
In Situ Visualization of Performance Metrics in
Multiple Domains

Allen R. Sanderson
SCI Institute

University of Utah
Salt Lake City, UT, USA

allen@sci.utah.edu

John Schmidt
SCI Institute

University of Utah
Salt Lake City, UT, USA

jas@sci.utah.edu

Alan Humphrey
SCI Institute

University of Utah
Salt Lake City, UT, USA
ahumprey@sci.utah.edu

Michael E. Papka
Department of Computer Science

Northern Illinois University
DeKalb, IL, USA

papka@niu.edu

Robert Sisneros
National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign
Urbana, IL, USA

sisneros@illinois.edu

Abstract—As application scientists develop and deploy simula-
tion codes on to leadership-class computing resources, there is a
need to instrument these codes to better understand performance
to efficiently utilize these resources. This instrumentation may
come from independent third-party tools that generate and store
performance metrics or from custom instrumentation tools built
directly into the application. The metrics collected are then
available for visual analysis, typically in the domain in which
there were collected. In this paper, we introduce an approach
to visualize and analyze the performance metrics in situ in the
context of the machine, application, and communication domains
(MAC model) using a single visualization tool. This visualization
model provides a holistic view of the application performance in
the context of the resources where it is executing.

Index Terms—performance visualization

I. INTRODUCTION

As application scientists use supercomputing resources to
accomplish their research, it is critical that simulation codes
be instrumented to efficiently utilize these resources. This
instrumentation provides insight into how codes execute and
the bottlenecks that prevent them from efficiently utilizing
these resources. These bottlenecks may come from I/O, load
balancing, communication, unoptimized code, or other factors.

Many profiling tools are available to instrument a code [1]–
[4]. Existing profiling tools focus on specific parts of a
machine or code, e.g. the I/O system. Furthermore, these tools
typically visualize the performance metrics in the domain that
relates to how they were measured without any other context,
e.g., MPI metrics are collected for individual processes, but not
the machine nodes/cores being utilized. That is, these tools do
not give a complete picture of a code’s performance. Further,
the picture provided may not match the intuition of application
scientists who typically think in terms of their computational
domains. Providing scientists a complete intuitive picture

This material was based upon work supported by the Department of
Energy, National Nuclear Security Administration, under Award Number(s)
DE-NA0002375. The authors thank the Uintah and VisIt development groups.

maximizes their potential to effectively tune codes thereby
increasing overall efficient usage of computational resources.
Creating a complete picture currently requires using multiple
tools and stitching together the resulting images, which is
often difficult to do, especially as the data may not be readily
accessible.

Recently the authors created an infrastructure within the
Uintah framework that collects in situ custom performance
metrics that were then visually analyzed in situ in context
of the machine and application domains using the VisIt
toolkit [5]. Visualizing these metrics in multiple contexts
allowed application scientists, computer scientists, and system
administrators to work collaboratively to better understand and
solve the problems of deploying a simulation code. Further,
visualizating performance data in situ decreases the possibility
of exacerbating the I/O bottleneck.

In this paper, we describe how the infrastructure developed
to tie the application and machine domains together for the
results described above as well as expanding it to include the
communication domain. We demonstrate how this approach
allows one to use a single in situ tool to visualize and analyze
performance metrics in the context of the machine, application,
and communication domains, which we refer to as the MAC
model. This approach provides a holistic view of not only
performance data in the contexts of the application but also the
resources where it is executing. Our approach is an extension
of existing efforts in that we explicitly incorporate not only
the results of analysis but also the mechanisms for analysis.

II. BACKGROUND AND RELATED WORK

A. Performance Metrics

Profiling tools can broadly be placed into three categories,
machine [4], [6]–[10] code performance(application) [1]–[3],
[11], and custom profiling tools [5], [12]. Machine and code
profiling is done external to the simulation by third-party
tools, and in general the resulting data is written to disk and



analyzed post hoc. Because the profiling is done external to the
simulation it does not contain potentially useful information
about the simulation. Whereas custom profiling tools are
internal to the simulation and can collect not only performance
metrics but also information about the simulation.

