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ABSTRACT

In this paper we consider the problem of semi-supervised

learning with deep Convolutional Neural Networks (Con-

vNets). Semi-supervised learning is motivated on the ob-

servation that unlabeled data is cheap and can be used to

improve the accuracy of classifiers. In this paper we propose

an unsupervised regularization term that explicitly forces the

classifier’s prediction for multiple classes to be mutually-

exclusive and effectively guides the decision boundary to

lie on the low density space between the manifolds corre-

sponding to different classes of data. Our proposed approach

is general and can be used with any backpropagation-based

learning method. We show through different experiments that

our method can improve the object recognition performance

of ConvNets using unlabeled data.

Index Terms— Semi-supervised Learning, Deep Learn-

ing, Neural Networks

1. INTRODUCTION
Training high accuracy classifiers often requires a very large

amount of labeled training data. Recently, ConvNets [1, 2]

have shown impressive results on many vision tasks includ-

ing but not limited to classification, detection, localization

and scene labeling [3]. However, ConvNets work best when a

large amount of labeled data is available for supervised train-

ing. For example, the state-of-the-art results for large 1000-

category ’ImageNet’ [4] dataset was significantly improved

using ConvNets [5, 6]. Unfortunately, building large labeled

datasets is a costly and time consuming process. On the other

hand, unlabeled data is easy to obtain.

Several works have tried to use unlabeled data for training

ConvNets. Convolutional deep belief networks [7] is a gener-

ative model for natural images which is based on deep belief

networks [8] and trained using unlabeled data. Unlabeled data

has also been used for pre-training of convolutional layers in

a ConvNet [9, 10] in an effort to reduce the amount of labeled

data required during supervised training. One example is Pre-

dictive Sparse Decomposition (PSD) [11] for learning the fil-

ter coefficients in the filter bank layer. However, many recent

supervised models trained on large datasets usually start from

a random initialization of the filter weights which shows that

these solutions are not computationally justified. Ladder net-
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works [12] and region embedding [13] are two more recent

examples of semi-supervised learning in ConvNets.

There are different approaches to semi-supervised learn-

ing in general [14, 15]. The classical approaches include

self-training, co-training and in general multiview learning

[16, 17]. In these methods, the strong predictions of a single

classifier or multiple classifiers will be added to the training

set of the same classifier or other classifiers. Another class

of methods for semi-supervised learning is called generative

models. There are different methods in this category which

are based on Gaussian Mixture Models (GMM) and Hidden

Markov Models (HMM) [18]. These generative models gen-

erally include the unlabeled data in modeling the probability

distribution of the training data and labels. Another approach

to semi-supervised learning is Transductive SVM (TSVM)

[19] or S3VM [20]. The goal of these methods is to max-

imize the classification margin by using the unlabeled data.

A large body of semi-supervised approaches are graph-based

methods. These methods are generally based on the similar-

ities between labeled and unlabeled samples [21, 22]. These

similarities are encoded in the edges of a graph. In this paper

we propose a semi-supervised learning method that makes use

of unlabeled data and pushes the decision boundary of Con-

volutional Neural Networks (CNN) to the less dense areas of

decision space and provides better generalization on the test

data.

1.1. Motivation
In many visual classification tasks, it is easy for a human to

classify the training samples perfectly; however, the decision

boundary is highly nonlinear in the space of pixel intensi-

ties. Therefore, we can argue that, the data corresponding to

every class lies on a highly nonlinear manifold in the high-

dimensional space of pixel intensities and these manifolds

don’t intersect with each other. An optimal decision boundary

lies between the manifolds of different classes where there are

no or very few samples. Decision boundaries can be pushed

away from training samples by maximizing their margin. Fur-

thermore, it is not necessary to know the class labels of the

samples to maximize the margin of a classifier as in TSVMs.

