of am-U2O7 to am-UO3 as was previously observed in
the decomposition of metastudtite [8,49].

An endotherm is registered on the DSC at 360 °C, but without an
associated increase in NOx or O2 and no step change in mass. This en-
dotherm was seen by Kalekar et al. at a temperature of ca. 370 °C and
was associated with the release of additional nitrates, and could also be
associated with the transition from am-UO3 to α-UO3 as seen in the
qualitative p-XRD results (Fig. 3). The only exothermic transition re-
gistered during the course of the thermal decomposition is at 540 °C. It
coincides with the release of O2 and a mass loss corresponding with the
generation of U3O8 as seen on the p-XRD of a sample calcined at 550 °C
(Fig. 3). The total theoretical mass loss for the conversion of the starting
material to U3O8 is 33.27%, and the actual mass loss by 590 °C was
33.08 ± 0.44%.

3.2. Qualitative morphology analysis

The initial unwashed uranyl peroxide was investigated under the
SEM, and compared to previously synthesized washed uranyl peroxide
[8] (Fig. 4). It is evident that the resulting materials are distinctly dif-
ferent. The unwashed material exhibits acicular features; while the
washed material exhibits sub-rounded grains. The precipitation of ur-
anyl peroxide, and the resulting morphology, is heavily influenced by
the concentration of the involved species, the ionic strength, tempera-
ture, and the pH [22,33,53]. As Cordfunke previously noted, needle like
crystals can be formed during the precipitation of uranyl peroxide so-
lutions in the presence of high nitric acid due to the resulting slow
formation of complexes of uranyl and peroxide ions [45]. The uranyl
nitrate solution in this study contained a high concentration of nitric
acid. The presence of a mixture of uranyl nitrate trihydrate and uranyl
peroxide in the dehydrated product indicates that the competition be-
tween the peroxide and nitrate ions likely slowed the formation of ur-
anyl peroxide; therefore, resulting in needle-like features.

The resulting products from the calcination at temperatures of 350,
400, 450, 500, and 550 °C were also investigated thoroughly under the
SEM. Representative images of the resulting surface features can be
seen in Fig. 5. The morphological differences appear very drastic be-
tween the calcination temperatures. Tamasi et al. previously developed
a lexicon of descriptors for describing nuclear material images for the
purpose of nuclear forensics [54,55], and these descriptors were ap-
plied to the calcination products in this study.

The macro-particles (ca. 50–500 µm in size) in the initial unwashed
material were a complex conglomerate, consisting of micro-particles
(< 1 µm in size) that exhibited a wide variance in morphology. The
overall morphology of the macroparticle was rounded or blocky, with
the macro-particle edges having morphologies that ranged from sub-
rounded to very angular and of an irregular medium sphericity. The an-
gular nature of the edges is attributed to the fact that the bulk material
initially consisted of a melt that was fragmented prior to calcination or
microscopic investigation. Several of the investigated macro-particles
were seen to have conchoidal fracture features, curved breakages similar
to that seen in fragmented obsidian, present on the surface. These
fracture features and vitreous character of the morphology are also in-
dicative of the fragmentation from the melt that occurred during the
low-temperature dehydration. There are portions of the macro-particle
surface that appear porous and there is also some slight dendritic frac-
turing of a shallow depth. These macro particle features remained re-
latively consistent across all temperatures with only slight variations.
For example, spherical bubbles and large pore cavities that penetrate
deep into the macro particles formed on the 350 °C samples (Fig. 6A).
These are likely a result of the decomposition products. Furthermore, at
500 and 550 °C, the sintered micro particles created features that were
clearly visible on the macro particle surface (Figs. A.5–A.7).

