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Abstract In this technical note we show the promise of

using graphic processing units (GPUs) to accelerate sim-

ulations of electrical wave propagation in cardiac tissue,

one of the more demanding computational problems in

cardiology. We have found that the computational speed of

two-dimensional (2D) tissue simulations with a single

commercially available GPU is about 30 times faster than

with a single 2.0 GHz Advanced Micro Devices (AMD)

Opteron processor. We have also simulated wave conduc-

tion in the three-dimensional (3D) anatomic heart with

GPUs where we found the computational speed with a

single GPU is 1.6 times slower than with a 32-central

processing unit (CPU) Opteron cluster. However, a cluster

with two or four GPUs is faster than the CPU-based cluster.

These results demonstrate that a commodity personal

computer is able to perform a whole heart simulation of

electrical wave conduction within times that enable the

investigators to interact more easily with their simulations.

Keywords General-purpose computing on graphics

processing units �Whole heart simulation � Excitable media

1 Introduction

In the last few decades, computer simulation has become an

important tool to investigate various phenomena in cardiac

biology, including studies of single ion channel properties

[9], action potentials of the myocyte [3, 5], dynamics of action

potential propagation in tissue [2], subcellular calcium

dynamics [7], etc. In spite of the advancement of computa-

tional technology, the simulation of action potential waves in

three-dimensional (3D) cardiac tissue with a realistic geom-

etry is still considered as a ‘‘large-scale simulation.’’

General-purpose computing on GPUs (GPGPU) is a

recently emerging technology [1, 4, 8], which uses GPUs,

instead of CPUs, to compute large simulations in parallel.

GPUs are massively parallel single instruction multiple data

processing units. Each GPU may contain 128–240 ‘‘stream

processors’’ whereas today’s CPUs contain 2, 4, or 8 cores. In

this paper, we demonstrate that the GPU is about 30*40

times faster than the CPU, enabling it to perform whole heart

electrophysiology simulations within practical time.

In this study, we chose the simulation of the propagation

of the action potential in cardiac tissue, which is modeled

as the propagation of a wave in an excitable medium.

Therefore, this technique can be applied to a number of

phenomena in physics, chemistry, and biology.

2 Methods

We used two test models. The first was a 2D homogeneous

sheet, and the second was an anatomic rabbit ventricular
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model with ‘fiber rotation’ [10], that is, an anisotropy that

varies from point to point in the heart. Each model was

simulated using both the GPUs and CPUs.

The GPU simulation was performed with a single

NVIDIA Geforce 8800 GT 1GB Graphic random-access

memory (RAM) and an NVIDIA Geforce 9800 GX2 1GB

Graphic RAM. These graphic cards were installed into a

system with a dual-core 2.0 GHz AMD Opteron processor

and 4GB error correction code (ECC) RAM. The operating

system is OpenSUSE 10.2. Our programs are written in

C??. We used GNU C?? compiler version 4.1.2 and

NVIDIA CUDA version 1.1.

The CPU simulation was performed with an 8-node

high performance-computing (HPC) cluster. Each node

has two dual-core 2.0 GHz AMD Opteron processors

(i.e., 4 cores in each node) and 4GB ECC RAM. The

operating system is Fedora Core 5. We used an Intel

C?? compiler 10.1. In order to parallelize on this clus-

ter, we used Message Passing Interface 1.0. The FOR-

TRAN version of this code was used in some of our

previous studies [10].

All 2D simulations, and all 3D simulations with one

GPU, were performed with the NVIDIA Geforce 8800 GT.

3D simulations with two or four GPUs were performed

with the NVIDIA Geforce 9800 GX2.

Because these GPUs support only single precision, all

floating-point calculations were done using single precision

across both GPU and CPU simulations.

The code for the GPU is called a ‘‘kernel.’’ When the

GPU kernel code is executed, it is similar to a CPU

based parallel implementation accomplished through a

series of threads, with each thread running independently

in parallel. Similar to a CPU implementation, it was

necessary to synchronize all threads after each ordinary

differential equation (ODE) or partial differential equa-

tion (PDE) kernel execution. We can then thread these

intra-GPU as they control the processing within a single

GPU.

