
IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 8, AUGUST 2015 1011

Nonlinear Regression with Logistic
Product Basis Networks

Mehdi Sajjadi, Mojtaba Seyedhosseini, and Tolga Tasdizen, Senior Member, IEEE

Abstract—We introduce a novel general regression model that
is based on a linear combination of a new set of non-local basis
functions that forms an effective feature space. We propose a
training algorithm that learns all the model parameters simul-
taneously and offer an initialization scheme for parameters of
the basis functions. We show through several experiments that
the proposed method offers better coverage for high-dimensional
space compared to local Gaussian basis functions and provides
competitive performance in comparison to other state-of-the-art
regression methods.

Index Terms—Basis functions, feature space, RBF, regression.

I. INTRODUCTION

L INEAR combination of a set of basis functions is one
of the most commonly used methods for regression. By

choosing a proper set of basis functions, we can project the data
into a feature space that provides effective representation of the
data distribution [1]. Common basis functions include but are
not limited to polynomials, natural splines, radial basis func-
tions (RBF) and wavelet bases [2]. The choice of the basis func-
tions determines the type of regressionmethod. RBFs are impor-
tant mathematical models and use radial functions such as Gaus-
sians as basis functions [3]. Each radially symmetric Gaussian
is tuned to respond to a local region of feature space. There-
fore, RBFs require sufficiently large number of basis functions
to cover the space.
In general, some regression methods originate from popular

classification methods such as Random Forests [4], Support
Vector Machines and Artificial Neural Networks. For example,
random forest regression uses ensembles of regression trees
instead of classification trees to make the final prediction [5].
In this paper, however, our attention is on a broad class of
methods that work in weight-space according to [6]. The most
commonly used example is linear regression. There have been
many works trying to improve this linear model. For example,
Robust Regression[7] was proposed to reduce the effect of
outliers in training data. In this paper we introduce a new struc-
ture which is based on a new set of non-local basis functions
and provides efficient coverage of high-dimensional spaces.
We refer to the proposed structure as Logistic Product Basis

Manuscript received October 16, 2014; revised November 23, 2014; ac-
cepted November 30, 2014. Date of publication December 18, 2014; date of
current version December 23, 2014. This work was supported by NSF Grant
IIS-1149299. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Xiaadong He.
The authors are with the Department of Electrical and Computer Engineering,

University of Utah, Salt Lake City, UT 84112 USA (e-mail: mehdi@sci.utah.
edu; mseyed@sci.utah.edu; tolga@sci.utah.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LSP.2014.2380791

Network (LPBN). We compare LPBNs with state-of-the-art
regression methods such as Random Forests, Support Vector
Regression [8] and RBFs.

II. RELATED WORK

Consider the problem of finding a function
for fitting a set of training data
such that . Let’s specify as a linear combination of
basis functions with the basis

functions that map the data points to the feature space. Thismap-
ping is performed in order to obtain a better representation of
the data and overcome the limited expressiveness of a linear
model. The model is reduced to simple linear regression by set-
ting . are the weights of the linear combination.
There is a broad range of regression models that are based on
this form. Support Vector Regression (SVR) can be considered
as an example of linear methods. In SVR, are determined by
minimizing the -norm of the weight vector . The condition
of this minimization is that the maximum deviation of the pre-
dicted value from shouldn’t exceed which is called
the margin of tolerance[9]. The basis functions or mappings are
implicitly determined by the type of kernel being used. A more
recent approach is the Extreme Learning Machine (ELM)[10]
for regression. Theymap the training data to ELM feature space.
The feature mapping layer in ELM need not be tuned. It is also
possible to use kernels if the mapping function is unknown.
RBF regression is another example of the methods working in
weight-space. The set of basis functions are Gaussians
and their parameters can be obtained by unsupervised clustering
of the data or fitting a Gaussian mixture model to our data using
the EM algorithm [11]. Then, we can obtain the linear weights
using linear regression. It is also possible to learn the RBF pa-