However, finding a classifier with a large margin is only pos-

sible if the feature set is chosen or found appropriately. For

TSVMs the burden is on the kernel of choice. On the other

hand, since ConvNets are feature generators without their fi-

nal fully connected classification layer, if there is a feature



space that allows a large margin classifier, they should be ca-

pable of finding it in theory. Our argument then is that since

object recognition is a relatively easy task for a human, there

must be such a feature space that ConvNets can generate with

a large margin. Motivated by this argument, we propose a

regularization term that uses unlabeled data to encourage the

classification layer of a ConvNet to have a large margin. In

other words, we propose a regularization term which makes

use of unlabeled data and pushes the decision boundary to a

less dense area of decision space and forces the set of predic-

tions for a multiclass dataset to be mutually-exclusive.

2. UNSUPERVISED REGULARIZATION FUNCTION

Let’s assume that L = {(xi, yi)}i=L
i=1 is the set of labeled

training data and U = {(xi)}i=N
i=L+1 is the set of unlabeled

training data. We also assume that yi belongs to one of the

K classes {c1, c2, . . . , cK}. Consider f(w,x) to be the out-

put vector of a general classifier with learning parameters w
and input vector x. We define lL(f(w,xi), yi) to be the loss

function defined for the classifier which is calculated based

on labeled data of L. This loss function can be quadratic er-

ror, cross-entropy or any other form of loss function. We can

assume that in ideal case, the output vector f(w,x) is a multi-

dimensional binary indicator function f : Rn → B
K where

B = {0, 1} and n is the dimension of input data. If sam-

ple xi belongs to class ck, then this binary function is in the

following form:

fj(w,xi) =

{
1, j = k
0, j = 1 . . .K, j �= k

, (1)

It can be seen that this indicator function can’t take any arbi-

trary vector of the space B
K . In fact it belongs to a very spe-

cific subset of this multi-dimensional space which has only

one non-zero element. We call this subset BK
s . We define an-

other binary indicator function I(f(x,w)) which determines

if a binary vector f ∈ B
K also belongs to B

K
s or not. We

define this Boolean function I : BK → B using disjunction

of conjunctions, also known as the disjunctive normal form

[23]:

I(f) =

K∨
j=1

⎛
⎝ K∧

k=1, k �=j

¬fk
∧

fj

⎞
⎠ (2)

The output of this indicator function for a valid prediction

f(x,w) of an ideal classifier should be one. This is typically

achieved indirectly in a supervised learning setting by one-

vs-rest classification which assigns a target value of 1 to the

correct class and a target value of 0 to the other classes. How-

ever, the labels of the samples are not required if we directly

enforce Eq. (2). In this paper, we enforce this condition in

form of a regularization term. To this end, we approximate

the binary I(f) with a differentiable function that can be op-

timized with gradient descent. We replace the conjunction of

a set of binary variables
∧K

i=1 xi by their product
∏K

i=1 xi.

We also approximate not operation of a binary variable ¬xi

with 1 − xi. Finally, we substitute the disjunction of the bi-

nary variables
∨K

i=1 xi with their sum
∑K

i=1 xi. Now relax-

ing f to be the output of classifiers which are not binary but

continuous valued between 0 and 1, I(f) becomes a differ-

entiable function between 0 and 1. By applying the above

mentioned approximations, we define the following unsuper-

vised loss function which is calculated using both samples of

L and U :

lU (f(w,xi)) = −
K∑
j=1

fj(w,xi)

K∏
k=1, k �=j

(1− fk(w,xi))

(3)

It must be noted that our goal was to maximize I(f). So, we

needed to add the minus sign in Eq. (3) when we define it

as a loss function to be minimized. Total loss functions to be

minimized is defined as follows:
ltot = lL + λlU (4)

This unsupervised loss function lU can be combined with any

other loss function and can be used with any backpropagation-

based learning. Intuitively, this loss function forces the clas-

sifier’s prediction to be mutually-exclusive for every class.

