
Development of the Uintah Gateway for
Fluid-Structure-Interaction Problems

John A. Schmidt
School of Computing

University of Utah
Salt Lake City, UT

john.schmidt@utah.edu

Martin Berzins
School of Computing

University of Utah
Salt Lake City, UT

mb@cs.utah.edu

ABSTRACT
The Uintah Gateway was designed to allow users to create com-
plex multi-physics Uintah simulations with ease and to run these
on large parallel computers. We used the Django web applica-
tion framework to develop the Uintah Gateway for fluid-structure-
interaction problems. We describe using the Gateway from input
file creation to data management. We also describe two use cases:
one involving a complex fluid-structure interaction problem with
multiple simulations and multiple restarts and the other involving
novice users just getting started with Uintah. Preliminary results
suggest that both novice and advanced productivity increased dra-
matically using the Gateway.
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1. INTRODUCTION
The Uintah Software Framework arose from the University of

Utah’s Center for the Simulation of Accidental Fires and Explo-
sions (C-SAFE) [10], a Department of Energy ASC center, that
focused on providing state-of-the-art, science-based tools [3] for
the numerical simulation of accidental fires and explosions. The
benchmark C-SAFE problem was a multi-physics, large deforma-
tion, fluid-structure problem; a small cylindrical steel container
filled with a plastic bonded explosive (PBX9501) subjected to con-
vective and radiative heat fluxes from a fire. The incident heat flux
caused the PBX to rapidly decompose into a gas above a critical
temperature. The solid-to-gas reaction pressurized the interior of
the steel container causing the shell to rapidly expand and eventu-
ally rupture. The gaseous products of reaction formed a blast wave
that expanded outward along with pieces of the container and un-
reacted PBX.

With NSF SDCI funding, C-SAFE’s science based simulation
capability was transformed into the open-source release of the Uin-
tah Software Framework (www.uintah.utah.edu) for com-
plex multi-scale multi-physics problems [18]. Uintah makes use
of a component design that has also allowed it to excel as a re-
search platform. Components can be swapped in and out, allowing
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them to be developed and tested within the entire framework, with-
out affecting other components. This has led to a highly flexible
simulation package that has been able to simulate a wide variety
of problems including shape charges, stage-separation in rockets,
the biomechanics of microvessels [6], the properties of foam under
large deformation [1], and the evolution of large pool fires caused
by transportation accidents [14], in addition to the exploding con-
tainer described above. Uintah has been used on single processor
workstations all the way up to the largest TeraGrid resources (sim-
ulations using 99,072 cores).

Uintah can be viewed at two basic levels, an underlying infras-
tructure support role that defines the notion of particles, grids, time
stepping, parallelization, load balancing and a layered component
system that embodies the physical models and equations that de-
fine each component. At its most basic level, each Uintah compo-
nent solves partial differential equations on block structured adap-
tive meshes. A team of computer scientists and engineers worked
together to design a generic and robust system that partitioned the
problem space into orthogonal components consisting of applica-
tion specific code, i.e. algorithms for PDEs and infrastructure code.
The primary goal of this two phased approach was to provide a sys-
tem where the scientist/engineer would only be concerned with im-
plementing algorithms to solve governing equations using a com-
bination of particle based methods, and structured grid techniques.
The component writer did not have to implement explicit message
passing calls, nor be concerned with any aspect of parallelization
or load balancing instead focusing entirely on efficient algorithm
development and implementation. Whereas computer scientists
working on the underlying infrastructure were focused primarily
on scalability concerns including load balancing [17], partition-
ing, message passing, and data output. The powerful and efficient
decoupling of infrastructure from application components have al-
lowed for new applications to be developed and implemented quickly.
Developers immediately benefit from any improvements [15] in the
underlying infrastructure without requiring any changes to the in-
dividual component code. When advances were made in the infras-
tructure that allowed Uintah to scale to over 50K cores on Ranger1

and 99,072 cores on Kraken2, each computation component imme-
diately scaled and ran at these core counts [15].

Uintah is one of the few large scale software systems for struc-
tured AMR multi-phyics simulations that scales well on the largest
publicly available supercomputers in the TeraGrid. However, for
the new user, installing Uintah can be difficult especially on large
scale platforms with unique environments. Once Uintah is installed,

1Ranger is a NSF supercomputer located at the University of Texas
with 62976 cores
2Kraken is a supercomputer located at the University of Tennessee
with 99,072 cores



the new user must then navigate the batch system that is often dif-
ferent from one platform to the next. And when a user gains experi-
ence with Uintah and the general TeraGrid experience, the user then
experiences data management issues. Instead of doing more sci-
ence, users often spend more time administering, organizing, and
managing data.