rameters in an unified manner by back-propagation of the error
using chain rule [12]. RBFs are popular for modeling, regres-
sion and interpolation. Therefore, there are many works on im-
provement of the training and performance of thesemodels. One
approach is to use regularization in order to improve the gener-
alization ability of the model and avoid overfitting (e.g. [13]).
However, most regularization schemes are general techniques
and can be applied to many other methods including our pro-
posed structure. It is well known that an RBF network suffers
from the curse of dimensionality [14]. In other words, as the
number of dimensions grow, the number of radial basis func-
tions required grows exponentially. Another work similar to our
approach is Sum-Product Networks (SPN) [15]. SPNs are prob-
abilistic models that provide tractable inferences. SPN is based
on the notion of network polynomial and represents unnormal-
ized probability distributions. This leads to a deep structure with
interleaved layers of sums and products. SPN is similar to our
proposed structure because it uses sum units to mix different
submodels withmixingweights corresponding to . It also uses

1070-9908 © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1012 IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 8, AUGUST 2015

products that combine features of submodels. However, our ap-
proach is different. Our proposed structure is based on a flex-
ible set of basis functions. Unlike SPNs, we use logistic sigmoid
functions before the product layer to approximate half-spaces.
Then, we use products to form basis functions that are convex
polytopes. Sigmoid functions are not present in SPNs but are
crucial components of our approach. These basis functions are
able to provide both local and non-local coverage of high-di-
mensional space which leads to more efficient representation of
data space.

III. METHODS

A. Network Architecture

In our proposed structure, we build the basis functions
by the intersection of half-spaces. is defined
in terms of its indicator function

(1)

where and are the weights and the bias term. Inter-
section of the half-spaces forms a convex polytope that covers
desired parts of a multi-dimensional space. However, unlike
RBFs, this is not necessarily a local coverage and we can cover
the space more efficiently using flexible basis functions.
The indicator functions are binary variables. So, it is possible

to rewrite the intersection of half-spaces as the conjunction of
the indicator functions . Our next step is to find a
differentiable approximation for this general form. We replace
the conjunctions by the product . This product can
be considered as a soft AND gate that implements the conjunc-
tion. can be approximated with logistic sigmoid func-
tions

(2)

We can replace with . Based on our experi-
ments, this replacement does not hurt the performance by over-
fitting. Hence, our basis functions will be in the form

and we can construct the final fitting function as

(3)

This function can be visualized as a network shown in Fig. 1.
We refer to the proposed network architecture as LPBN. In this
structure, is the number of the basis functions which is the
same as the number of soft AND gates and is the number of
the logistic sigmoid functions per basis function. This structure
is referred to as a LPBN.

B. Model Initialization

The specific choice of the basis functions allows for a simple
and intuitive initialization of the weights and biases of the lo-
gistic sigmoid functions. We can partition training data points

into clusters. For the ’th cluster, we let
where are the cluster centroids and . We initialize

the weight vectors as for . Finally, we ini-
tialize the bias terms such that the logistic sigmoid functions

take the value 0.5 at the midpoints of the lines connecting

Fig. 1. LPBN architecture. The first hidden layer is composed of lo-
gistic sigmoid functions. The second hidden layer computes conjunctions
using soft AND gates. The output layer is a linear combination of the soft gates.
The soft AND gates are implemented as continuous functions by product of
their inputs.

Fig. 2. LPBN performance on synthetic data using 3 basis functions:
(a) training data and LPBN predictions, and (b) basis functions after training.

Fig. 3. RBF performance on synthetic data: training data and RBF predictions
with (a) three kernels and (c) ten kernels, and the Gaussian kernels after training
with (b) three kernels and (d) ten kernels.

and . In other words, let where
denotes the inner product of the vectors and . This

procedure initilizes , the ’th basis function, to a convex
polytope that separates the training instances in the ’th cluster
from all other training data. This creates a LPBN.