In addition, it can be observed that this regularization term,

forces the decision boundary to be as far as possible from any

data sample and as a result it will be placed in a less dense

area of decision space. We show this by an example. Figure

1 shows a synthetic dataset with three classes of diamonds,

circles and crosses. Labeled samples are shown with black

circles. We trained a simple two layer neural network on this

dataset. Decision areas of the neural networks are shown with

different colors. Figure 1 (a) shows the result of the network

trained without unsupervised regularization and Figure 1 (b)

is the result of the network with proposed unsupervised regu-

larization. We can see that unsupervised regularization places

the decision boundary in a less dense area of space. A num-

(a) (b)

Fig. 1. Example showing that unsupervised regularization

moves the decision boundary to a less dense area. (a) Without

and (b) With unsupervised regularization.

ber of studies [24, 25] show that unlabeled data can be more

informative if the classes overlap less. A measure for class

overlap is conditional entropy H(X|Y ). The empirical con-

ditional entropy can be defined as:

H(Y |X) = − 1

N

N∑
i=1

K∑
k=1

P (ck|xi) logP (ck|xi) (5)



Note that P (ck|xi) can be estimated with fk(w,xi). It is

shown in [26] that this entropy minimization can be used to

form a regularization term based on unlabeled data. Similar

to our proposed method, they try to minimize a loss function

which is based on labeled samples and also use a regulariza-

tion term which is based on Eq. (5) and calculated using un-

labeled data. However, in multiclass problems our regulariza-

tion term explicitly forces the classifier’s prediction for differ-

ent classes to be mutually-exclusive. We experimentally show

that our proposed regularization term generally performs bet-

ter than entropy minimization which is based on Eq. (5) on

some datasets especially when we have few labeled examples.

3. EXPERIMENTS
In this section, we present the results of applying our regu-

larization term for object recognition using ConvNets. We

show extensive results on MNIST [2], CIFAR10 [27], NORB

[28] and SVHN [29] datasets. We also show some prelimi-

nary results on ILSVRC 2012 [4] using AlexNet model [5].

In general, we divide the training data of each dataset into two

sets and consider one set to be the labeled dataL and the other

set to be unlabeled data U . In this section, we mainly com-

pare the performance of a ConvNet trained using only labeled

data and a ConvNet trained using labeled data and our reg-

ularization term calculated using both labeled and unlabeled

data. The entropy minimization regularization of [26] is also

used for training ConvNets in comparison. For all the datasets

with the exception of MNIST and ImageNet, we also trained

ConvNets with entropy minimization regularization and com-

pared the results with our proposed regularization scheme. It

must be noted that the entropy regularization has not been

previously used with ConvNets to the best of our knowledge.

For every dataset, we train the ConvNet using different ratio

of labeled and unlabeled data. In separate experiments, we

randomly pick 1%, 10%, 50% and 100% of training data as

labeled set and the rest is reserved for unlabeled set. Then for

each setting, we evaluate the improvement obtained by using

unlabeled data. We repeat each experiment 5 times for each

setting and report the average and standard deviation over er-

ror rates of different experiments. During training, the update

for model parameters constitute of two parts. The first part is

based on labeled data and the second part is from unlabeled

data. These two are combined with parameter λ according

to Eq. (4). But in our experiments, the labeled set is usu-

ally smaller than unlabeled set. So at each epoch we use

every labeled sample multiple times in order to compensate

the difference in size of labeled and unlabeled datasets. In

most of our experiments λ is fixed to 1. We experimentally

observed that the performance of our regularization method

is not overly sensitive to λ. We incorporated our unsuper-

vised regularization term into cuda-convnet which is a GPU

implementation of ConvNet and publicly available at [30].

With the exception of MNIST, all other experiments were

performed using this GPU implementation. Our setup for

all datasets except MNIST and ImageNet consists of 2 con-

volutional layers followed by two locally connected layers.

