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Abstract. Data analysis and visualization are an essential part of the
scientific discovery process. As HPC simulations have grown, I/O has be-
come a bottleneck, which has required scientists to turn to in situ tools
for simulation data exploration. Incorporating additional data, such as
runtime performance data, into the analysis or I/O phases of a workflow
is routinely avoided for fear of excaberting performance issues. The pa-
per presents how the Uintah Framework, a suite of HPC libraries and
applications for simulating complex chemical and physical reactions, was
coupled with VisIt, an interactive analysis and visualization toolkit, to
allow scientists to perform parallel in situ visualization of simulation and
runtime performance data. An additional benefit of the coupling made
it possible to create a ”simulation dashboard” that allowed for in situ
computational steering and visual debugging.

Keywords: In Situ Visualization · Runtime Performance Data · Visual
Debugging · Computational Steering.

1 Introduction

When discussing techniques for in situ visualization, the focus is typically on
the infrastructure for efficiently utilizing the simulation data generated by the
application. However, other more ephemeral data is also of interest. We define
ephemeral data as that which is generated by the application, optionally written
to disk for post hoc analysis, but not otherwise saved or utilized by the ap-
plication in subsequent time steps. Examples of ephemeral data include in situ
simulation analysis (i.e., analysis routines that are directly incorporated into the
application) and runtime performance data. For the work presented in this pa-
per, it is this data and the infrastructure required for efficiently utilizing it that
are of primary interest.

We also introduce the concept of a simulation dashboard to present param-
eters and resulting performance data that may be used to control or drive the
simulation. The parameters are supplied to the application by the user as part
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of the Uintah Problem Specification. Measured performance data is rarely writ-
ten to disk and is therefore an excellent target for incorporation in an in situ
framework.

In the context of in situ terminology [8], we are interested in data access,
and more specifically how the application makes data available to the in situ
infrastructure. Because of the heterogeneity of the data generated and param-
eters utilized by the application, different approaches were required. In some
cases, direct access was possible. In other cases, data access was accomplished
via a series of lightweight data structures and wrappers. The lightweight data
structures replaced the previous infrastructure within the Uintah framework,
and the wrappers were used when it was necessary to work within the current
infrastructure.

2 Background

In this paper, we present a hybrid approach that intersects the state-of-the-
practice in in situ data analysis and visualization with the use of collected run-
time performance data. In this section the foundational background for in situ
techniques is outlined, followed by a description of the state-of-the-practice in
utilizing diagnostic data in general, of which runtime performance data is a
subset.

2.1 In Situ Data Analysis and Visualization

The integration of visualization in HPC workflows relies heavily on supported
software. The visualization software staples at HPC centers are those that are
open-source, actively developed, and scalable. The difficulties arising from large-
scale computing as well as the expected inadequacy of postprocessing due to
overwhelming data sizes are well documented [13, 12]. So far, the accepted answer
for these challenges, with respect to data analysis and visualization, is in situ
processing [4, 19, 8].

The standard software suites for data analysis and visualization, VisIt [9]
and ParaView [16], offer in situ libraries [11, 5, 28] in addition to client/server
execution models, batch mode processing, and a complete scripting interface.
In this work, we instrument the Uintah framework using VisIt’s in situ library,
libsim [28]. Although not quite a middleware approach [10], our implementation
does indeed alleviate some of the burden associated with libsim’s tightly cou-
pled instrumentation. We direct the interested reader to a state-of-the-practice
report [6] for additional, general details regarding in situ techniques.

2.2 Utilization of Diagnostic Data

At the two ends of the HPC community are the large computing hardware and
the users who run applications on them. Between are the systems administra-
tors and engineers who maintain that hardware and are focused on maximizing
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throughput of users’ codes, and is critical given the cost of operation of these
large machines. Monitoring system diagnostic data can benefit this effort in a
number of ways, and there are many systems in place to do so [20, 1, 3, 2].

The tendency toward heavily visual systems as well as the common visual
paradigms bolster motivation for inclusion of system visualizations we use in
this work. In particular, we integrate a visualization of the high-speed network
fabric favoring a machine layout [27] over purely graphical representations [15,
25]. A defining differentiation of this work is its in situ deployment. The tools
and approaches mentioned above rely on mechanisms of collecting, storing, and
retrieving stored data external to the application; see OVIS [7] for a represen-
tative framework. We sidestep this approach and do it within the application
because these external tools can not tap into Uintah’s custom debugging streams
in the way presented in this paper, which at times is the best and only way to
get Uintah-specific diagnostic data.