C. Model Optimization

The LPBN model can be trained by choosing the parameters
that minimize the quadratic error

(4)

SAJJADI et al.: NONLINEAR REGRESSION WITH LOGISTIC PRODUCT BASIS NETWORKS 1013

TABLE I
COLUMN 1: REGRESSION DATASETS, THEIR SOURCE, NUMBER OF TRAINING/TESTING EXAMPLES AND DATA DIMENSIONALITY. COLUMN 2: METHOD OF
REGRESSION. COLUMN 3–6: AVERAGE TRAINING, AVERAGE TESTING OVER 50 ROUNDS, [MIN,MAX] TESTING AND COMPUTATION TIME (SECONDS).
BEST AVERAGE TESTING RESULTS ARE SHOWN IN BOLD. COLUMN 7: MODEL AND CLASSIFIER TRAINING PARAMETERS USED. LPBN: NUMBER OF BASIS
FUNCTIONS AND STEP SIZE. RF: NUMBER OF TREES, NUMBER OF FEATURES CONSIDERED PER NODE AND TRAINING INSTANCE SAMPLING RATE FOR
EACH TREE. -SVR: PENALTY FACTOR, RBF KERNEL WIDTH AND MARGIN OF TOLERANCE. NN: NUMBER OF HIDDEN NODES AND STEP SIZE.

ELM: REGULARIZATION PARAMETER, KERNEL WIDTH AND NUMBER OF BASIS FUNCTIONS.

Starting from initialization described in Section III-B for lo-
gistic functions and random initialization for , we minimize
(4) using gradient descent. In order to get the update equations,
we need to find the partial derivatives of the error with respect
to all the network weights and biases. It is done via chain rule

(5)

Similarly, we obtain the derivative of the error function with
respect to the network biases as

(6)

Partial derivatives with respect to is .

IV. EXPERIMENTS

First, we compare RBF and LPBN using a set of synthetic
1-dimensional data points shown in Figs. 2(a) and 3(a). We

trained both networks with 3 basis functions. Network predic-
tions are shown in the same Figures using solid lines. We can
see that RBF failed to provide a good prediction for this data.
On the other hand, LPBN fits the data efficiently. The basis
functions learned by the networks are shown in Figs. 2(b) and
3(b). We observe that every basis function of the LPBN cor-
responds to a specific part of our data and are not necessarily
local. We repeated the experiment for RBF using 10 basis func-
tions. The network predictions and basis functions are shown
in Figs. 3(c) and 3(d) respectively. We can see that RBF still
doesn’t fit the data very well. Next, we experimented with 8 re-
gression datasets from UCI Machine Learning Repository[16]
and the LIBSVM Tools webpage [17]. We tried to include
datasets with different sizes and dimensions. However, datasets
with too few or extremely high dimensions were excluded. We
also avoided datasets with missing values. Energy Efficiency
dataset has two different targets. We compared LPBN with
Random Forests, -SVR, Neural Networks with one hidden
layer, ELM and RBFs.

A. Dataset Normalization, Training/Testing Set Split

Datasets were normalized as follows: For LPBN, Neural Net-
works, ELM and RBF, all the datasets were normalized by cen-

1014 IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 8, AUGUST 2015

Fig. 4. Coefficients of determination vs degrees of freedom for the LPBN and
RBF models: These graphs compare LPBN and RBF in terms of number of
learning parameters for 4 datasets. Every experiments is repeated 50 times and
the mean of is shown versus the number of free parameters. Variance of the
experiments are shown by error bars. (a) Energy - Heating Load (b) Space GA
(c) Cpusmall (d) MG.

tering each dimension of the feature vector at the origin by sub-
tracting its mean and then scaling by dividing it with its stan-
dard deviation. For -SVR training, each dimension of the fea-
ture vector was linearly scaled to the range [0,1]. For all the
datasets with the exception of MSD, we randomly picked half
of the instances for training and the other half for testing. We
used (10%) of the training data as cross-validation set to find
the optimal training parameters.
Model and Classifier Training Parameter Selection: For