The micro-particles that compose the bulk of the unwashed uranyl
peroxide starting material, are of an acicular, or needle-like, nature.
These acicular particles are straight and, qualitatively, appear to have an
average aspect ratio of ca. 4:1. There exists another much smaller po-
pulation of particles on the surface that are sub-rounded grains. The
spatial grouping of the acicular features is generally irregular with no
coherent ordering to their orientation. In rare instances, radiating ro-
settes of acicular features were found (see Figs. A.5–A.12 for additional
examples of the discussed morphology).

At the micro-particle level, the 350 °C sample shows three distinct
developments from the starting material: the formation of surface pores,
large channels/cavities, and parallel rhomboidal surface grains. The
boundary of the surface pore edge can vary from being irregular to
rounded. Furthermore, the surface pores seem to occur heavily in iso-
lated regions over a 25 µm2 region of the surface, and the regions can be
separated by as much as 5–10 µm. When the rhomboidal surface grain
morphology occurs, it is co-located within these surface pore regions.
The rhomboidal grains seem to generally orient themselves in a parallel

Fig. 3. Qualitative powder X-ray diffraction patterns for the calcination pro-
ducts from unwashed uranyl peroxide precipitate held at the indicated tem-
peratures for 8 h in air. The reference pattern for α-UO3 from PDF#01-072-
0246 is included for comparison. As the calcination temperature increases, the
amorphous content decreases with a commensurate increase in α-UO3 crystal-
line phase. By 550 °C, the presence of a small amount of α-U3O8 is also detected.
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direction on the surface of the particle across the localized region where
they occur.

In general, as the calcination temperature is increased, the density
of surface pores increases. At 400 °C, 450 °C, and 500 °C, the surface
pores form a complex reticulated, or net-like, pattern that spreads across
the majority of the macro-particle surface (Fig. 6B). The rhomboidal
grain density increases to the point that there is considerable overlap
between grains, and the grains in a localized region are still generally
oriented in one direction. By 400 °C, the surface grains begin to appear
porous themselves, and become very rough rather than smooth and
faceted.

The 450 °C samples had a significantly lower surface grain and
surface pore density than either the 400 °C or 500 °C samples. The
500 °C sample shows the most dramatic transformation, with almost
complete coverage of the surface with the rhomboidal surface grains.

The reticulated network of surface pores is visible underneath the
surface grains. A third population of even smaller surface nanopores
(10–50 nm) begin to form across the entire surface at 500 °C, including
on the surface grains and acicular features themselves (Fig. 6C). As was
noted from the TGA-MS data, the slow release of NOx from 300 °C to
525 °C is likely due to the formation of a dense product layer barrier. Yu
et al. previously identified during calcium oxide synthesis that an outer
product layer can trap gaseous decomposition products, resulting in
internal pressures that cause the formation of both smaller surface
pores and larger channels on the surface of the material [56].

By 550 °C, significant sintering has occurred. The rhomboidal sur-
face grains are almost completely sintered, with the surface of the
particle losing almost all definition. The reticulated surface pore net-
work also appears predominantly sintered, and those pores that do
remain appear to be very shallow and rounded. The surface nanopores

Fig. 4. Comparison of unwashed (left) and washed (right) uranyl peroxide precursors from hydrogen peroxide precipitation in uranyl nitrate solution showing
distinct differences in morphology.

Fig. 5. Representative SEM Images of the unwashed (UO2)O2 starting material and the calcination products as a result of heating the sample at 350, 400, 450, 500,
and 550 C in air for 8 h.
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that were ubiquitous at 500 °C, also occur across the particle surface at
550 °C. The 550 °C samples appear to have a higher density than the
lower temperature samples, from the apparent loss of void spaces. The
surface cavity population density decreased as some of the fissures seem
to sinter back together.