Our vision of the Uintah Gateway was to improve the user ex-
perience for both novice and advanced users that would offer solu-
tions to the problems that confront each user population. As we
looked to expand the scope and reach of Uintah and encourage
the broad adoption to the scientific and engineering community the
necessary step was to implement a Gateway that would provide new
users a way to quickly get up to speed using Uintah while allowing
our most advanced users a collection of tools that would streamline
the data management issues that result from any large simulation
study. The Uintah Gateway offers new and experienced users the
opportunity to conduct some of the most powerful multi-physics
on some of the most powerful supercomputers in the world from
the convenience of a web browser offers a unique opportunity to
transform the way computational science is performed.

The format of the rest of the paper is to discuss our previous end
user experience with Uintah, discussion of the actual Gateway de-
velopment using the Django web front-end based on user require-
ments, followed by case studies of advanced usage and novice us-
age, and concluding with an overview of how the Gateway is actu-
ally used.

2. REFLECTIONS FROM USING UINTAH
ON LARGE SCALE PLATFORMS

Based on our previous thirteen years of using Uintah in super-
computing environments, we have encountered some challenges
that surround large scale computing. First and foremost, long run-
ning simulations requiring multiple restarts generating hundreds of
gigabytes of data present real challenges to even the most seasoned
users. Data management tasks often dominant the time spent per-
forming simulations. These tasks include categorizing, organizing,
migrating data from scratch space to long term storage, or migrat-
ing a subset of the data to a local machine for further analysis.
Compound this activity with multiple simulations that arise from
any kind of parameter study and the task of managing this data glut
often dominants the user experience.

Our users often want to visualize the simulation either during the
course of a long running simulation or at the end. Invariably, the
user must download a subset of the data to ensure that the simula-
tion is proceeding as expected. With data sets that range from Giga-
bytes to Terabytes downloading even a fraction of the data presents
difficulties that include issues such as data storage on the end user’s
machine, speed of data transfer, etc. Ideally, data movement should
never take place. Instead users should rely on the visualization ca-
pabilities of the remote resource, but in practice our users would
routinely seek to migrate data back from various supercomputing
resources including the TeraGrid to do visualization locally. One of
the design goals of the Uintah Gateway was to encourage our users
to do simple remote visualizations by providing an interface to the
command line options for VisIT while still providing the ability to
migrate data back to a local resource for visualization purposes.

From the new user perspective, we typically found that new users
experienced problems installing Uintah and running Uintah from
the command line through the various batch systems. For those that
come from the point and click world of graphical user interfaces,
the command line world of Uintah and supercomputing in general
presented challenges to the user that required a paradigm shift in the

way they conducted their work. If the new user wanted to try out
Uintah, they first had to install it, then figure out the batch system
which usually varied from one supercomputer site to another and
finally, they had to learn new data exploration tools. The users that
did make it past this stage usually required many months of men-
toring and dedicated efforts on their part before they got to the point
where they were productively carrying out simulation science.

The overarching goal of the Uintah Gateway is to bring a world
class multi-physics simulation environment running at petascale
levels to new users while helping advanced users manage the ensu-
ing data. Eliminating installation difficulties and hiding batch sub-
mission behind a web based front end allows new users to quickly
submit and manage jobs on multiple processes. Although the new
user must still understand the input file format (XML based input
file) and various options used to describe a simulation, the profi-
ciency level is enhanced by the elimination of the installation prob-
lem and the batch submission problem.

As we moved from Uintah software development and testing to
actually use for very large scale simulation studies (using as many
as 99,072 cores on Kraken) for a variety of problem cases, it be-
came apparent that scientists and engineers needed some kind of
interface to the TeraGrid to improve their productivity. The Uintah
Gateway is unique in the sense that very long running simulations
encompassing multiple restarts, management of hundreds of Giga-
bytes of data, and remote scientific visualization are being managed
by the gateway on the largest machines on the TeraGrid (Ranger
and Kraken). The ability for a user to deploy these jobs, visit a web
site (the Gateway) to check on the status of the jobs, track where
the data is stored, the archival status, and keep notes, documents,
and figures associated with the simulation enhancing productivity.

3. ENABLING TECHNOLOGIES

3.1 Software
Several key technologies have come about over the past decade

which makes the realization of a gateway interface possible. First
and foremost the decision of the TeraGrid to provide a Globus
GRAM environment for which applications can be launched out-
side of the typical batch submission process. The second important
enabling technology is the proliferation of robust web application
frameworks, i.e. Django that combine database technologies with
web technologies that allow for the rapid development of a front-
end to an existing command line driven application.