For the work presented, only custom profiling tools were
utilized. However, it should be noted that third-party tools such
as Vampir have an in situ interface which allows real-time
application monitoring [13]. As such, it is possible to collect
performance metrics from third-party sources at runtime.

B. Performance Metrics Across Multiple Domains

In general, performance visualization has focused on the
domain in which the metrics were collected, (e.g. process,
threads, call paths, etc.). However, some tools such as the
Tuning and Analysis Utilities’ (TAU) ParaProf can map
performance metrics to a user-defined topological view of
the underlying machine domain [3]. Efforts have also been
made to link TAU’s performance metrics to the application
domain [14]. Both of these efforts focused on post hoc
visualization. More recently, Wood demonstrated the ability to
visualize performance metrics from the /proc/[pid] files of each
rank in the application domain using an in situ framework [15].

Ideally, performance metrics should be seamlessly mapped
to the most intuitive domains. This may be mapping to the
domain in which the metrics were collected along side another
domain for added context. For instance, an underutilized
node in the machine domain can indicate non-optimal load
balancing. Mapping that metric into the application domain
can give insight as to why the node was underutilized.

Our machine, application, communication (MAC) model is
most closely aligned with the work by Schulz et al. who
created a hardware, application, and communication (HAC)
model [16]. Their hardware domain is similar to our machine
domain, consisting of the computational nodes and physical
links, but was limited to the nodes being utilized by the
application and had a limited core granularity whereas dis-
cussed in Section III-A our machine domain consists of the
whole machine while having core level granularity. In the
case of the application domain, it was limited to performance
data being mapped at the grid-level whereas discussed in
Section III-B our application domain has a finer granularity
and is able to map application performance data to other do-
mains. This seemingly simple distinction belies several com-
plex and/or important performance considerations such as ma-
chine/utilization variabilities, memory subsystems/hierarchies,
or inter-job interferences. While Schulz et al. at times refer
to the hardware domain as the machine domain, we adopt the
“Machine” designation so to be consistent with our previous
work.

The full HAC model includes a fourth domain based on the
MPI process. In our experience viewing performance metrics
in this context adds little value when the same metrics are
displayed in context of the machine domain. The exception
is the rare case of oversubscribing the ranks or threads.
While Schulz et al. meaningfully mapped metrics from one

domain to another, it was not always possible to visualize
the metrics in multiple domains using the same tool, none
of which designed for in situ deployment. While indicative
of the fact that visualizing performance data spans multiple
fields (scientific visualization, information visualization, visual
analytics, etc.), these are likely practical limitations due to
the direct leveraging of specialized post hoc tools such as
Boxfish [17] and MemAxes [18].

III. MACHINE, APPLICATION, AND COMMUNICATION
(MAC) MODEL

We have focused on a three-pronged model consisting of
the machine, application, communication domains, Figure 1.
Though these three domains are probably the most intuitive
they do not fully encapsulate all of the possible performance
metric domains, but instead adequately describe the potential
developmental efforts required for our single framework. That
is, the metrics are typically measured and collected on a MPI
process basis regardless of collection method specifics. These
metrics may have different granularities such as per-node or
per-thread but still have a MPI process basis.

Machine Domain
Communication 

Domain

Application Domain

Analysis
 and

 Visualization

Fig. 1: The Machine - Application - Communication (MAC)
model of performance data mapped to their respective domains
for visualization and analysis. The simple simulation was
run on 1344 patches over 24 ranks on a single node. The
machine and application views are of the execution times
while the communication matrix view is the MPI point-to-
point messaging.

In [5] we created an extended map class to manage the
collection of per-process runtime performance data. Maps are
associative containers that are a combination of a key, or
performance metric, and a mapped value. Our extended class
maintained the core map abstraction while allowing for generic
index-based access. This mapper was successfully deployed
to collect performance metrics on a MPI process basis across
different components running within the Uintah framework.

To extend the model and collect threaded performance
metrics where a single MPI process controls multiple threads,
this map class was extended to be a vector of maps to



work on a per-rank to per-thread basis. Similarly, to collect
MPI Communication between ranks the base map class was
extended to be a map of maps to create the process associations
for a communication matrix. In addition to the extended maps
for collecting performance metrics, we also utilized Uintah’s
Data Warehouse to store performance metrics on a per-patch
basis. 1 As will be shown in Section VI this collection allows
for a one-to-one mapping between the machine and application
domains.