From the qualitative analysis, several discerning characteristics that
can act as forensic signatures have been identified. It is important to
note that the most distinct features came from the micro particles. It can
be seen that the initial starting material contains no rhomboidal surface
grains or surface pores. The 350 °C samples show very limited surface
grain and surface pore formation. The 400–450 °C samples show sig-
nificant surface grain and pore formation, but do not have the surface
nanopores forming on the surface. The 500 °C samples show extensive
surface grain and surface pore formation, and the surface nanopores
first make their appearance at this temperature. The 550 °C samples
exhibit significant sintering, a loss of the majority of the surface grains
and reticulated pores, but retain the presence of the surface nanopores.
These distinct features were further probed using particle segmentation
to try to identify statistical differences between the different calcination
temperatures.

3.3. Quantitative morphology analysis

Quantitative analysis was performed on the starting material and all
calcination temperatures. In total, fourteen attributes ranging from
vector area to ellipse perimeter were calculated for each segmented
particle (Tables A.1–A.16). Three main features seen throughout the
calcination of the unwashed uranyl peroxide were chosen for statistical
analysis: the long acicular needles, rhomboidal surface grains, and
surface pores. An additional signature, large cavities that penetrate into
the surface with an indeterminate depth, were initially investigated for
segmentation, but due to a limited population across all temperatures
were not pursued further. The acicular needles were considered the
most promising signature, due to their presence at every investigated
calcination temperature, as well as being the only signature present in
the unwashed starting material. In accordance with segmentation in-
clusion guidelines discussed previously [23], only features that had
defined edges and were unobstructed were considered viable for
quantitative analysis. For the segmentation of the surface pores, only
pores with defined edges that were shallow enough to allow visibility to
the bottom of the pore were included for segmentation. An example of
the manual segmentation can be seen in Fig. 7.

In this study, a minimum of 500 segmented particles for each fea-
ture type, at each temperature, was investigated. This value is based on
the maximum particles that could be segmented in the microscopy
images. As multiple features were present within any given image, the
surface density of that given feature was low; thus limiting the segments

of each feature. Nonetheless, the combination of all three features re-
sulted in over 1500 segments for each calcination temperature.

The results of the quantitative morphological analysis for the long,
acicular needle features can be seen in Fig. 8. The long needles appear
to increase in their equivalent circular diameter (ECD) from the initial
unwashed uranyl peroxide up to a calcination temperature of 400 °C
[57]. The needle features then begin to decrease in size above 400 °C as
a result of sintering that was previously seen to occur in the range of
400–450 °C for washed uranyl peroxide [8]. Extensive sintering occurs
by 550 °C, and the longer needles appear more likely to be obstructed
by, or embedded in the sintered surface, resulting in a decrease in
quantified size. The ellipse aspect ratio of the acicular needles shows
only slight variations as a function of temperature, with an average
aspect ratio of ca. 3.

The results of the rhomboidal surface grain segmentation can be
seen in Fig. 9. The ECD results do not show a consistent trend as a
function of increasing temperature. The 350, 450, and 550 °C samples
were those which had the lower surface grain density across their re-
spective surfaces. The 400 °C and 500 °C samples had extensive surface
grain growth. One observation when comparing the morphology seen in
these two separate groups (See Figs. A.6 and A.11), is that there appears
to be an impact in the quantified size due to the orientation of these
surface grains. The surface grains in the acquired images for the 350,
450, and 550 °C samples are oriented in such a way that they appear
more rectangular, while the 400 °C and 500 °C samples clearly show a
more rhomboidal shape. It is unknown what would cause this variation
in surface grain orientation as a function of temperature. The circularity
of the samples exhibits a minimum at the sintering temperature of
400–450 °C, and subsequently increases with temperature.

The results of the shallow surface pore segmentation can be seen in
Fig. 10. The ECD of the surface pores shows little variation between the
350, 400, and 500 °C samples. Reticulated networks were not as
dominant in the 350, 450 °C, and 550 °C samples which may explain the
significant deviation from the neighboring distributions. The 550 °C
samples experienced sintering that reduced the size of the surface pores
and also had a population of nanopores that drove the ECD much lower
at this temperature. In general, the surface pore circularity increased as
a function of calcination temperature. It is evident from the confidence
intervals displayed on the quantitative morphology results, that no
single feature attribute was sufficient to differentiate all calcination
temperatures. Therefore, additional signatures were sought to improve
the ability to discriminate these samples as a function of calcination
temperature.