Specifically, Django combines three principle technologies that
make web application development straightforward based on the
concept of Models, Views, and Templates [11]. Firstly, Django’s
models provide an elegant interface to the underlying SQL database
that is used to manage the entire simulation process. The database
holds key information about the user and all simulations both past
and present that have run using the Gateway. Key simulation data
that is stored includes such things as source code revision, input file
parameters, location of data sets, archival history of the data sets,
visualizations generated, post-processing scripts, graphical and tex-
tual analysis and bookkeeping, etc. Secondly, Django’s views de-
fine the processes and procedures that are called when different
actions are taken when the user submits a job or operates on an ex-
isting or currently running job. These processes and procedures are
embedded python code, shell scripts, and Globus RSL scripts that
interact with both the TeraGrid resources and the machine host-
ing the Gateway. Thirdly, Django’s templates define the look and
feel of each web pages that comprises the web application. The
combination of these three orthogonal components allows the gate-
way developer to write code for defining and accessing the data



(the model) that is separate from the workhorse scripts that inter-
act with the TeraGrid and Gateway machine (the views), which in
turn is distinct from the user interface (the templates). The sole
purpose for choosing Django was to facilitate gateway design and
development. Each individual piece could be tested in isolation
and then integrated into the system. We did not have the luxury of
bringing in a team of developers with expertise in database design,
graphics, or human computer interactions, etc. but instead a single
individual developed the Gateway relying on the rapid prototyping
features of Django and its conceptual model for a web application.
User feedback was instrumental in providing an interface for each
view that was straightforward and intuitive. Each view could be
evolved independently and the Django’s templating system allowed
for aesthetic design decisions to be incorporated as the system was
developed. The ease of this development process was due primar-
ily to the decoupled nature of Django. The end user is unaware that
the web application was developed using Django.

Gateway development was simplified by implementing simple
Globus RSL (Resource Specification Language) scripts [5] that could
be run from the command line. The RSL scripts were only used
on a very limited number of machines due to our limited access
to other resources. We have not tried porting the RSL scripts to
other platforms, but are starting to explore the feasibility of using
these scripts on other non-TeraGrid resources. These scripts im-
plemented job submission, building unique versions of the code,
launching batch mode visualization, data archiving, etc. Once the
scripts were thoroughly vetted, they were added to the Django web
application in an iterative manner. Each separate view of the web
application provided input to the Globus scripts and any output
(other than the data sets generated from Uintah) were stored in the
Django database.

The advent of powerful visualization software, i.e. VisIT [2], that
runs both interactively and in batch modes on dedicated TeraGrid
resources, i.e. Spur3, has been essential in providing an integrated
end user experience where a simulation is started, monitored, and
the results stored and visualized in a seamless way all via the Gate-
way interface. The Gateway provides an interface for setting up
some basic visualization tasks that our early adopters sought. There
is a visualization view with a listing of the simulation variables and
several common visualization tasks, i.e. contour plots, slices, etc.
that can be selected. Once the user selects a task, a Python script
is sent up to the remote visualization host via RSL and initiates the
visualization task. This aspect of the Gateway is still in its early
stages and is undergoing continuous development and refinements.

In addition to the software described above, general TeraGrid
policies enhance the end user experience. First and foremost the
community account offerings for TeraGrid allocations provide a
mechanism for new users to try out Uintah without requiring ded-
icated TeraGrid accounts. This is a significant advantage for out-
reach education using Gateways. With community accounts, the
responsibility for security and compliance of all TeraGrid resources
was left to the gateway system. The trade-off for dealing with secu-
rity at the gateway level was offset by the significant opportunities
we have to expand our visibility and user base by offering TeraGrid
access via our Gateway.

3.2 Hardware
The combination of several different platforms that allow smaller

simulation runs on as few as tens of processors to thousands of pro-
cessors on Ranger to the very large, data intensive, long running
simulations requiring full machine capacity offered our user com-
3Spur is a Sun Visualization Cluster with 8 nodes and 128 cores
housed at the University of Texas

munity unique opportunities to ramp up their simulation studies.
We could offer our user community opportunities to get to know
Uintah at the small scale using Ranger and as they developed a feel
for the power of Uintah at the very large scale, Kraken could be
used to do ground breaking simulation science with minimal over-
head.

