IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 20, 2023

7506605
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Abstract— This letter proposes multitask learning as a reg-
ularization method for segmentation tasks in seismic images.
We examine application-specific auxiliary tasks, such as the
estimation/detection of horizons, dip angle, and amplitude that
geophysicists consider relevant for identification of channels
(a geological feature), which is currently done through painstak-
ing outlining by qualified experts. We show that multitask
training helps in better generalization on test datasets with very
similar and different structure/statistics. In such settings, we also
show that multitask learning performs better on unseen datasets
relative to the baseline.

Index Terms— Multitask learning, seismic interpretation.

I. INTRODUCTION

EISMIC images are one of the principal ways for visu-
S alizing the crust of the solid Earth, for the identification
of resources. Seismic images show sedimentary, metamorphic,
and igneous rocks depending on the depth.

Seismic images contain different interesting seismic objects
or geobodies such as faults, salt domes, unconformities, chan-
nels, and others. A fault is a fracture or discontinuity in a
volume of rock caused due to plate tectonic forces resulting
in large displacement between the layers. A salt dome is
a dome-like structure formed when evaporite materials such
as salt intrude into the overlying layers. An unconformity
is a surface where part of the section is removed/eroded,
followed by a subsequent deposition (at a later geologic
period). The sections above and below an unconformity are
very different in terms of strata and geometry, and the seismic
reflection at the unconformity is often very strong. Seismic
channels or simply channels are the channels of ancient rivers
observed in the seismic images. They are the cardinal part for
constructing hydrocarbon reservoir [1], fluvial reservoirs [2]
characterization, ancient channel geomorphology [3], and well
control [4], and thus are of immense interest to geologists and
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geophysicists. In this letter, in the interest of brevity, we study
the identification/segmentation of seismic channels because of
both their importance and difficulty in segmentation.

A. Related Work

The boundaries of channels often appear as discontinu-
ities with different seismic attributes, such as sweetness [5],
semblance [6], [7], and coherence [8], [9], [10]. However,
seismic discontinuities are observed for other geobodies, and
complex geologies can result in many false positives for simple
thresholding or detection algorithms [8], [9], [10], [11]. Thus,
researchers have proposed CNNs for channel detection in
seismic images. For instance, Pham et al. [12] were able
to achieve some success for a dataset with narrow channels
using SegNet [13] for segmentation along with Bayesian [14]
SegNet for uncertainty measurement. However, their model
could not distinguish individual channels well, and prediction
uncertainty was high. To address the lack of annotated data
methods in [15] and [16] generate synthetic data. However,
the statistics learned from the synthetic data by deep neural
networks (DNNSs) often differ from real-world data.

B. Generalization and Multitask Learning

The complex image statistics and geometries with relatively
little training data make the channel segmentation task chal-
lenging. Seismic images are expensive, highly variable, and
often proprietary, while interpretation requires significant time
from highly trained experts. Without sufficient labeled training
data, learning-based methods tend to overfit the training data,
resulting in poor generalization.

Multitask learning [17], using self-supervised auxiliary
tasks, is an effective way to incorporate domain knowledge
and unlabeled data into training with limited labels. Self-
supervised tasks can be very generic, such as contrastive loss
functions or image completion [18], [19], or they can be
specific to the application domain, such as the interpretation of
biomedical images. In this letter, we consider the application-
specific multitask learning, similar to [20] and [21], which
proposes self-supervised auxiliary tasks to improve the pri-
mary task, such as the classification of histology images in
[20]. The auxiliary tasks are referred to as self-supervised,
as the labels used in training the auxiliary tasks are produced
by processing input data. In this work, we use analytical
methods (not annotated by humans nor generated using any
automated tool) to produce labels. Cotraining the model to
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solve the auxiliary task along with the primary task provides
a regularization, and thus, we expect it to lead to better
generalization.

The application scenario we consider is the following. There
is a moderately small set of interpreted (segmented) seismic
slices and a large set of unlabeled data, e.g., from various
seismic surveys/volumes for training. A user would like to
adapt/apply the previously trained model to a new survey with
very few labeled examples (e.g., one to five slices) from the
new dataset. Thus, the scenario relates to domain adaptation,
transfer learning, and few-shot learning. Our experiments have
found that conventional domain adaptation techniques (e.g.,
maximum mean discrepancy (MMD) and adversarial adapta-
tion [22]) perform poorly due to the variations between the
datasets and the limited labeled data. Thus, this letter focuses
on developing self-supervised multitask training approaches to
improve generalization.

The contributions of this letter are given below.

1) Defining/proposing domain-specific, self-supervised
auxiliary tasks for regularizing DNNs designed to
segment channels in seismic images.

2) Analysis and demonstration of the efficacy of the pro-
posed multitask learning for segmentation of channels.

3) Exhibition of the effectiveness of multitask learning
in scenarios with limited annotated data to interpret
complex seismic images.