3.4. Quantitative p-XRD analysis

Qualitative XRD analysis demonstrated differences between each of

Fig. 6. A) Image of 350 °C calcination product surface highlighting the large pores and channels that form on the surface of calcined unwashed uranyl peroxide. B)
Image of 500 °C calcination product surface highlighting the surface grain extent and the reticulated network of surface pores that are visible underneath the surface
grains. C) Image of 500 °C calcination product surface showing a sampling of the surface nanopores that form at 500–550 °C.
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the calcination temperatures (Fig. 3). Hence, the degree of crystallinity
and Rietveld Refinement were performed to quantify the crystal-
lographic differences. To our knowledge, this is the first time that the
quantitative phase analysis of the amorphous content has been utilized
for pre-detonation nuclear forensics. As Jenkins and Snyder noted,
amorphous phase quantification is rarely performed due to the time-
intensive sample preparation and setup [58].

The background intensity for a scan arises as a result of detector
noise, scattering from the sample and air, x-ray fluorescence, and other
sources [59]. The measured intensity that is not due to the crystalline
phase(s) or the background, is attributed to the x-ray amorphous
component of a sample. The DOC method, as implemented, assumes a
constant background that has been calibrated against a standard of the
same elemental composition and density with a known crystallinity
content. The DOC crystallinity % was determined by taking the in-
tensity ratio of the crystalline diffraction peaks, and the total of all
measured intensity that has been corrected for the background [25]:

=
∑

∑ − ∑
Crystallinity

I
I I

[%] 100* crystalline

total const background. (3)

The amorphous content was assumed to be equal to the remainder
of the sample that wasn’t assigned as crystalline. In this study, a well
characterized α-UO3 standard was not readily available. Therefore, the

Fig. 7. Images A and B show the electron microscopy image before and after segmentation of the surface grains (blue) and pores (green) for a sample from 450 °C.
Only surface pores and grains in which all edges were clearly visible were segmented for statistical analysis.

Fig. 8. Top) Equivalent circular diameter, ECD, for the acicular surface features
as a function of temperature from the manually segmented SEM images.
Bottom) Ellipse aspect ratio for the acicular surface features as a function of
temperature from the manually segmented SEM images. The error bars corre-
spond to the 99% confidence interval for the mean of each group. *The un-
washed uranyl peroxide starting material and the 350 °C sample were coated
with a thin film of Au/Pd due to surface charging.

Fig. 9. Top) ECD, for the rhomboidal surface grain features as a function of
temperature from the manually segmented SEM images. Bottom) Circularity for
the rhomboidal surface grain features as a function of temperature from the
manually segmented SEM images. The error bars correspond to the 99% con-
fidence interval for the mean of each group. *The 350 °C sample was coated
with a thin film of Au/Pd due to surface charging.

Fig. 10. Top) ECD, for the surface pore features as a function of temperature
from the manually segmented SEM images. Bottom) Circularity for the surface
pore features as a function of temperature from the manually segmented SEM
images. The error bars correspond to the 99% confidence interval for the mean
of each group. *The 350 °C sample was coated with a thin film of Au/Pd due to
surface charging.
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constant background was determined for each sample by taking the
average of the constant background at the low and high angle portion of
the most crystalline scans (550 °C). The degree of crystallinity method,
while less accurate than many other methods, is useful in instances
where structural data is not available for the phases of interest [59,60].
This allows for comparison of the various calcination products within
this study, but precludes their use for comparison against externally
analyzed samples. The results of the degree of crystallinity analysis can
be seen in Fig. 11. It is apparent that the amorphous content decreases
as the calcination temperature increases. At the 95% confidence in-
terval, there is significant overlap between the 350 °C and 400 °C
temperatures. All other temperatures were found to be significantly
different at even the 99% confidence level.