The primary computational resources included using Ranger (Sun
Constellation Cluster with 3936 nodes and 62,976 cores) for smaller
jobs, hundreds of cores, to several thousand cores. Kraken (Cray
XT5 with 8,256 compute nodes and 99,072 cores) was used for
very large core count runs – 99,0729 cores. Finally Spur and Ranger
(Sun Visualization Cluster with 8 nodes and 128 cores) were used
as a visualization resource to launch VisIT (parallel visualization
system) [2] in batch mode during a running simulation as well as
being used as a post processing tool for more comprehensive data
exploration. Ranch (Sun Storage Tek mass Storage Facility with a
capacity of 1 Petabye) archival system was used for storage. Ranch
was just used as an archival resource with the data staying local for
a period of time. Kraken data was not migrated to Ranch. We are
still investigating how to improve the management for large scale
Kraken runs.

4. UINTAH GATEWAY REQUIREMENTS
The Uintah Gateway was conceived to be a tool that would tar-

get two disparate sets of users: the experienced/advanced user and
the novice. This disparate group presented a unique challenge to
the gateway development. While trying to balance the competing
and often contrasting requirements between these two extremes,
we felt that it was important to prioritize the development process.
During the conceptual stage of the Gateway, we sat down with both
very experienced users and several novice users to better under-
stand their needs. What evolved in each user community was a
homogeneous set of requirements or must haves followed by indi-
vidual requests for certain unique features. The universal requests
were prioritized and emphasized, and the unique feature requests
are being considered for future versions of the Gateway.

4.1 Large Scale Computing Requirements
From our advanced set of users, several common scenarios or

wishes were repeated. The primary requirement was to manage the
end to end computation or work flow for a simulation. This essen-
tially included the ability to quickly create in an input file either
from scratch or modify an existing input file, launch the simulation
from the web interface, provide ongoing feedback to the state of the
simulation via both email updates and visualization using the batch
mode capabilities of VisIT, and finally provide some mechanism
for managing the large volume of data that results.

Our advanced users estimated that they spend upwards to 70%
of their time managing the runs and the remaining time perform-
ing the actual science. Management tasks include keeping track of
code versions, input files, data management including moving data
from scratch file systems to archival or bringing back portions of
the data to local workstations for analysis and data reduction. Our
advanced users still had issues with building and running Uintah in
batch mode on the various TeraGrid resources due to differences in
OS, compilers, libraries, batch submission scripts, etc. They were
very receptive to using a system that would eliminate the burden of
maintaining individual versions of executables.

To help our advanced users, we designed the Uintah Gateway
database to store the following pieces of information for each sim-
ulation: user, date, problem description notes, TeraGrid resources,
input files, code version including any code differences, compiler
version, library versions (petsc, hypre, mpi), length of run, num-



ber of SUs, checkpoint/restart information,post-processing scripts,
location of the data (is it archived, if so where, when was it last ac-
cessed), archived state, data movement (is it still in storage or was
it moved to a non TeraGrid resource), post processing output in-
cluding any data reduction as well as images generated during and
after the run using VisIT and any other visualization tools. We used
the Postgresql database is the back-end SQL database accessed via
the Django API.

4.2 New User Requirements
The primary new user requirement is a simplified graphical user

interface for creating input files for the Uintah executable, sus4.
The input files are written in XML and embody all the parameters
and options used to specify a complete simulation. A second re-
quirement was an easier way to install the Uintah software. And
finally, the last requested feature was a way to try out Uintah on
large scale resources.

The main Uintah executable requires a conforming XML file that
details all facets of the simulation including such things as

simulation component ICE, MPM, MPMICE, Arches, etc.
time maximum simulation time, time-step size, etc.
boundary conditions Variables, i.e. velocity, temperature, etc,

and type, i.e. Neumann, Dirichlet, etc.,
data archiver variables stored and how often data is saved to disk
material properties material models used and any parameters re-

quired to characterize each model including the geometry
specification.

Each material model requires a number of parameters to be spec-
ified Uintah includes a built in validator which ensures that for a
given model all inputs have been specified. However, the range of
values for each input is not verified and the user must ensure all
inputs have reasonable values.

The current version of the Gateway does not include any kind of
GUI input for problem specification. Instead the user must upload
an input file to the Gateway server. Experienced and new users have
requested a graphical user interface for input file creation that also
helps ensure that reasonable values are specified. Future versions
of the Gateway will incorporate a GUI input file creator.

In order to expand the Uintah user base, we plan on implement-
ing training workshops for Uintah and the Gateway will provide an
excellent resource for introducing new users to the system. In ad-
dition, we are encouraging educators to consider using the Uintah
Gateway in the classroom as part of courses for numerical analysis,
structural and fluid mechanics, and large scale computing.