A. Machine Domain

The machine domain describes the physical layout of the
computer in terms of a hierarchical view independent of
the communication interconnect. For instance, the Mira su-
percomputer at the Argonne Leadership Computing Facility
(ALCF) would be viewed in terms of cabinets (3), chassis
(32), slots (16), and nodes (32). Alternately, Theta would be
viewed in terms of racks (24), chassis (3), blades (16), and
nodes (4). Such a hierarchy allows one to visualize the related
performance metrics using a two-dimensional view.

For smaller commodity-level clusters, such as our initial
target platforms, the Infiniband networking can be utilized to
obtain a switch-level view which is again natural for two-
dimensional display. The obvious advantage of using a two-
dimensional view for visualization is the lack of occlusion. We
also maintain the option to risk the introduction of occlusion in
using the remaining spatial dimension for additional profiling
metrics, such as cache misses. In practice, we expect frequent
cases where such costs (at least for some subset of the
represented data) will be minimal.

B. Application Domain

The application domain describes the system being simu-
lated by the application code. This typically corresponds some
physical space defined by a mesh along with some physical
quantities but could be simply an abstract space such as a
graph. For large-scale problems, the application domain is
routinely decomposed into sub-domains of patches (elements),
each of which is associated with a MPI process.

The collection of application performance metrics is very
much dependent on the application code. At the coarsest
level, metrics can be collected on a MPI process basis. In
the case of Uintah’s multi-threaded environment, performance
metrics are collected on a per-thread basis. Similarly, we
take advantage of Uintah’s multi-task environment to collect
performance metrics on a per-patch to per-task basis such as
different task execution times which are used for dynamic
load balancing2. We believe the ability to collect performance
metrics at different granularities is critical for understanding
performance issues.

1In Uintah, a patch is the underlying base representation for a group of
individual elements.

2In Uintah, the fundamental unit of work is the task (ignoring data
parallelism).

C. Communication Domain

The communication domain is comprised of two parts. The
first represents the communication interconnect for the whole
machine. The second represents the MPI communication.
The interconnect is a physical attribute of the machine and
therefore not only evidence of overlap among model domains
but also a reasonable candidate for inclusion in the machine
domain.

Communication performance is not only application spe-
cific but application instance specific; even subtle variations
between runs such as actual application layout or interconnect
traffic may have a noticeable performance impact. That is,
communication domain parameters are often tied to the ma-
chine state, and performance data is routinely used to address
the most difficult challenges in tuning codes, e.g. load balanc-
ing. Furthermore, available options to address communication
performance issues are routinely interdependent and together
form a large parameter space. Any typical display of MPI
communication (mapped into a time domain, MPI tracing3),
serves as both a representative example of display methods as
well as of the difficulty in the subsequent utilization thereof.

For our initial work the collection of interconnect communi-
cation performance metrics was limited to the messages passed
between MPI processes using a custom profiling tool. This tool
looked strictly at the data passed between MPI processes at
the task level, which included the inter-task communication,
and more specifically data dependencies that are relevant to
the communicating tasks needed to execute (halos). These in-
terconnect communication performance metrics were collected
on per-task basis. This granularity is notable, as when trying to
understand performance bottlenecks, it can often be the case
that a single task is the largest contributor.

IV. MAPPINGS

Mappings are the mechanisms by which a performance
metrics are viewed outside their native domains, i.e. the
domain in which the data was generated and collected. The
metrics are measured and collected on a MPI process basis and
are mapped according to their collection granularities. In the
simplest case a mapping is one-to-one between domains. These
represent the most obvious and observable relationships, such
that between an application and the machine it’s running on
or possibly between machine-level and communication-level
performance. We characterize the set of remaining mappings
as belonging to one of two simple cases. Practically speaking,
we believe most cases are trivially one of the three simple
maps or expressible as some combination of simple maps.
The three mappings of interest follow:

1:1 Mapping: This mapping is the most important as a
performance metric from the domain in which it was collected
can be mapped directly to another domain. An example of
this mapping is a per-patch performance metric collected in
the application domain that is mapped to machine domain

3The time domain is also an important domain for understanding the
performance of multi-threaded multi-task runtime simulation codes.