A separate method, the Rietveld method, was also performed as it
utilizes the addition of an internal standard and refinement of the full
XRD pattern for determination of the phase contents. The Rietveld
method is considered one of the most reliable means of acquiring
quantitative phase contents, although it does require known atomic
structural data for the phases present in the investigated mixture
[59,61]. Bish and Howard detail the use of an internal standard with
Rietveld refinement to determine the amorphous content [62]. The
results of the internal standard quantitative phase analysis can be seen
in Fig. 11. Details for the refined patterns at each temperature can be
seen in Figs. A.13–A.17, and Tables A.17–A.22. The trend of decreasing
amorphous content with increased temperature closely matches that of
the DOC. It is apparent that the DOC method overestimates the amor-
phous content at the higher temperatures. One source of possible error
in the internal standard method could be due to microabsorption effects
that result from differences in particle size, degree of particle ag-
gregation, and the linear absorption coefficient between the internal
standard and the investigated phase [59]. The Brindley microabsorp-
tion correction was not applied in this case, due to the product of the
linear absorption coefficient (est. 0.188–0.190 µm−1) and particle size
(ca. 20 µm) of the α-UO3 phase falling outside the bounds where the
correction is applicable [63,64].

At 350 °C, the α-UO3 peaks were very weak compared to the
amorphous background. The 400 °C sample would rapidly hydrate
leading to trace amounts of α-UO2(OH)2 that were quantified. In con-
trast to the SEM analysis, where the samples were only exposed to at-
mospheric air briefly as they were transferred into the instrument, the
three, 400 °C XRD samples were exposed to atmospheric air for in-
creasing lengths of time while waiting for the prior sample to complete
XRD analysis (up to 7 h for the last replicate). The first sample regis-
tered< 1% of the hydroxide, the second replicate 2.3%, and the last
replicate had 1.9% α-UO2(OH)2 with 2.0% metaschoepite (UO3·2H2O).
This rapid hydration is likely due to the presence of am-U2O7 in these
low temperature samples. Odoh et al. previously showed am-U2O7 from

uranyl peroxide to be hygroscopic and water reactive resulting in me-
taschoepite formation [50].

The 450 °C and 500 °C samples also exhibit weak superlattice re-
flections that were previously identified by Tsvigunov and Kuznetsov
when they were investigating the calcination of uranyl nitrate hex-
ahydrate, uranyl peroxide with residual nitrates, and washed uranyl
peroxide [65]. The 450 °C samples exhibit only one weak reflection
consistent with the α-UO2.87 or α-UO3.01 phase. The 500 °C samples
exhibit a series of superlattice reflections consistent with the α-UO2.87

phase. Naito et al. noted that while defect structures, like lattice va-
cancies and interstitial atoms, are often randomly distributed, there can
exist compositions that result in the defects arranging in some order and
resulting in the presence of superlattice lines in uranium oxides [66].
The 550 °C samples also begin to show the presence of α-U3O8 which
correlates with the TGA mass loss and O2 release that occurred at this
temperature. At the 95% confidence interval, the 400 °C sample cannot
be differentiated from the 350 °C or 450 °C samples based on amor-
phous content. Nonetheless, the 500 °C and 550 °C samples are statis-
tically distinct from each other and all other temperatures.

3.5. Statistical comparison analysis

Although all of the analytical techniques discussed above provided
unique features for classification of the various calcination products,
the morphological and amorphous content signatures, separately, were
insufficient to statistically distinguish all calcination temperatures. The
combination of multiple quantitative forensic signatures to provide
information on the process history lies at the core of nuclear pro-
liferomics. Therefore, a method of analyzing a combination of multiple
quantitative signatures with their associated uncertainties was used to
couple multiple morphological signatures crystallinity signatures into a
conclusive differentiation of calcination temperature.