There are 64 maps in each convolutional layer and 32 maps

in each locally connected layer. Filters are 5×5 in convolu-

tional layers and 3×3 in locally connected layers (the same

as ’layers-conv-local-13pct.cfg’ of [30] for CI-

FAR10). We added a fully-connected layer of the size 256

before the output. In all the experiments, we found the num-

ber of epochs and learning rates using cross-validation on a

small portion of training data and repeat the training on all

training data.

Table 1. Performance comparison on test data for MNIST

dataset. error rates: average (%) ± std. dev

semi-supervised labeled data only

0.13% 14.82 ± 0.89 20.96 ± 2.19

1% 1.77 ± 0.07 4.09 ± 0.22

10% 1.28 ± 0.10 1.54 ± 0.08

50% 0.87 ± 0.06 0.86 ± 0.08

100% 0.79 ± 0.05 0.85 ± 0.06

Table 2. Semi-supervised performance comparison on test

data for NORB dataset. Error rates: Average (%) ± std. dev

proposed labeled data entropy

method only minimization

1% 19.02 ± 1.56 26.77 ± 1.60 21.12 ± 0.73

10% 6.55 ± 0.37 8.42 ± 0.62 7.14 ± 0.70

50% 4.58 ± 0.25 4.98 ± 0.35 4.91 ± 0.21

100% 4.38 ± 0.24 4.58 ± 0.31 4.24 ± 0.17

Table 3. Performance comparison on test data for NORB

dataset with fixed labeled set and variable unlabeled set.

size of unlabeled set error rates: average (%) ± std. dev

labeled data only 26.77 ± 1.60

25% of training set 21.81 ± 1.24

50% of training set 21.48 ± 2.16

75% of training set 20.75 ± 1.21

100% of training set 19.02 ± 1.56

3.1. MNIST
We trained MNIST using a ConvNet with 2 convolutional lay-

ers. The first layer uses 7×7 filters and produces 20 maps.

The second layer also uses 7×7 filters but produces 15 maps.

A hidden layer with 256 nodes was added before the final

layer. No preprocessing was performed on this dataset. We

did not use annealing or momentum. For MNIST, we also

trained a model with only 80 labeled samples (8 per class).

This is equal to 0.13% of labeled data. The results are given

in Table 1. We can see that when there is a small number of la-

beled data available (0.13% and 1% in Table 1), the proposed

unsupervised regularization term significantly improves the

accuracy.

3.2. NORB
The training set of NORB contains 10 folds of 29160 images.

It is common practice to use only first two folds for train-

ing. The test set contains 2 folds totalizing 58320. The orig-

inal images are 108×108. However, we scaled them down

to 48×48 similar to [31]. Data translation was used during



Table 4. Semi-supervised performance comparison on test

data for SVHN dataset. Error rates: Average (%) ± std. dev

proposed labeled data entropy

method only minimization

1% 15.30 ± 0.74 21.53 ± 0.53 15.23 ± 0.36

10% 7.94 ± 0.15 9.88 ± 0.21 7.93 ± 0.17

50% 5.65 ± 0.11 6.17 ± 0.19 5.55 ± 0.22

100% 4.60 ± 0.02 5.08 ± 0.07 4.68 ± 0.09

Table 5. Performance comparison on test data for SVHN

dataset with fixed labeled set and variable unlabeled set.

size of unlabeled set error rates: average (%) ± std. dev

labeled data only 21.53 ± 0.53

25% of training set 16.15 ± 0.27

50% of training set 15.55 ± 0.14

75% of training set 15.57 ± 0.23

100% of training set 15.30 ± 0.74

training. Image translation was obtained by randomly crop-

ping the training images to 44×44. The results are given in

Table 2. We can see that in the case with 1% of labeled data,

our supervised term performs better than entropy regulariza-

tion. The reason is that in this case 1% of labeled data is not

sufficient to guarantee mutual exclusiveness of the predictions

of the entropy regularization method. However, our method

explicitly forces mutual exclusiveness. In another set of ex-

periments, we fixed the labeled set to be 1% of total training

samples. Then, we increased the size of unlabeled set in 4

steps. We used 25%, 50%, 75% and 100% of training data as

unlabeled set in separate experiments. The results are given

in Table 3. It can be seen that by adding more unlabeled data

we can improve the performance of classifier.