(a)

(b)

Fig. 2: Per-core (a) and per-node (b) memory usage in the machine domain (red - high, blue - low). Each row represents a
switch (17 total, of which, only five are shown), each block represents a processor node, and each cell within a block represents
a core. The colored cores are those being utilized by the application.

where each MPI process (core) is sub-divided based on the
number of patches being processed. Subdividing the domain
based on the granularity of the performance metric is natural
as no information is lost.

1:N Mapping: This mapping takes a performance metric
from the domain in which it was collected and maps it
to multiple values in another domain. The metric may be
replicated or divided using a weighted function. An example of
this mapping is the MPI process communication time collected
in the communication domain and map to the application
domain. In the case the metric would be mapped to one or
more patches in the application domain.

N:1 Mapping: This mapping takes multiple performance
metrics from the domain in which they were collected and via
an aggregation (sum or average) or reduction (min or max),
maps them to a single value in another domain. An example
of this mapping is the per-patch performance metric collected
in the application domain (the same data in the 1:1 Mapping)
and mapping it to the machine domain where the total across
all patches for each MPI process is mapped. N:1 Mappings
can also be used within a domain. For instance, for a multi-
threaded application one may be interested in performance
metrics on a thread-level or on a node-level.

V. VISUALIZATION AND ANALYSIS

One of the primary goals of the work presented herein has
been to facilitate in situ visualization and analysis of per-
formance metrics. Traditionally the visualization and analysis
step has been done post hoc which requires data to be dumped
to disk adding to the I/O bottleneck and precludes the ability
to make runtime performance adjustments and immediately
observe their effects.

A. Middleware

To utilize our MAC model and the associated mappings
in situ we created a middleware library that linked directly

to the Uintah framework [5]. This library was called after
the completion of each iteration, accessed the extended map
classes tasked with collecting the performance data within the
Uintah framework, applied the mappings for the requested
domain view, and communicated the results to Visit through
its in situ interface “libsim” [19].

The middleware communicated all of the necessary infor-
mation needed by VisIt. That is, to VisIt, the performance
data was no different than any other scientific data being
visualized. This point is important because VisIt could be used
natively. Furthermore, the middleware could be augmented
to enable additional in situ interfaces such as ParaView’s
Catalyst [20] at no additional cost to the middleware’s user.
We point the interested reader to work by Dorier et al. [21] for
relevant implementation details in connecting a visualization
middleware to multiple in situ interfaces.

B. VisIt

VisIt is a scientific visualization toolkit [22] and as pre-
viously noted the visualization and analysis of performance
metrics often bridges all three visualization specialties. In-
formation visualization tools, such as DragonView developed
for exploring communication metrics in the form of graphs
can not be used in situ [23]. At the same time specialized
performance visualization tools typically can not view data
in multiple domains. For instance, Boxfish can visualize the
interconnect communication yet it is not possible to explore
the same metrics as a communication matrix [17].

Using a scientific visualization toolkit provides many tools
for visualization and analysis that can be adapted. For instance,
tools for viewing an application’s multi-level grids were
adapted for the viewing the application’s domain decomposi-
tion based on the computational hierarchy: core, node, switch.
This ability was important for exploring performance issues
related to the domain decomposition. Similar hierarchies were



set up for the machine and communication domains. Other
adaptations were also utilized, flat two-dimensional machine
views were visualized as geometrical primitives, quads, while
the communication matrix used point glyphs. Though some
of these adaptations were not ideal and lacked some of the
fine interface controls found within a specialized visualization
tool, they did allow for in situ visualization of the performance
metrics in multiple domains.

VI. CASE STUDIES

We demonstrate some of the capabilities of our MAC
model by mapping different performance metrics between the
domains. For all of the examples shown, we have utilized our
Uintah-VisIt coupled system. For demonstrative purposes test
problems running on 1-10 nodes with 12-20 cores each are
shown. Though small scale problems, they provide sufficient
resolution to demonstrate the efficacy of the system.