5. GATEWAY USE CASES

5.1 Case Study: Large Scale Computing
Three of our Utah colleagues including one Co-PI with NSF

PetaApps funding have an ongoing project using the TeraGrid to
investigate micro-scale fluid structure interaction problems. Specif-
ically, this work is the examination of the heat flux from array of
micro-scale flexible pin fins (µFPF) placed in a cross flow. This
configuration is interesting both scientifically and for its potential
practical applications in CPU cooling. One proposed configuration
for an array of pins is shown in Figure 1, in which the deformation
of the fins is caused by the asymmetric oscillating vortices on the
downstream side of the µFPFs at Reynolds numbersRe > 47, pro-
ducing a time-varying pressure differential. When the frequency
of vortex oscillations is near that of the µFPF’s fundamental fre-
quency, a harmonic flexure and contraction of the fin results.
4StandAlone Uintah Simulation, see section 9

Figure 1: Micro flexible pin fins in a cross flow.

The fin motion increases local heat transfer due to enhanced mix-
ing and the increased relative velocity of the flow over the solid sur-
face. The actual arrangement of µFPFs will be optimized to maxi-
mize local heat transfer conditions for the expected bulk flow rates.
The anticipated µFPF diameter will be on the order of 10− 50µm
with an aspect ratio AR will be approximately 5 − 16 resulting in
flows in the slip flow regime. Initial calculations indicate that the
heat transfer enhancement (ratio of fin heat transfer rate for a rigid
pin fin to the heat transfer rate without a fin) may be as high as 60 in
the range 50 < Re < 500 for copper pin fins with 5 ≤ AR ≤ 16.
For the same conditions, the µFPF oscillations could increase the
enhancement by as much as a factor of 3, producing an overall en-
hancement for a single µFPF as high as 180.

Preliminary simulations have been conducted to verify the mod-
ifications made to the momentum and energy exchange models of
the MPM-ICE (a fluid structure interaction algorithm-FSI) Uintah
component [9], such that the equivalent of first-order slip velocity
and temperature jump boundary conditions are achieved at fluid-
solid boundaries, which may move and deform arbitrarily with time.
The MPM-ICE algorithm is a three-dimensional, unsteady, con-
tinuum based Eulerian-Lagrangian methodology in which fluids,
modeled using ICE (implicit, continuous fluid, Eulerian) and solid
materials, modeled with MPM (the material-point-method), may
be modeled either independently or simultaneously. ICE is a fi-
nite volume, cell-centered, multi-material, compressible, computa-
tional fluid dynamics (CFD) algorithm that originated at Los Alamos
National Laboratory [4, 13]. The development and documentation
of the MPM-ICE implementation currently used is given in [7–
9, 12]. The MPM-ICE FSI algorithm utilizes a statistically av-
eraged, or âĂŸmulti-field,âĂŹ approach, where, each material is
continuously defined (ρ,u, e, T, v, θ, σ, P ), with some probabil-
ity, over the entire computational domain. This approach differs
from the, perhaps more common, separate domain methodology, in
which, fluid and solid materials are defined separately, with only
one material at each point, and interaction only occurring at ma-
terial boundaries. The multi-field approach is advantageous for
the current application, because it tightly couples fluid-structure-
interactions through the conservation equations, rather than explic-
itly though specified boundary conditions, which allows arbitrary
distortion of material and material surfaces without explicit surface
tracking, passing of boundary conditions, and excessive stability
and convergence issues. Use of the MPM-ICE algorithm to eval-
uate rarefaction with FSI is further merited, as rarefaction effects



have already been successfully studied utilizing the independent
CFD (ICE) portion of the algorithm, with slip boundary conditions
implemented at the computational domain boundaries [19–21].

The multi-material governing conservation equations used by
the MPM-ICE algorithm, without effects that are not considered
in the present research (chemical reactions, turbulence, multiphase
Reynolds stress, gravity, etc.), are given in Equations 1-âĂŞ4 [8].

∂ρr
∂t

+∇ · (ρu)r = 0 (1)

∂(ρu)r
∂t

+∇ · (ρuu)r = −θr∇P+∇ · (θτ)r +
N∑

s=1

frs (2)

(ρe)r
∂t

+∇ · (ρeu)r = −Pθr
vr

dvr

dt
+ (θτ)r (3)

∇ur +∇ · (θk∇T)r +

N∑
s=1

qrs (4)