Furthermore, in this case there is an uncommon, but natural coupling of
diagnostic data to scientific simulation data that has allowed us to create novel
visualizations leveraging this coupling. That is, we view system diagnostic data
in both spatial contexts: job layout on the machine as well as compute layout
on the simulation mesh. While there are examples of recent work visualizing
diagnostic data on the mesh [14], even in situ [29], frameworks serving such data
are still reliant on an additional data management solutions, i.e. databases. In
such situations the flexible, user-defined data we serve in situ is not as practical.

3 Methods

One of the objectives of this research was to efficiently communicating ephemeral
data, data that is typically not visualized or otherwise presented to the user in an
in situ framework. To accomplish this objective, lightweight data structures and
wrappers were developed and deployed that allowed for direct memory access
to the data. The lightweight data structures replaced existing data collection
and storage structures in Uintah to reference simulation parameters and global
analysis data in a minimally intrusive manner.

3.1 Per-Rank Runtime Performance Data

Per-rank runtime performance may be collected by different parts of the applica-
tion infrastructure at different stages of the execution path and written to disk
for post hoc analysis. Within the Uintah infrastructure runtime performance
data is collected by the simulation controller, memory manager, scheduler, load
balancer, AMR regridder, and data archiver (I/O). The data collected range
from memory usage to MPI wait times. In addition, the Uintah application also
collects runtime performance data that is specific to the simulation physics, such
as the solver performance.

Gaining access to runtime performance data for in situ communication re-
quired that the data be collected centrally and in a generic manner. To facilitate
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the centralized collection of data, we leveraged Uintah’s Common Component
Architecture [17]. The simulation controller is the central component in Uin-
tah and interfaces with all of the other underlying infrastructure components
(Scheduler, Load Balancer, I/O, etc.) as well as the application component. As
the central component, the simulation controller owned and shared the runtime
performance data collected with all of the other components.

Data Collection To manage the collecting of the per-rank runtime performance
data, we created an extended map class. Maps are associative containers that are
a combination of a key value and a mapped value. Our extended class maintained
the core map abstraction while allowing for generic indexed based access. This
allowed the Uintah infrastructure to continue to have the flexibility to utilize
a key value, in this case an enumerator specific to the runtime performance
measure. When the data needed to be communicated to VisIt, the indexed-
based access method was utilized. Iterators were not used as they required the
key value type, which was not available to middleware utilized between Uintah
and VisIt.

The collecting of runtime performance data was done on a per-rank basis,
allowing utilization of our extended map class. However, it was also useful to
present global values. To address this need, global MPI reduce operations were
built into the extended map class. The Uintah infrastructure also supports multi-
threading, which required a reduction over the shared resource on each node. To
facilitate this reduction, the extended map class also incorporated a MPI reduce
that utilized a split communicator based on the ranks on each node (i.e., all
ranks on a node had the same communicator). These reduced values could then
be accessed as additional node-level mapped values in our extended map class.

Spatial Granularity Now that the runtime performance data could be col-
lected and reduced at different processor levels, we address the issue of visu-
alizing the data at different spatial granularities. The global values could be
shown in a tabular fashion or as a series of strip charts as part of the simulation
dashboard (see Section 3.2). Of greater interest was the ability to visualize the
runtime performance data.

The Uintah infrastructure utilizes a patch-based structured grid. Each patch
contains multiple cells and is assigned to a specific rank. This patch-rank assign-
ment was used to map the runtime performance data to the simulation mesh
with all patches on the same rank displaying the same value (Figure 1a). In a
similar fashion, the per-node runtime performance data was also mapped to the
simulation mesh with all patches on the same node displaying the same value
(Figure 1b).

The ability to map the runtime performance data to the simulation mesh
at different granularities allowed us to check the mesh layout against the raw
performance statistics reported (e.g., load balancing, communication patterns,
etc.) and provided insight not usually possible. For instance, the ability to see the
patch layout on particular ranks gave insight into the load balancer assignment.
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(a) (b)
Fig. 1. A simple visualization of (a) the per-rank task execution times for 192 ranks
and (b) the per-node task execution times for nine nodes mapped onto the simulation
mesh (Blue - fast, Red - slow). Of the nine nodes, eight nodes were 20-core nodes, and
one node was a 12-core node. Thus the summed time for the 12-core node, in blue is
substantially less than the other nodes.