Parker previously addressed the issue of using sets of numerical
forensic evidence and ascribing the probability a set of samples share
the same origin at a specified level of confidence [67–69]. The ap-
proach devised by Parker utilizes the number of signatures that may be
acquired at a crime scene, and after taking into account the measure-
ment and sampling errors, a statistical comparison is made against si-
milar attributes measured from a suspect. A discrepancy index, C, is
utilized as a measure of agreement between two samples that have N
attributes measured. A threshold index, Co, is selected at a percentage
point of the χ2 distribution for the associated N degrees of freedom. For
α=0.00001, if C> Co, then the probability that the samples came
from different origins is 99.999%. The discrepancy index, C, is calcu-
lated by:

Fig. 11. Mean amorphous content (wt%) as a function of calcination temperature. The degree of crystallinity (DOC) and the internal standard method as indicated.
95% confidence interval of the mean shown.
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where Di
2 represents the square of the reduced difference for the ith

attribute comparison, in which Xi and Yi represent the measured attri-
bute means for two compared samples, and σxi and σyi represent their
respective standard errors.

The discrepancy index requires that the attributes investigated are
normally distributed and not strongly correlated with one another. The
various morphological area attributes were understandably strongly
correlated with one another, and therefore only one area attribute was
utilized for each feature type. The vector, convex hull, and ellipse
perimeter values also showed strong correlation with the area attributes
and were not utilized for comparison. The most successful uncorrelated
discriminators, as determined by Tukey-Kramer honest significant dif-
ference testing [70,71], were included as an attribute for investigation
by Parker's method. When coupled with the XRD-determined amor-
phous content, a total of 6 attributes were included for comparison.

The Shapiro-Wilk tests indicated that the selected quantitative
morphological attribute data deviated significantly from a normal dis-
tribution [72]. Therefore, a univariate Box-Cox transformation was
performed to transform each attribute data set to a normal distribution
[73]. The transformations resulted in λ=0 for the ECD (nm), minor
ellipse length (nm), and pixel area (nm2). The circularity was trans-
formed using λ=2. To compare equal sample sizes, 500 morphological
attribute data points were sampled from each calcination temperature.
The results of the analysis using the 6 attributes for the demonstration

of calcination temperature differentiation can be seen below in Table 1.
The results indicate that no single attribute is sufficient to state that

all the investigated temperatures are statistically different. This can be
seen by comparing the minimum Di

2 from each attribute against the
critical value for a single attribute (i.e. Co = 20 when α=0.00001).
For six attributes, the critical value at the upper 99.999% point of the
χ2 distribution is Co = 34. The combination of all six attributes allows
for C to far exceed Co at all pairwise compared temperatures. The
amorphous content is a powerful discriminator when comparing the
low and high temperature samples. The discrepancy index aligns in-
tuitively with the expected deviation between samples as a function of
calcination temperature. The greater the difference in the compared
calcination temperatures, the greater the discrepancy index value. This
analysis highlights the great advantage that multiple quantitative sig-
natures can provide in differentiating samples.

3.6. Machine learning algorithm analysis

While quantitative analyses of multiple particle morphological
features and the amorphous content proved an effective means of dis-
criminating α-UO3 according to the calcination history in the range of
350–550 °C, the complex and manually-intensive nature of these ana-
lyses leaves room for improvement. Often, nuclear materials analysis,
especially for nuclear forensics, is time sensitive. The analysis above
requires hundreds of person hours to complete. Nonetheless, it was
visually apparent that there were stark differences between the SEM
imaged morphologies of the various α-UO3 calcination products. As
noted previously, an appropriately trained multilayer neural network
can excel at pattern recognition, potentially exceeding the capabilities
of even a human observer. Therefore, in an effort to expedite the
morphological analysis, machine learning was performed through a
convolutional neural network for image classification of α-UO3 by
calcination temperature.