Equations 1–4 are the ensemble average, r material, conserva-
tion of mass, momentum, and energy equations respectively, where
there are N materials, θr is the râĂŚmaterial volume fraction, and
and are models for the momentum and energy exchange between
materials. Equations 1–4, along with individual material constitu-
tive models, and equations of states models form a complete system
of equations. The detailed numerical solution strategy utilized by
the MPM-ICE algorithm to solve this system of equations is pre-
sented in [8]. Briefly, the numerical approach involves operator
splitting. For each time-step, the quantities on the right-hand-side
of Equations 1–4 are computed first - this is the Lagrangian phase of
the time-step. The conserved quantities, that is, mass, momentum,
and energy, for fluid materials are accounted for at the cell centers;
while, the conserved quantities for solid materials are accounted
for at the material particles. Consequently, during the Lagrangian
phase, which is executed primarily within the cell-centered ICE
framework, the solid materials are dually represented, both, at the
particles, and at the cell centers, where the solid material conser-
vation quantities are interpolated. In the second phase of the time-
step, the Eulerian phase, the contribution due to advection, that is,
the second term on the left of Equations 1–4, is added to the La-
grangian phase values, where the advected contributions are com-
puted for fluid materials by ICE, and for solid materials by MPM.
As such, during the Lagrangian phase, models for both the momen-
tum and energy exchange between materials, are used, while during
the Eulerian phase, only the momentum exchange model is used to
determine the advecting velocity.

To achieve first-order slip velocity and temperature jump bound-
ary conditions are achieved at fluid-solid surfaces for a rarefied gas
in the slip flow regime, the momentum and energy exchange co-
efficients, which result in tangential slip velocity and temperature
jump values that correspond to values predicted by the standard
first-order slip boundary conditions [16, 22], are derived as a func-
tion of the level of rarefaction. Then, because the slip flow mo-
mentum exchange coefficient is only applicable in the fluid-solid
surface tangential direction, while a no-slip momentum exchange
coefficient must still be applied in the fluid-solid surface normal
direction, the momentum exchange coefficient can no longer be
treated as a scalar quantity. The momentum exchange between ma-
terials must be calculated in fluid-solid surface normal and tangen-
tial coordinate directions, rather than the arbitrary global coordi-
nate directions. Following the development and implementation of
the slip flow momentum and energy exchange models, several basic
configurations were considered and compared to established data to

verify the resulting algorithmâĂŹs capabilities. These verifications
include:

1. velocity profiles of a rarefied gas between parallel plates

2. temperature profiles of a rarefied gas between parallel plates

3. drag coefficients, CD , and Nusselt numbers, Nu, for low
Reynolds number rarefied flow around an infinite cylinder

4. the transient, thermal/structural response of a damped-oscillatory
three-dimensional finite cylinder subject to an impulsively
started uniform, rarefied flow

The preliminary simulations are used as a verification procedure
to quantify and understand the modifications made to the momen-
tum exchange and energy exchange models necessary to under-
stand more realistic µPF configurations. The realistic geometry
configurations that will be used to study the flow (pressure drop)
and heat transfer characteristics include:

1. a single fin as a function of flow velocity, geometric, and pin
material parameters

2. two µFPFs aligned in the stream-wise direction as a function
of the same parameters and fin spacing

3. a µFPF array subject to different µFPF arrangements.

For each configuration, the drag coefficient (dimensionless quan-
tity that is used to quantify the resistance of the µFPF to the air
flow), and the Nusselt number (ratio of convective to conductive
heat transfer across the µFPF surfaces within the air)) are com-
puted [20, 21, 23]. These simulations provide valuable data con-
cerning the applicability of the novel µFPF heat exchanger surface
that would be difficult to obtain otherwise, either analytically, ex-
perimentally, or by a commercial CFD code.

5.1.1 Preliminary Results
Initial simulations looked at three different configurations to as-

sess the modifications to momentum and energy exchange to rep-
resent slip flow velocity and slip flow temperature boundary con-
ditions. The first configuration was ideal gas flow between parallel
plates and steady state thermal conduction between two parallel
plates. Comparison to analytic solutions indicates the modified al-
gorithm solutions converge to the same order of accuracy and ex-
changed momentum and energy quantities are conserved. Velocity
and temperature profile comparisons between numerical and ana-
lytic solutions show good agreement [23].

Flow around an infinite circular cylinder was evaluated with the
flow behavior, drag coefficient, CD and Nusselt number, Nu both
numerically and analytical. The numerical evaluation of the infinite
cylinder required a large computational domain along with AMR.
Good agreement for both CD and Nu were obtained for various
Reynolds numbers and reported in [23].