A. Memory usage

The first case study is a simulation of a 100KW Oxy-Fuel
Combustor running on a heterogeneous HPC system com-
prised of 253 - 12 core nodes, 164 - 20 core nodes, and 48 - 24
core nodes (7468 total cores) connected using an InfiniBand
network. For this particular case 34 - 12 core nodes distributed
between two networks switches were utilized. In Figure 2 all
of the cores and nodes being utilized are shown in context
of the whole machine. This visualization provides contextural
information for understanding the application performance in
the context of the whole machine. For instance, two runs
yielded two different layouts, one runs well, the other does
not. The root cause could be the layout.

For this particular case, Figure 2(a) shows the per core
memory usage while Figure 2(b) shows the total memory
usage per node where a N:1 mapping (sum) was used to
get the total node usage. While the per core memory usage
appears to be uniform, many of the cores on the top switch
are consistency using less memory. This observation is clear in
the per node view where eight of the nodes used less memory.

At the same time, this same per core/node memory us-
age was mapped on to individual patches in the application
domain, Figure 3. Because multiple patches were assigned
to each core/node a 1:N mapping was utilized. Figure 3(a)
shows the per core usage as mapped on to the patches which
gives little additional insight. However, when mapped on to
the patches assigned to each node, Figure 3(b) it becomes
apparent that a region consistently used less memory. The
reason was not initially apparent until another performance
metric was visualized, the task execution time (shown next),
which revealed fewer solver iterations and subsequently less
memory was needed.

B. Task Execution

Often one of the more critical performance metrics is the
execution times, specifically, the execution time of particular
tasks on a per patch basis. These metrics are used to un-
derstand many aspects of a code’s performance, whether for

(a) (b)

Fig. 3: Per-core (a) and per-node (b) memory usage in the
application domain (red - high, blue - low).

understanding a solver or the domain decomposition. Using
the same simulation as before, a 100KW Oxy-Fuel Combustor
running on 100 ranks on five - 20 core nodes on a single
switch, the execution time for a specific physics task was
collected. In Figure 4 the times were mapped to each patch
in the application domain using a 1:1 mapping. Application
scientists had previously not seen such a visualization and
were able to immediately confirm that the core area of the
simulation would indeed take longer (more solver iterations) to
execute because of the initial configuration of the combustor.

This same data was mapped into the machine domain
also using a patch level granularity. That is, a 1:1 mapping
was used, which for the first time allowed each patch to be
overlaid on to the rank/core to which it was assigned, Figure 5.
This task’s execution time dominated dynamic load balancing
and had not previously been visualized resulting in a better
understanding of the load balancing limitations in the context
of both the machine and application domain. Specifically, the
domain decomposition resulted in patches requireing fewer
iterations for a solution being assigned to the same core/node
which finished its work before other nodes thus resulting in
a load imbalance. Had a coarser, per core granularity been
utilized it would have been possible to see the imbalance but
not easily understand the root cause. This fine granularity was
possible because of the close coupling between the application
and the collection of the custom performance metrics.

Fig. 4: An image showing the runtime performance data for
the execution of a specific physics task on a per-patch basis
in the application domain (Blue - fast, Red - slow).

C. Communication
Figure 6 visualizes the MPI communication in all domains

of our MAC model. The simulation is from a two-dimensional



Fig. 5: An image showing same runtime performance data
from Figure 4 for the execution of a specific physics task on
a per-patch basis (Blue - fast, Red - slow) in the machine
domain where five nodes on the same switch each with 20
cores were utilized. Mapped on to each core is the execution
time for those patches assigned to that core. An observation
from this image is that the faster patches have been assigned to
a single node, which completes its execution before the other
nodes, thus demonstrating a potential load imbalance.

shock tube with two levels of refinement with twelve MPI
processes on a single node. Figure 6a shows the associated 12
by 12 communication matrix which is used to understand the
communication patterns between individual MPI processes.
The values shown are the total number of messages passed
between two processes based on the two initialization tasks.
The values are a sum for all tasks running on that process
and represent a N:1 mapping. Similar to the execution times,
it was also possible to look at the communication on a
per task basis as it can be the case that a particular task
dominates the communication. This ability is demonstrated in
Figure 6b which shows the communication matrix in 3D with
the contribution of each individual task shown as a stacked
height field, where the first task dominated the communication.