It was also possible to gain insight by visualizing runtime performance data
using the physical machine layout. For instance, the runs presented were done
on a heterogeneous HPC system comprised of 253 - 12 core nodes, 164 - 20 core
nodes, and 48 - 24 core nodes (7468 total cores) connected using an InfiniBand
network (For Figures 1 - 4, eight 20 core nodes and one 12 core node were
used). To obtain the network layout, the ’ibnetdiscover’ command was utilized
to discover the InfiniBand subnet, which was then visualized based on the switch
connections (Figure 2).

Via a series MPI queries, a mapping between the nodes and cores being
utilized by Uintah and the machine layout was created (Figure 2).

Utilizing this mapping and the ability to easily collect rank based runtime
performance data using our new map class, performance data could now be
visualized using the machine layout. As with the simulation mesh, both the per-
rank and per-node runtime performance data could be mapped directly to the
machine layout (Figure 3-4). Visualizing the runtime performance data on the
machine layout gave insight into how the machine layout affected the runtime
performance, for instance, which ranks or tasks were taking the most time for
MPI waits or parallel collections.

Per-Task Runtime Performance Data The Uintah runtime infrastructure
utilizes dynamic task scheduling for its execution [22]. For a typical CFD simu-
lation, 10 to 50 tasks were assigned uniformly to each patch across the domain.
These tasks may be created by the simulation (e.g., solver) or the infrastructure
(e.g., I/O) and are able to monitor their runtime performance in the form of
execution and wait times. These times can be saved as a series of per-task/per-
rank text files for later post hoc analysis, but previously were not otherwise
visualized.

To facilitate access to this data for in situ visualization, a map structure
utilizing two keys was constructed. The first key mapped the task and the sec-
ond key mapped the patch. Taking advantage of Uintah’s one-to-one mapping
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Fig. 2. A visualization of the machine layout based on the switch connections. Each
row represents a switch (17 total), each block represents a processor node, and each
cell within a block represents a core. Highlighted in red are the nine nodes and 192
ranks used by the simulation.

between patches and tasks visualizing the per-task runtime performance data in
situ on the simulation mesh was a straightforward process. Visualizing the per-
task runtime performance data on the simulation mesh gave users the ability to
understand hot spots and their possible cause, for instance, the time between
the end of the execution of one task to the beginning of the execution of the
next task for each thread (Figure 5a).

If desired, the per-task runtime performance data could also be summed over
all tasks for each patch. For instance, the sum of task exection times utilized
by Uintah’s load balancer’s dynamic cost modeler [18], that previously, had not
been possible to visualize (Figure 5b). With the implementation of this map,
users were able to visualize these sums and see load imbalances.

Initially, the per-task runtime performance data was accessed only for in situ
visualization. However, after seeing the utility of visualizing this data, users re-
quested that the data be stored in Uintah’s data warehouse [21] so it could be
written to disk for post hoc visualization and analysis. As such, a task was cre-
ated to store the collected data in the data warehouse. Which being a task, it too
could monitor its performance. Thus, it was possible to monitor the monitoring.

3.2 The Simulation Dashboard

When performing in situ visualization, it is often desirable to have access to data
that is global to the simulation, such as the reduced runtime performance data,
all of which may be written to disk for post hoc analysis. However, it is often
impractical to analyze a series of text files while performing in situ visualization
and therefore a simulation dashboard was created.

As part of VisIt’s libsim [28], an application can provide a Qt [24] Designer
XML file defining a series of widgets that can be used to generate an interactive
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Fig. 3. A visualization of the per-rank task execution time for 192 ranks mapped onto
the machine layout (Blue - fast, Red - slow). Compare the figure to the same times
mapped onto the simulation mesh in Figure 1a.

user interface on the fly. This user interface forms the basis for the simulation
dashboard and is fully customizable by the user. Communication from the appli-
cation to VisIt was accomplished through an interface function that, in general,
requires little more than the widget name and a value. Communication from
VisIt to the application was accomplished via callback functions that were reg-
istered by the application during the in situ initialization process.