LPBN we need to choose the number of basis functions (),
which is also the number of clusters for initialization process.
For every dataset, we tried different numbers of basis functions
in the range of 2 to 20 in order to find the selection that gives the
best accuracy on the cross-validation set. Similarly, we found
the gradient descent parameters (i.e., step size and number of
training epochs) using the cross-validation set. For Neural Net-
work, the number of hidden nodes and parameters of gradient
descent were found using cross-validation set. We performed
our experiments on Random Forest using the code available in
[18]. For RF training, the first parameter is the number of trees.
We choose a sufficiently large number of trees to ensure that
the out of bag error rate converges. The second parameter is
the number of features that will be considered in every node of
the tree. We tried a range of numbers around the square root of
the number of features [4]. The last parameter is the fraction
of total samples that will be used in the construction of each
tree. We tried 3/4, 2/3, 1/2, 1/3, 1/4 and 1/5 as possible values
for this parameter. For -SVR training, a RBF kernel was used
for all the datasets. The main parameters are of RBF kernel,
penalty coefficient () and [19]. We performed a grid search
to find these parameters using cross-validation set. For the
first 6 datasets, we trained ELMs with Gaussian kernels. We
found the kernel width () and regularization parameter ()
using a grid search similar to -SVR. It was not possible to use
kernel based ELM for the last two datasets because of their
size. So, we used ELMs with Gaussian basis functions. The

main parameters are the number of basis functions () and
regularization parameter (). We obtained these parameters
by performing a grid search on cross-validation set. RBFs
were trained using Netlab [20]. Netlab performs a few steps
of k-means to initialize unsupervised learning of a Gaussian
Mixture Model using Expectation-Maximization (EM) algo-
rithm. The predicted value is calculated by linearly combining
Gaussian kernels. Linear weights are obtained by least squares
fitting. For every dataset, we need to find the number of basis
functions. So, we tried up to 50 basis functions to pick the best
using cross-validation set. We evaluate the regression methods
using coefficient of determination (value). The training and
model parameters selected for all models are listed in Table I.
Results: All of the regression methods we consider, with

the exception of -SVR and ELM with kernels are stochastic.
Therefore, each experiment on the first 6 datasets was repeated
50 times for stochastic methods in order to obtain mean, min-
imum and maximum of on test sets which are reported in
Table I for all the methods. For the last two datasets, it was
not possible to repeat experiments 50 times mainly because
of training times. It was also infeasible to train -SVR on all
training samples of MSD dataset. It can be seen that LPBNs
performed better than other methods in 4 out of 9 regression
problems and performed close to the best on the rest. LPBNs
also outperform RBFs in 8 out of 9 problems.
We also compared LPBN with RBF in terms of number of

learning parameters.We trained various LPBNs with
and RBFs with for the number of basis functions.
For every setting, we repeated the experiments 50 times and
computed the average of the value for the test set for each
model. The results are plotted against the degrees of freedom
(total number of parameters) in Fig. 4 for different datasets.
The variance of different experiments for every model is shown
by error bars. We can see that LPBNs provide better perfor-
mance with fewer degrees of freedom. This is more obvious
when both methods have a small number of learning param-
eters. This is mainly because LPBNs provide non-local basis
functions which provide better coverage of the space compared
to local basis functions of RBFs. LPBNs also offer better cov-
erage in higher dimensions. Consider the results on the last two
datasets in Table I. These datasets are relatively large with high
dimensions. We can see that LPBNs perform better than RBFs
with significantly less basis functions. This is mainly because
RBFs require exponentially more basis functions as the number
of dimensions grow. On the other hand, the basis functions of
LPBNs are non-local which can allow for a more efficient repre-
sentation in higher dimensions. However, it must be noted that
unlike RF, our method is not designed for very high dimensional
data. Finally, we also tried using back-propagation to fine-tune
the RBF networks further [12], but this resulted in only minor
accuracy improvements.