Figure 6c shows similar information from the communica-
tion matrix Figure 6a, but for the dominant task and uses a
machine view to group each value contiguously within the MPI
process on each core (the blank spaces are a result of having
an uneven number of communicating processes). Though a 1:1
mapping was used to create the view, the neighbor information
was lost. However, one can see that the central processes
had the most communicating neighbors. While perhaps not
the most intuitive visualization, it demonstrates the ability to
maintain a 1:1 mapping between domains.

Figure 6d takes the same information from Figure 6c and
shows the total communication for all processes (as opposed
to individual processes) for the dominant task in the machine
domain. That is the communication from the individual pro-
cesses for the dominant task was aggregated (summed), a
N:1 mapping. Had multiple nodes been used, the aggregation
could have been performed at the node level and ideally a
hierarchical radial graph visualization would have been used.
However, that would have required a specialized visualization
tool and would have been outside of our goal to visualize

multiple domains using an in situ setting with a single tool.
For one process, the patches from the finest grid from the three
AMR levels are overlaid on to the rank. These same patches
are shown in Figure 6e as part of the application domain.

Figure 6e shows the aggregated communication data from
Figure 6d in the application domain, which is the domain most
intuitive to the application scientists. This figure demonstrates
many visualization features. Similarly to Figure 6d, a N:1
mapping was used to get the total communication for the MPI
porces which was then mapped to each patch on the finest
AMR level assigned to that process, an 1:N mapping. The
resulting visualization shows expected results, the MPI com-
munication of the central region of the simulation (red/orange)
is greater than the outer regions (yellow/green/blue), Figure 6e.

In addition, the hierarchical infrastructure was utilized to
show the finest AMR level while highlighting those patches
assigned to a particular MPI process, which was surprisingly
not contiguous. This feature was also used to highlight the
same patches in Figure 6d to give context between the different
views.

D. Threading

As multithreading on-node is now commonplace, efforts
were made to collect and visualize their performance metrics.
We consider these metrics to be a combination of the appli-
cation and machine domains, that is the application controls
the threading but their execution relies on the underlying
machine. Our starting point was to differentiate threads within
a MPI process as we currently do not yet have the necessary
granularity to show the socket/core thread binding.

Figure 7 shows the machine domain view for four - 20-core
nodes. In this case, the nodes, each with one MPI process
controlled 12 threads. One observation is that thread #0, the
master thread (upper left corner) as expected, always had fewer
tasks than the other threads. It should be noted that these nodes
were under utilized as the experiment was assigned to 20 core
nodes.

To demonstrate the flexibility of our system we assigned
two MPI processes, each controlling six threads to a single
node, Figure 8. In this case the job was assigned to a 24-
core node (two sockets each controlling 12 cores). Though
the visualization shows each of the six threads in context of
the first two cores (MPI processes) that is not in fact the
underlying binding. That is because the initial implementation
did not disambiguate between cores (or sockets). Our furture
work is to record the results of a “smp-processor-id” query at
runtime and use a table look-up to obtain the corresponding
socket and thread bindings.

VII. CONCLUSION

A Machine-Application-Communication model has been
demonstrated for in situ visualization of performance metrics
in multiple domains using a single tool. While we believe
these are the most intuitive domains they are not the only
domains for visualizing performance metrics. Our tight in situ
coupling to the application gives the ability to map application



(a) Communication Domain: Pair-wise
communication among the twelve cores
for all tasks (two tasks total).

(b) Communication Domain: Pair-wise communi-
cation among the twelve cores for all tasks with
a stacked height field showing the contribution
from the two tasks executed.

(c) Machine Domain: Pair-wise
communication among the twelve
cores for the dominant task.

(d) Machine Domain: Per-core
aggregate communication for the
dominant task.

(e) MPI communication corre-
sponding to the simulation’s calcu-
lation of the finest resolution level
for the dominant task.