3.3. SVHN
SVHN contains around 70000 images for training and more

than 500000 easier images for validation. We did not use

the validation set at all. The test set contains 26032 images,

which are RGB images of size 32 × 32. Generally, SVHN is

a more difficult task than MNIST because of the large vari-

ations in the images. We did not do any kind of preprocess-

ing for this dataset. We simply converted the color images to

grayscale by removing hue and saturation information. The

results are given in Table 4. Similar to NORB, we performed a

set of experiments by fixing the size of labeled set and chang-

ing the size of unlabeled data. We increased the size of unla-

beled set in 4 steps. The results are shown in Table 5. Here

again, we observe that by increasing the size of unlabeled data

we can actually improve the classification performance.

3.4. CIFAR10
We augmented the training data using image translations,

which is done by taking 24×24 cropped versions of the origi-

nal images at random locations. A common preprocessing for

this dataset is to subtract the per pixel mean of the training set

from every image. The results are given in Table 6. Similar to

NORB and SVHN, we fixed the labeled set at 1% of training

data and increased the size of unlabeled set in 4 steps. The

Table 6. Semi-supervised performance comparison on test

data for CIFAR10. Error rates: Average (%) ± std. dev

proposed labeled data entropy

method only minimization

1% 54.48 ± 0.42 57.61 ± 0.71 55.06 ± 0.65

10% 27.71 ± 0.32 31.48 ± 0.27 27.54 ± 0.34

50% 16.87 ± 0.28 18.31 ± 0.31 17.02 ± 0.26

100% 13.67 ± 0.17 14.11 ± 0.23 13.64 ± 0.23

Table 7. Performance comparison on test data for CIFAR10

dataset with fixed labeled set and variable unlabeled set.

size of unlabeled set error rates: average (%) ± std. dev

labeled data only 57.61 ± 0.71

25% of training set 55.34 ± 0.69

50% of training set 55.09 ± 0.32

75% of training set 54.40 ± 0.65

100% of training set 54.63 ± 0.66

results are given in Table 7. We can see that the performance

keeps improving as we add more unlabeled data.

3.5. ImageNet
We performed preliminary experiments with ILSVRC 2012

which has 1000 classes. We randomly picked 10% of each

class from training data as labeled set and the rest was used for

unlabeled set. We applied our regularization term to AlexNet

model [5]. Using our method we achieved an error rate of

42.90%. If we don’t use the regularization term the error rate

is 45.63%. This shows that our model can be effective even

when we have large number of classes.

4. DISCUSSION

In all of the experiments we observed performance improve-

ment by using unsupervised regularization. Based on our ex-

periments we can see that for the cases with very few labeled

samples, the advantage of using unsupervised regularization

term is more significant when the classification task is sim-

pler. For example, CIFAR10 is a more challenging dataset

compared to MNIST, NORB and SVHN and benefits less

from using unsupervised term. In simpler tasks, ConvNet

is able to create a feature space with less dense areas and

provides better discriminative features for the classifier of fi-

nal layer. This means that even for more challenging tasks,

if more unsupervised training data becomes available, then

large ConvNets can be trained which might be able to create

the feature spaces that will have less dense areas and larger

margins.

5. CONCLUSION

We introduced an unsupervised regularization term that forces

a classifier predictions to be mutually-exclusive for different

classes and moves the decision boundary to a less dense area

of decision space. We showed that our method can be applied

successfully to ConvNets to improve the classification accu-

racy using both labeled and unlabeled data. We showed that it

is possible to improve classification accuracy by adding more

unlabeled data. We also showed that entropy regularization

can be applied to ConvNets successfully.
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