General Simulation Data When running a simulation, a plethora of data can
be reported to the user. Some of the data may be read-only or may be read/write.
When the data is read/write, a callback function is required to update the values.
Examples of read-only data are the simulation time and time increment (Figure
7b(1)). Read-only data also includes wall time intervals (Figure 7b(3)) and AMR
grid information (Figure 7b(6)). Examples of read/write data are the simulation
time increments in which the user can change most all of the values (Figure
7b(2)).

Access to the data was often directly available from the Uintah component via
a function call and required no special handling. Although simple, it required a
series of singular calls to VisIt, as opposed to looping through a list of lightweight
data structures pointing to the data (as described below).

Uintah also contains in situ methods to calculate both general, (e.g., min/-
max) and simulation specific values, (e.g., total momentum) that are stored
in Uintah’s data warehouse. To retrieve the values for in situ usage, a generic
lightweight structure was created to hold the required parameters; the variable
name, material (Uintah supports multiple materials), and level (Uintah supports
adaptive mesh refinement), the variable label, which contains the variable type,
(e.g., scalar or vector) and the variable reduction type, (e.g., min, max, or sum).
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Fig. 4. A visualization of the per-node task execution times mapped onto the machine
layout (Blue - fast, Red - slow). Compare the figure to the same times mapped onto
the simulation mesh in Figure 1b.

(a) (b)
Fig. 5. A simple visualization of (a) the per patch task wait times and (b) the per
patch load balancer costs for 1344 patches (Blue - fast, Red - slow).

An application developer coding an analysis module utilized the lightweight
structure to wrap the values of interest. This structure was then registered with
the in situ middleware when the analysis module was initialized. At the end
of each time step, the situ interface looped through each registered structure,
retrieved the analysis data from the data warehouse, and passed it on to VisIt
to display (Figure 7b(5)).

Strip Charts In addition to a tabular display of analysis data (Figure 7b(5))
and runtime performance data (Figure 8a(1-3)), visualizations over time are
possible using a series of multivalued strip charts (Figure 6). Although integral to
the simulation, the strip charts were not integrated into the simulation dashboard
but were instead integrated into VisIt’s simulation control window for generiazed
use by expanding VisIt’s in situ interface to manage strip charts and utilized the
QWT [26] library’s 2D plotting widget.
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Fig. 6. A strip chart showing MPI runtime performance stats over 50 time steps.

Computational Steering Computational steering allows the user to modify
simulation parameters on the fly to change a simulation’s outcome [23]. As noted
above, data such as the simulation time increment is read/write and thus can
be interactively modified by the user. Although computational steering is not
typically available in in situ frameworks, it is a natural extension. One of the
goals of in situ visualization is to provide real-time feedback to the user, which
can then be used to interactively steer the computation.

Uintah simulations are defined via a series of parameters that are part of the
Uintah Problem Specification. These parameters are used to describe the initial
simulation and are typically not changed during the life of the simulation, but
may be tuned beforehand via a series of exploration runs.

Changing some of the variables may have side effects, such as requiring new
tasks to be performed and forcing the task graph to be recompiled [18]. To
facilitate the modification of these parameters in situ, a lightweight structure
was created to hold the parameter name, type description, memory reference,
and a flag indicating whether the task graph would need to be recompiled.

Similar to an analysis component, an application developer coding a sim-
ulation component utilized the lightweight structure to wrap the parameter.
This structure was then registered with the in situ middleware when the com-
ponent was initialized. At the beginning of each time step, the situ interface
looped through each registered structure, retrieved the simulation parameter,
and passed it to Uintah, where it was utilized for the subsequent time step
(Figure 7b(4)).



10 A.R. Sanderson et al.

Visual Debugging As part of VisIt’s Simulation window, it is possible for the
user to issue commands to the simulation to stop, run, step, save, checkpoint,
abort, etc., the simulation (Figure 7a). These commands are defined by the
simulation and give the user some level of control. However, when debugging,
the user may want finer grained control. For instance, for a simulation that is
known to crash at particular time step, the user may want to stop the simulation
just before that time step and begin debugging (Figure 7b(1)). This ability
is especially important because the overall state of the application would be
maintained as long as possible, thus not perturbing the debug condition.

(a) (b)
Fig. 7. (a) VisIt’s simulation control window, which allows the user to issue com-
mands to the simulation. (b) The simulation dashboard with general information; (1)
simulation times, (2) time stepping, (3) wall times, (4) Uintah problem specification
parameters, (5) analysis variables, and (6) AMR information. Values shown in light
gray are read-only, whereas those in black may be modified by the user.