Fig. 6: Example representations of an AMR simulation’s MPI communication (via message counts). The traffic is colored
according to the color scale (low - blue, high - red). The simulation distributed AMR patches (across three levels of refinement)
on a single node of twelve cores. The same visual “patches” assign to a core comprise the visualizations in 6d and 6a; the
same patches are highlighted in 6c and 6e.

Fig. 7: Example of threading on four - 20 core nodes (the other
nodes were utilized by other processes). Shown are the number
of tasks assigned to each of the twelve threads controlled by
a single MPI process (red - many, blue - few). The thread in
the upper left corner of each core was the controlling thread
with the least number of tasks.

Fig. 8: Example of threading using two MPI processes on a
single two socket - 24 core node. Each MPI process controlled
6 threads (under utilized). Shown is the task wait time (red -
long, blue - short). The threads in the upper left corner of each
process was the controlling thread with the least wait time.



specific metrics to the different domains using garularities not
previously demonstrated without having to rely on reductions
or aggregations.

As noted the communication domain is ambiguous because
it can be seen as a subset of the machine domain. Similarly
the thread performance metrics can belong to the machine or
application domain. As such, one may not want to think in
terms of domains but data. This shift may be important because
thirdparty tools such as Vampir have an in situ interface to al-
low real-time application monitoring. Other tools are currently
exploring similar interfaces. The ability to access different,
though related data sources at runtime via the application will
provide an even closer coupling between the application and
performance metrics.

Regardless of whether one thinks in terms of domains or
data, one of the drawbacks of using a scientific visualization
tool in situ is inability to work with groups and graphs and
their hierarchies. Though we have adapted tools for AMR hi-
erarchies with success, lacking this ability greatly impacts the
machine and communication domain views. Further, providing
a hierarchical topological view of the underlying architecture
(e.g NUMA memory nodes, sockets, shared caches, cores and
multithreading) would allow for multi-variate data visualiza-
tion. Despite theses drawbacks, scientific visualization tools
are very well suited for in situ usage and large scale data.

Going forward there is a need for more generalized tools
that can be used for visualization of performance data from
multiple sources working both in situ and post hoc. Ideally
such tools would be a merger of all three visualization fields,
scientific visualization, information visualization, and visual
analytics.

REFERENCES

[1] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Müller, and W. E. Nagel, “The Vampir performance analysis tool-
set,” in Tools for High Performance Computing, M. Resch, R. Keller,
V. Himmler, B. Krammer, and A. Schulz, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 139–155.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin,
J. Mellor-Crummey, and N. R. Tallent, “HPCTOOLKIT: tools
for performance analysis of optimized parallel programs,”
Concurrency and Computation: Practice and Experience,
vol. 22, no. 6, pp. 685–701, 2010. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1553

[3] S. S. Shende and A. D. Malony, “The TAU parallel performance system,”
Int. J. High Perform. Comput. Appl., vol. 20, no. 2, pp. 287–311, May
2006. [Online]. Available: http://dx.doi.org/10.1177/1094342006064482

[4] J. M. Brandt, A. C. Gentile, D. J. Hale, and P. P. Pebay, “Ovis: a
tool for intelligent, real-time monitoring of computational clusters,” in
Proceedings 20th IEEE International Parallel Distributed Processing
Symposium, April 2006.

[5] A. Sanderson, A. Humphrey, J. Schmidt, and R. Sisneros, “Coupling
the Uintah framework and the VisIt toolkit for parallel in situ data anal-
ysis and visualization and computational steering,” High Performance
Computing, June 2018.

[6] V. Ahlgren, S. Andersson, J. Brandt, N. Cardo, S. Chunduri, J. Enos,
P. Fields, A. Gentile, R. Gerber, J. Greenseid et al., “Cray system mon-
itoring: Successes, requirements, priorities,” Proc. Cray Users Group,
2018.

[7] J. Jeffers and J. Reinders, Intel Xeon Phi coprocessor high performance
programming. Newnes, 2013.

[8] M. Kerrisk and P. Zijlstra, “Linux programmers manual,” The Linux
man-pages project, version, vol. 3, 2014.