In addition to having to manage threads intra-GPU, it

was also necessary to have inter-GPU threads to control

each GPU. For instance, the NVIDIA Geforce 9800 GX2

graphics card has two GPUs on one card. In order to utilize

each GPU there must be a corresponding thread created

from the main program.

As with a CPU cluster with distributed memory, it is

also necessary to manage the distributed GPU memory.

However, unlike a CPU where data can be moved from

one CPU to another, GPUs can and must communicate

with the CPU memory, that is, data is transferred from

one GPU to the other GPU via the main RAM; GPU1$
RAM$GPU2.

The cardiac tissue was modeled using the following

partial differential equation:

oV

ot
¼ � I

Cm
þr � DrV ;

where V is the transmembrane voltage, I is the total ionic

current, Cm is the transmembrane capacitance, and D is

the diffusion tensor. The cell model used in this study was

phase I of the Luo–Rudy action potential model [3]. We

solved this reaction-diffusion equation with the forward

Euler method, using the technique of operator splitting

[6]. The time step was adaptively varied between 0.01

and 0.1 ms and the space step was 0.015 cm. Details of

the modeling of cardiac tissue are described in our pre-

vious study [10]. For each time step, the ODE part was

solved once and the PDE part was solved four times for

the 2D simulation and six times for the 3D simulation

(Fig. 1).

To test the GPU code, we induced spiral waves in 2D

and 3D tissue using ‘cross-field’ stimulation, that is, two

successive perpendicular rectilinear wave fronts. In each

case, we simulated 1 s of real world cardiac time

(Fig. 2).

For the 2D tissue simulations, the benchmark protocol

involved pacing the tissue from the corner for 3 s of sim-

ulated time at a pacing cycle length of 150 ms. Tissue size

was varied from 100 9 100 (1.5 cm 9 1.5 cm) to

800 9 800 (12 cm 9 12 cm). For the 3D tissue simula-

tions, the benchmark protocol consisted of pacing the

whole heart from the apex for 3 s of simulated time, at a

pacing cycle length of 150 ms.

Finally, we investigated where the computational ‘bot-

tlenecks’ occurred. We split the program into three parts,

the ODE calculation, the PDE calculation, and the data

Solve ODE

Solve PDE 

Solve PDE 
with dt/4

with dt/4

Solve PDE 
withdt/4

Solve PDE 
with dt/4

Fig. 1 Sample GPU code to

solve the reaction-diffusion

equation in 2D tissue. At each

time step, the ODE part is called

once and the PDE part is called

four times. The ODE kernel

code and the PDE kernel code

are in the Appendix
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transfer. In order to measure the data transfer time, the

ODE calculation and the PDE calculation were skipped,

and the total time elapsed was then assigned to data

transfer. Then, skipping the ODE calculation, we could

measure the time for the PDE calculation plus the data

transfer. The time for the PDE calculation was then esti-

mated by subtracting the data transfer time from the

(PDE ? data transfer) time. The time for the ODE calcu-

lation was obtained by subtracting the (PDE ? data

transfer) time from the time for the whole simulation.

Fig. 2 Action potential

propagation in 2D tissue and in

the anatomic heart model. a
Action potential propagation in

2D tissue. Tissue was placed

from the corner. b a spiral wave

in 2D tissue. The spiral wave

was induced by cross-field

stimulation. c Spiral wave

breakup in 2D tissue. d Action

potential propagation in the

anatomic heart. e a spiral wave

in the anatomic heart. f Spiral

wave breakup. g
Electrocardiogram from the

anatomic heart simulation f

Fig. 3 Comparison between

GPU and CPU. a Time to

compute 3 s of simulation time

in 2D tissue. X-axis is the tissue

size. Left Y-axis is computation

time. Right Y-axis is

acceleration (i.e., computation

time with CPU/computation

time with GPU). b Time to

simulate the whole heart for 1 s

of the simulation time. c
Computation ratio of the ODE,

the PDE, and the data transfer

for each simulation
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3 Results

When tissue is homogeneous, parallel computation is very

efficient. To compute 1 s of simulated time in 100 9 100

tissue, a single GPU took 8.2 s, whereas the CPU

took 201 s. For larger tissue (800 9 800) the GPU took

283 s, while the CPU took 13,113 s. This is because as

the tissue size becomes larger, the boundary/non

-boundary ratio becomes smaller and the parallel com-

putation becomes more efficient. In these cases, a sin-

gle GPU is 24*46 times faster than the single CPU

(Fig. 3a).