The third configuration included the steady state thermal and hy-
drodynamic interaction of a rarefied gas with a stationary solid (pin
fin). The initial displacement of the solid was zero, and as the im-
pulsively started uniform rarefied flow was initiated causing the dis-
placement and the damped oscillations while simultaneously trans-
ferring heat to the fluid. The Euler-Bernoulli equation for beam
vibration with a Stokes drag force were used to compute the an-
alytic results. Good numerical agreement was obtained with the
analytic predicted displacement and temperature solutions [23].

This particular study is an attractive case study for looking at
the impact of the Gateway on scientific productivity. For each par-



ticular configuration, two numbers are computed, the drag coeffi-
cient and the Nusselt number. The data is generated on the Tera-
Grid, post processing scripts are used to compute the two numbers.
Within this type of scenario the data management and post process-
ing can be automated. In addition, the various configurations can
be automatically set up and launched from within the Gateway and
managed via the web interface. Small time-steps are required in the
explicit algorithm due to large domain areas and small cells requir-
ing 100’s of thousand time-steps and multiple restarts to achieve a
steady state solution. Automating the post processing steps, restart
configurations and data management presents opportunities for in-
creasing scientific productivity.

5.2 Case Study: New User
Specifically we looked at the following common scenario, no

experience using Uintah on the TeraGrid. The metric we used is
the total time required to get a four processor MPM example (us-
ing an input file from our distribution tarball) running on the Tera-
Grid. Using an existing input file on a small processor count per-
mitted for the simulation to be executed in near real time. The
first scenario required the user to download and install Uintah on
Ranger using our extensive documentation and wiki instructions
(see www.uintah.utah.edu) and then writing a simple batch
script and submitting the job to the batch queuing system. This
was compared to the user logging onto the Gateway for the very
first and launching a small simulation to the TeraGrid. A compari-
son summary of these two different use cases is described in Table
1.

Table 1: User Submission Times (minutes)

User
Type

Install
Time

Batch
Sub-
mission

Gateway
Login

Gateway
Sub-
mission

Non-
Gateway 120 20 N/A N/A

Gateway N/A N/A 5 10

We had several new graduate students with no prior experience
using Uintah on the TeraGrid and compared their ability to initi-
ate jobs, manage the queuing system and process the simulation
data versus graduate students that used the Gateway to manage the
job submission and data processing. We found that for simple sce-
narios, the Gateway users were able to get simulation results in
approximately half the time versus those new users that managed
the entire process manually. In addition, we found that the gateway
users were able to spend more time doing actual science rather than
managing the simulation runs.

6. USING THE UINTAH GATEWAY
The Uintah Gateway consists of a web interface with multiple

views depending on what features the user is performing. The fol-
lowing main views are available to the user:

1. Initial login screen
2. Simulation history
3. Simulation submission screen
4. Detailed simulation view
5. Simulation status

The user logs into the Gateway via the initial login screen avail-
able from the main Uintah web page (www.uintah.utah.edu/

gateway.html). At this stage, the user is presented with a list of
simulations (Simulation History) that have been run or have been
submitted via the Gateway interface. If the simulation history is
empty, the user is automatically taken to the simulation submission
view. (Note: only simulations submitted through the Gateway are
stored in the database and available via the web interface.) How-
ever, if this is a returning user, each simulation submitted via the
Gateway is listed based on the date submitted and a short descrip-
tive title along with the simulation status, i.e. completed, pending,
or in progress. Beside each simulation is the option to select one
of the listed simulations for a detailed view. In addition to the list
of simulations, there is also a menu list showing the available main
views including the Simulation Submission option.

The process of submitting a simulation begins with Simulation
Submission view. Within this view are forms for specifying the
simulation title (used in the simulation history view), a form for
uploading the input file from the user’s home file-system. The user
must create a conformant input file outside of the Gateway. (Future
Gateway enhancements will include a graphical user interface for
input file creation.) The uploaded input will be validated on the
Gateway machine prior to submission to the TeraGrid. Also within
this view are boxes for specifying the number of processors to use
and time requested and the machine to use (at this point, Ranger
is our primary TeraGrid resource for Gateway runs). There is no
automatic mechanism for estimating the amount of time required
for a given run. If the user underestimates the amount of time,
the restart capabilities of Uintah can be used to continue with the
simulation until the simulation is completed. At the bottom of the
view is a Submit button that must be pressed before any action
takes place on the Gateway machine. Once the user submits the
input file, the input file is validated using the validate feature of
sus. The validation procedure ensures that the input file is correctly
specified, i.e. no missing input tags. If the input file fails to validate,
the user immediately is notified of the problem. At this point, the
simulation is no longer valid and is removed from the submission
history for the user. If the input validates, then Globus RSL scripts
are automatically created and submitted to the TeraGrid machine
via the Gateway server using a combination of python and shell
scripts.