[9] J. Dongarra, H. Jagode, S. Moore, P. Mucci, J. Ralph, D. Terpstra, and
V. Weaver, “Performance application programming interface.”

[10] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan,
M. Showerman, J. Stevenson, N. Taerat, and T. Tucker, “The
lightweight distributed metric service: A scalable infrastructure
for continuous monitoring of large scale computing systems and
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 154–165. [Online].
Available: https://doi.org/10.1109/SC.2014.18

[11] M. Schulz, J. Galarowicz, D. Maghrak, W. Hachfeld, D. Montoya, and
S. Cranford, “Openspeedshop: An open source infrastructure for parallel
performance analysis,” Sci. Program., vol. 16, no. 2-3, pp. 105–121,
Apr. 2008. [Online]. Available: http://dx.doi.org/10.1155/2008/713705

[12] M. Schulz, J. A. Levine, P. Bremer, T. Gamblin, and V. Pascucci,
“Interpreting performance data across intuitive domains,” in 2011 In-
ternational Conference on Parallel Processing, Sep 2011, pp. 206–215.

[13] M. Weber, J. Ziegenbalg, and B. Wesarg, “Online performance analysis
with the Vampir tool set,” in Tools for High Performance Computing
2017, September 2017.

[14] K. A. Huck, K. Potter, D. W. Jacobsen, H. Childs, and A. D. Malony,
“Linking performance data into scientific visualization tools,” in 2014
First Workshop on Visual Performance Analysis, Nov 2014, pp. 50–57.

[15] C. Wood, M. Larsen, A. Gimenez, C. Harrison, T. Gamblin, and
A. Malony, “Projecting performance data over simulation geometry us-
ing sosflow and alpine,” in 2017 Forth Workshop on Visual Performance
Analysis, Nov 2017, pp. 1–8.

[16] M. Schulz, A. Bhatele, D. Böhme, P. Bremer, T. Gamblin, A. Gimenez,
and K. Isaacs, “A flexible data model to support multi-domain perfor-
mance analysis,” in Tools for High Performance Computing 2014, Oct
2014, pp. 206–215.

[17] K. E. Isaacs, A. G. Landge, T. Gamblin, P.-T. Bremer, V. Pascucci,
and B. Hamann, “Exploring performance data with Boxfish,” in High
Performance Computing, Networking, Storage and Analysis (SCC), 2012
SC Companion:. IEEE, 2012, pp. 1380–1381.

[18] A. Gimenez, T. Gamblin, I. Jusufi, A. Bhatele, M. Schulz, P.-T. Bremer,
and B. Hamann, “Memaxes: Visualization and analytics for charac-
terizing complex memory performance behaviors,” in Transactions On
Visualization And Computer Graphics. IEEE, May 2016, pp. 1–13.

[19] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel in situ
coupling of simulation with a fully featured visualization system,” in
Proceedings of the 11th Eurographics Conference on Parallel Graphics
and Visualization, ser. EGPGV ’11. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2011, pp. 101–109. [Online].
Available: http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109

[20] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian,
and J. Mauldin, “Paraview catalyst: Enabling in situ data analysis
and visualization,” in Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization,
ser. ISAV2015. New York, NY, USA: ACM, 2015, pp. 25–29.
[Online]. Available: http://doi.acm.org/10.1145/2828612.2828624

[21] M. Dorier, R. Sisneros, T. Peterka, G. Antoniu, and D. Semeraro,
“Damaris/viz: a nonintrusive, adaptable and user-friendly in situ visu-
alization framework,” in Large-Scale Data Analysis and Visualization
(LDAV), 2013 IEEE Symposium on. IEEE, 2013, pp. 67–75.

[22] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire,
K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal,
A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel, M. Durant,
J. M. Favre, and P. Navrátil, “VisIt: An End-User Tool For Visualizing
and Analyzing Very Large Data,” in High Performance Visualization–
Enabling Extreme-Scale Scientific Insight. CRC Press, Oct 2012, pp.
357–372.

[23] A. Bhatele, N. Jain, Y. Livnat, V. Pascucci, and T. Bremer, “Analyzing
network health and congestion in dragonfly-based supercomputers,”
2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), pp. 93–102, 2016.