To simulate the anatomic rabbit ventricular model [10]

for 1 s, the HPC cluster with 32 CPUs (8 nodes) took

45 min. On the other hand, one GPU took about 72 min

and two and four GPUs took about 43 and 27 min

respectively for the same simulation (Fig. 3b).

The bottleneck of the computation with CPUs is mainly

in the ODE part. On the other hand, the bottleneck of the

computation with GPUs is mainly in the PDE part

(Fig. 3c).

4 Conclusions

We demonstrate that GPUs are substantially faster than

CPUs in the simulation of action potential propagation in

cardiac tissue. A single GPU simulation of the whole

heart is only 1.6 times slower than the simulation in an

HPC cluster, and two or four GPUs are even faster than

the HPC cluster, making the GPU a new tool for cardiac

simulations. Utilizing GPUs poses additional program-

ming requirements over that of traditional parallel CPU

implementations. However, like parallel CPU imple-

mentations, management of threads and memory must be

well thought out if maximum performance is to be

achieved.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which

permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are

credited.

Appendix

The ODE kernel code used in 2D and 3D simulations is the

following. ‘‘solve ODE(LR1)’’, we solved phase I of the

Luo-Rudy action potential model [3] using the forward

Euler method.

 v[id]=vold[id]+(vold[id+1]+vold[id+1]+vold[id+Y]+vold[id+Y]-

4*vold[id])*Dfudtdx2; 

    else if ((id)==Y-1) 

v[id]=vold[id]+(vold[id-1]+vold[id-1]+vold[id+Y]+vold[id+Y]-

4*vold[id])*Dfudtdx2; 

   else if ((id)==X*Y-Y) 

v[id]=vold[id]+(vold[id+1]+vold[id+1]+vold[id-Y]+vold[id-Y]-

4*vold[id])*Dfudtdx2; 

   else if ((id)==X*Y-1) 

v[id]=vold[id]+(vold[id-1]+vold[id-1]+vold[id-Y]+vold[id-Y]-

4*vold[id])*Dfudtdx2; 

   else if ((id)<Y) 

v[id]=vold[id]+(vold[id-1]+vold[id+1]+vold[id+Y]+vold[id+Y]-

4*vold[id])*Dfudtdx2; 

   else if((id)>X*Y-Y) 

v[id]=vold[id]+(vold[id-1]+vold[id+1]+vold[id-Y]+vold[id-Y]-

4*vold[id])*Dfudtdx2; 

   else if ((id)%Y==0) 

v[id]=vold[id]+(vold[id+1]+vold[id+1]+vold[id-Y]+vold[id+Y]-

4*vold[id])*Dfudtdx2; 

   else if ((id)%Y==Y-1) 

v[id]=vold[id]+(vold[id-1]+vold[id-1]+vold[id-Y]+vold[id+Y]-

4*vold[id])*Dfudtdx2; 

   else 

v[id]=vold[id]+(vold[id-1]+vold[id+1]+vold[id-Y]+vold[id+Y]-

4*vold[id])*Dfudtdx2; 

} 

__shared__ float vsm[256]; 

unsigned int tid = threadIdx.x; 

unsigned int bid = blockIdx.x; 

unsigned int bdim = blockDim.x; 

unsigned int gdim = gridDim.x; 

int step=bdim*gdim; 

int num=X*Y; 

for (int id=bid * bdim + tid;id<num;id+=step){ 

   //solve ODE(LR1) 

} 

The PDE kernel code used in 2D is the following.  

unsigned int tid = threadIdx.x; 

unsigned int bid = blockIdx.x; 

unsigned int bdim = blockDim.x; 

unsigned int gdim = gridDim.x; 

int step=bdim*gdim; 

int num=X*Y; 

const float dt=0.1; 

const float Dfu=0.0005; 

const float dx=0.015; 

const float Dfudtdx2=Dfu*dt/(dx*dx)/4; 

for (int id=bid * bdim + tid;id<num;id+=step){ 

   if ((id)==0) 
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