Once the user submits the simulation, the main Simulation His-
tory view is displayed showing the just completed simulation at the
top of the page with status identifier Pending next to the simulation
title. This identifier signifies that the job has been submitted but is
still waiting to be run. At this point, the user may log off from the
Gateway and wait for email notification from the Gateway that the
user’s job has started and when it has been completed.

When the user has received email notification, they may log back
into the Gateway returning to the Simulation History view and
noting the status change from Pending to Completed. At this point,
the user may select the simulation’s Detailed Simulation View and
is presented with a view similar to Figure 2. This view presents
information the user added during the submission process, such as
input file, date, number of processors, data-set location, standard
output from the simulation, etc. In addition, to this information,
options are available to upload images and text notes for storage
into the database. This centralized database encourages users to
archive all relevant post processing images and notes conducted as
part of the analysis phase of the simulation data.

For long running simulations, there is a Simulation Status view
that presents an updated state of the simulation including time re-
maining and standard error and standard output generated from the
sus executable. Querying a running simulation allows the user to
catch any problems or to download selected time-steps for further



Figure 2: Detailed simulation view

analysis. Uintah has automatic checkpointing that writes out the
complete state of the simulation at intervals specified by the input
file. Typically two checkpointed datasets are always written out
and overwritten with latter versions as the simulation advances in
time. The user has the option of restarting from either the latest
checkpointed data or from an earlier version. Hardware or soft-
ware failures that would cause a job to abort can be restarted from
the checkpointed data. At most the only simulation data that is
lost is from the time of the last checkpointed data output to the
time-step that occurs during the time of failure. However, a restart
from the last checkpoint can recreate this lost data in a subsequent
run. Email notification is sent to the user indicating that the job
aborted prematurely. The user can then log back into the Gateway
to restart the aborted job. This is primarily useful for those in-
stance where hardware failure causes a job to abort. For instances
of software failure within Uintah, restarting a job usually causes
the job to fail/abort in the same time-step indicating an underlying
problem in the algorithm, models, or assumptions in the simulation
itself. There is no automatic mechanism built into the Gateway to
restart aborted jobs, instead the responsibility is left to the user via
the Gateway interface.

Within the Data Management view are options to display the lo-
cation of the simulation’s data-set, where and when it was archived,
and an option to copy the data-set to another machine. There is also
the option to copy selected time-steps.

7. SUMMARY AND FUTURE DEVELOPMENT
The Uintah Gateway offers new and experienced users a way to

easily use the largest machines in the country to solve complicated

fluid structure interaction problems. The Uintah Gateway was de-
veloped using the Django web application infrastructure which al-
lowed for rapid and iterative development. Two use cases were pre-
sented to show the gains made using the Uintah Gateway for simu-
lating complex fluid structure interaction problems on the TeraGrid.
The Uintah Gateway’s primary views were described including the
simulation history, management interface, detailed simulation view
with an overview of how the user would use the Gateway.

Preliminary results suggest dramatic improvements in scientific
productivity for both new users and experienced users for very large
scale problems. For all user demographics, we observed significant
reduction in time to solution as much as 50%. The increase in
productivity allowed our new users to rapidly explore and launch
more sophisticated simulations in a fraction of the time it took a
non-gateway user to accomplish the same task. For our experi-
enced users, we found that they spent more time doing science than
they did managing the simulations. Fewer errors were made by
the scientist, since much of the record keeping and automation was
performed by the gateway system.

Future development of the Gateway will include a GUI interface
for problem setup that automatically generates a conforming input
file. The ongoing development of data management features ad-
dressing the needs of our advanced user community will also be
a focus of our future work. The Uintah Gateway is an ongoing
project that seeks to bring the most powerful supercomputers avail-
able to solve important complex multi-physics problems to a broad
set of users in multiple disciplines.
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9. APPENDIX – UINTAH SOFTWARE REPOS-
ITORY, GATEWAY LOCATION AND US-
AGE INFORMATION

The Uintah project (see http://wwww.uintah.utah.edu)
and the C-SAFE projects (see http://www.csafe.utah.edu)
are extensively documented. From the homepage of the Uintah
project are links to the source code, installation instructions, usage
information, example input files. In addition, the main Gateway
link (http://www.uintah.utah.edu/gateway.html) al-
lows new users to get started using the Uintah Gateway.

The main Uintah executable is called suswhich stands for Stan-
dAlone Uintah Simulation. Input files describing the main algorith-
mic components, boundary conditions, grid layout, etc. are laid out
using XML and passed to the sus executable from the command
line.
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