As a preliminary test of the efficacy of this method, four binary
classifications were performed comparing 350 °C against 400, 450, 500,
and 550 °C. Each binary classification was performed ten times. The
final training and testing accuracies for the 350 °C vs 400 °C comparison
can be seen in Table 2. All other comparisons can be seen in Tables
A.23–A.25. The training accuracy evaluates discernment of the images
based on calcination temperature from the same set of data used for
training the network. The test accuracy is the ability to discern new
images, not used for training, based on calcination temperature. Com-
parison of the SEM images acquired at 350 °C to those at the other in-
dividual calcination temperatures yielded a minimum average dis-
cernment of images based on temperature of 89.0 ± 5.7%. The 350 °C
vs 450 °C comparison resulted in the maximum average final testing
accuracy of 94.0 ± 2.1%. Hence, machine learning shows great

Table 1
Results of similarity analysis, values of Di

2 indicated for each of the pairwise temperature comparisons for each attribute. No single attribute is sufficient for
differentiation of all calcination temperatures. For N=1, Co = 20 for α=0.00001. For N=6, Co =34 for α=0.00001. C > Co indicates a statistically significant
difference at the 99.999% upper point of the χ2 distribution.

Attribute

Temperature comparison Long needle ECD Long needle minor ellipse Surface grain ECD Surface pore pixel area Surface pore circularity Amorph content C, value

350–400 °C 28.3 27.2 58.9 5.2 12.1 9.0 140.6
350–450 °C 9.6 1.3 32.5 54.2 3.3 87.1 188.1
350–500 °C 30.6 72.7 94.9 0.3 23.7 1906.4 2128.6
350–550 °C 323.4 291.5 32.8 111.7 72.1 6776.8 7608.4
400–450 °C 72.5 40.4 10.4 82.9 4.1 6.7 217.0
400–500 °C 113.8 169.5 8.5 5.3 3.2 424.5 724.7
400–550 °C 551.5 466.5 139.6 144.4 31.7 1110.9 2444.7
450–500 °C 6.8 57.5 36.5 23.4 13.7 630.7 768.6
450–550 °C 226.9 260.2 110.4 14.7 61.5 2075.6 2749.4
500–550 °C 137.9 49.4 178.1 56.1 12.2 328.0 761.8
Minimum, Di

2 6.8 1.3 8.5 0.3 3.2 6.7

Table 2
Respective classification accuracies for the 350 °C and 400 °C training and
testing set of SEM images.

350 °C vs 400 °C

Classification iteration Accuracy on training set Accuracy on test set

1 95.3202% 90%
2 95.8128% 90%
3 95.0739% 90%
4 95.5665% 90%
5 95.5665% 90%
6 94.5813% 85%
7 94.3350% 90%
8 94.5813% 85%
9 94.0887% 95%
10 94.9507% 95%
Mean 94.9877% 90%
Std. Dev. 0.5807% 3.3333%
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promise as a technique of the future for expediting image analysis in
nuclear proliferomics.

4. Conclusion

The development of multiple nuclear material signatures within the
framework of nuclear proliferomics has the potential to provide pow-
erful new tools for nuclear material analysis. In this work, rather drastic
morphological transformations were qualitatively presented for the
calcination of unwashed uranyl peroxide at temperatures of 350, 400,
450, 500, and 550 °C. Through quantitative morphological analysis, it
was shown that the morphology of any one surface feature present in
the analyzed α-UO3 samples was insufficient on its own to conclusively
differentiate calcination temperature. Nonetheless, advanced statistical
analysis coupling multiple morphological features with the x-ray dif-
fraction spectra yielded complete discernment between the processing
histories. Last, machine learning was applied to the analysis of the ac-
quired SEM images to demonstrate their discernment with at least 89%
accuracy. The methods provided open the door to a new field of study,
nuclear proliferomics, which relies on the collection of vast libraries of
data to identify signatures not readily available from standard nuclear
forensics and nuclear safeguard analysis tools.
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