Debugging may require changing the output frequency, turning on debug
streams, (e.g., text-based output), or exposing intermediate data values. To fa-
cilitate access to the debug streams, they were rewritten to self-register when
constructed. Once registered, the debug streams can then be accessed by the in
situ interface via a centralized list (Figure 8b(4-5)).

To expose state variables, the lightweight structure developed for exposing
the Uintah Problem Specification parameters was utilized (Figure 8b(2)). One
such state variable controlled the scrubbing of intermediate variables from Uin-
tah’s data warehouse. To reduce memory, intermediate variables not needed for
checkpointing are deleted at the completion of a time step and not normaly vi-
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sualized. However, visualizing these variables can be an important part of code
verification.

(a) (b)
Fig. 8. The simulation dashboard with (a) runtime performance data; (1) infras-
tructure, (2) MPI, and (3) application specific, and (b) other information; (1) image
generation, (2) state variables, (3) output and checkpointing frequency, and (4) and
(5) debug streams. Values shown in light gray are read-only, whereas those in black
may be modified by the user.

4 Results

The main result of coupling the Uintah Framework with the VisIt toolkit is al-
lowing for Uintah developers and users to visualize and explore empheral data.
For instance, Uintah infrastructure developers using per-rank runtime perfor-
mance data were for the first time able to visualize the load balancing on the
simulation mesh and machine layout insteading of resorting to text output. A
Uintah application developer, using the per-task runtime performance data, was
able to validate that a particular computational task had a uniform execution re-
gardless of the boundary and mesh configuration. A Uintah user, who previously
did a series of parameter runs, instead was able to use the in situ computataional
steering tools to change input parameters such as the time stepping on the fly,
thus reducing the time spent on parameter exploration runs.

Another result of the coupling was that as data was exposed in different
scenarios, Uintah developers and users requested new diagnostics. For instance,
our map class was initially written for Uintah’s runtime infrastructure but then
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was also used to separately collect MPI-specific performance measures. Later,
another map was utilized by the application components to collect simulation
specific runtime performance measures. The generic nature of the map class
made adding and exposing data for in situ visualization a very simple process,
taking a matter of minutes.

Similarly, when the machine layout view was developed, Uintah developers
requested new diagnostics that only made sense with that layout, such as the
number of patches and tasks per rank. This request was soon followed by others
for the ability to interactively query physical node properties such as the on-
board memory and temperature. At the same time, the lightweight wrappers
made adding and exposing parameters for computational steering a very simple
process. Users could add the needed code in a matter of minutes, re-run their
simulation, and interactively explore while asking “what if questions.”

From a more practical point of view, code maintainability became easier
when it was necessary to modify the Uintah infrastructure, whether for new
data collections or for managing debug streams. At the same time, it became
clear that visualization developers needed to have a more integral role in the
development of the Uintah Framework.

5 Conclusion

In this paper, we have presented work to couple the Uintah Framework with the
VisIt toolkit to allow scientists to perform parallel in situ analysis and visual-
ization of runtime performance data and other ephemeral data. Unique to the
system is the ability to view the data in different spatial contexts: job layout
on the machine and the compute layout on the simulation mesh. We have also
introduced the concept of a “simulation dashboard” to allow for in situ com-
putational steering and visual debugging. The coupling relied on incorporating
lightweight data structures and wrappers in a minimally intrusive manner into
Uintah to access the data and communicate it to VisIt’s in situ library.

In several cases, the Uintah developers found the infrastructure changes to
be beneficial beyond the need for in situ communication. The developers were
able to collect data more easily and visualize it in ways not previously possible
thus gaining new insight.

From this experience, two lessons were learned, the coupling of a simulation to
an in-situ framework will require changes to its infrastructure, and is a chance
to re-evaluate previous design decisions. When infrastructure changes are not
possible, other mechanisms such as lightweight wrappers are key.

Going forward, as more ephemeral data is collected and communicated to
the in situ framework scalability will need to be assured. In addition, the collec-
tion and communication of emphermal data must continue to have a minimal
impact on the simulation physics. For instance, currently there is litte impact on
memory resources when compared to those being used by the simulation physics.
However, that could certainly change as additional diagnostics are incorporated.
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