V. CONCLUSION

We introduced LPBN as a general method of regression
and proposed a training algorithm and an effective initial-
ization scheme. The training algorithm learns all the weights
simultaneously. We showed that LPBNs provide competitive
results compared to popular regression methods. Especially,
we showed that LPBNs provide more efficient space coverage
compared to RBFs because of a more flexible set of non-local
basis functions that leads to a feature space that represents the
data distribution very well.

SAJJADI et al.: NONLINEAR REGRESSION WITH LOGISTIC PRODUCT BASIS NETWORKS 1015

REFERENCES

[1] K. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An in-
troduction to kernel-based learning algorithms,” IEEE Trans. Neural
Netw., vol. 12, no. 2, pp. 181–201, 2001.

[2] R. Kohn, M. Smith, and D. Chan, “Nonparametric regression using
linear combinations of basis functions,” Statist. Comput., vol. 11, no.
4, pp. 313–322, 2001.

[3] D. S. Broomhead and D. Lowe, Radial basis functions, multi-variable
functional interpolation and adaptive networks DTIC Document, Tech.
Rep., 1988.

[4] L. Breiman, “Random forests,”Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[5] N. Meinshausen, “Quantile regression forests,” The J. Machine
Learning Research, vol. 7, pp. 983–999, 2006.

[6] C. E. Rasmussen, Gaussian Processes for Machine Learning. Cam-
bridge, MA, USA: MIT Press, 2006.

[7] D. Huang, R. S. Cabral, and F. De la Torre, “Robust regression,” in
Computer Vision–ECCV 2012. Berlin, Germany: Springer, 2012, pp.
616–630.

[8] V. Vapnik, S. E. Golowich, and A. Smola, “Support vector method for
function approximation, regression estimation, and signal processing,”
in Advances in Neural Information Processing Systems 9. Cam-
bridge, MA, USA: MIT Press, 1996, pp. 281–287.

[9] A. J. Smola and B. Schölkopf, “A tutorial on support vector regres-
sion,” Statist. Comput., vol. 14, no. 3, pp. 199–222, 2004.

[10] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning ma-
chine for regression and multiclass classification,” IEEE Trans. Syst,
Man Cybern. B: Cybern., vol. 42, no. 2, pp. 513–529, 2012.

[11] M. J. Orr, “Recent advances in radial basis function networks,” in
Relatório técnico, Centre for Cognitive Science. Edinburgh, U.K.:
Univ. Edinburgh Press, 1999.

[12] F. Schwenker, H. A. Kestler, and G. Palm, “Three learning phases
for radial-basis-function networks,” Neural Netw., vol. 14, no. 4, pp.
439–458, 2001.

[13] C. Bishop, “Improving the generalization properties of radial basis
function neural networks,” Neural Comput., vol. 3, no. 4, pp. 579–588,
1991.

[14] J.-N. Hwang, S.-R. Lay, and A. Lippman, “Nonparametric multi-
variate density estimation: A comparative study,” IEEE Trans. Signal
Process., vol. 42, no. 10, pp. 2795–2810, 1994.

[15] H. Poon and P. Domingos, “Sum-product networks: A new deep archi-
tecture,” in 2011 IEEE Int. Conf. Computer Vision Workshops (ICCV
Workshops), 2011, pp. 689–690.

[16] “UCI machine learning repository,” [Online]. Available: archive.ics.
uci.edu/ml

[17] “Libsvm,” [Online]. Available: www.csie.ntu.edu.tw/cjlin/libsvmtools
[18] “Random forest,” [Online]. Available: code.google.com/p/random-

forest-matlab/
[19] C.-W. Hsu, C.-C. Chang, and C.-J. Lin et al., “A practical guide to

support vector classification,” 2003.
[20] “Netlab neural network software,” [Online]. Available: www.aston.ac.

uk/eas/research/groups/ncrg/resources/netlab