II. AUXILIARY TASKS

Channels in seismic images are typically characterized by
the changes in the properties of horizons, such as termination
and deformation of horizons. In addition, we observe the
variations in amplitude for channels relative to the surrounding
layers. Motivated by such observations and discussions with
domain experts, we devised the following subtasks: horizon
detection to study the irregularity in horizons, dip angle
estimation to capture the structural variations in horizons, and
horizon amplitude estimation to detect channels.

Horizons in seismic images are the visible low- and high-
intensity lines that indicate strong reflections associated with
material boundaries in the geology (e.g., the layer cake asso-
ciated with sedimentary processes). For the self-supervised
approach, we have formulated the horizon label generation
as a high and low ridge detection problem. A ridge in an
image is defined as a local minimum or maximum in a specific
direction [23]. In seismic images, this direction is orthogonal
to the sedimentary layers. Thus, we use a structure tensor (at
a given scale) to find the first-order directional derivatives,
followed by a zero-crossing algorithm to identify loci of
minimum/maximum values along this direction. Additional
parameters, such as smoothing and the threshold for mini-
mum/maximum values and curvature, control the number and
strength of detected horizons. Fig. 1 shows an example of
horizons detected in a seismic image.

The dip angle is the difference in orientation of a vector
relative to the vectors perpendicular to the prevailing set of
horizons (or layer-cake structure). We use the sine of the angle
between the principal eigenvector of the structure tensor (used
in the processing of horizons) and the vertical direction to
measure the dip angle, as shown in the example in Fig. 1.
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Fig. 1.  Examples of seismic image and self-supervised, auxiliary tasks
considered in this work.

The horizon amplitude is the instantaneous amplitude of
the wave packets associated with the reflections in the seismic
images (e.g., the amplitude of horizons). For this, we compute
the signal’s magnitude at all the detected horizons and inter-
polate this value into the entire image using kernel regression.
This is shown in Fig. 1.

III. EXPERIMENTAL SETUP

The data used for this work are a set of volumetric
regions (subvolumes) from the somewhat large Parihaka 3-D
dataset, provided by the New Zealand Crown Minerals [24].
We identified two regions of the volume that contain channel
systems, one shallow (1000 2-D images of size 151 x 1151)
in the survey and one much deeper (1126 2-D slices of size
268 x 923), which have significantly different geometries and
statistics—in the seismic frequencies, the underlying deforma-
tions, and the structure of the channel systems. The channels
were segmented in both the shallow (1000 annotations) and
deep subvolumes (24 out of 1126 slices, spaced throughout
the volume) by a professional seismic interpreter, henceforth
referred to as Parihaka-shallow and Parihaka-deep datasets,
respectively. Annotation of only 24 slices in the Parihaka-
deep dataset presents a practical scenario where we deal with
very few labels from a new survey. Unlike the analysis of
photographic images, seismic interpretation entails a great deal
of subjectivity and variability between interpreters. To address
this, the interpreter focused only on regions of high confidence
for labeling channel and nonchannel areas. This information
is used to produce a mask, referred to herein as a confidence
mask, used in training (for computing loss) and evaluating
models (computing mean intersection over union (mloU)
scores). Fig. 2 shows sections from the Parihaka-shallow and
Parihaka-deep datasets with the corresponding segmentation
and confidence masks.
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(b)

Fig. 2. (top) Seismic image, (middle) channel labels, and (bottom)
confidence mask for the experimental datasets (a) Parihaka-shallow and
(b) Parihaka-deep, toward the end of both the volumes.

Common
Encoder

Decoder

Encoder

Fig. 3. Multitasking architecture using separate decoders for segmentation
and auxiliary tasks with a shared encoder.

A. Computational Approach

1) Architecture: For the neural network, we have used a
U-net architecture [25] as in Fig. 3. It comprises a common
encoder layer followed by one segmentation decoder layer and
an optional decoder layer for each auxiliary task. The details
of the encoder and decoder are reported in Table I, where C64
is a convolution layer producing 64 channels. Convolution
operations within parentheses, such as {C64}, are followed
by the batch normalization (BN) layer and rectified linear unit
(ReLU) activation. We use (3 x 3) convolution filters in all the
layers. The M2 is a 2-D max pool operation with a kernel size
of 2 that reduces the spatial size of the tensor in the encoder.
The TC is a transpose convolution layer in the decoder that
doubles the spatial size of the input tensor and reduces the
channel depth by half. The skip connection concatenates,
CON(N + N), the output of the transpose convolution of the
decoder with the corresponding encoder layer along the feature
map depth (aka channels). The sigmoid activation is applied
on the decoder output, C1 (without activation), for tasks using
the mse loss.

2) Training, Validation, and Testing: The data volume is
split into the training (80%) and validation (20%) volume. For
training, we sample 1000 (64 x 64) patches at random from
the 3-D training volume in each epoch for both the datasets.
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TABLE I

ENCODER AND DECODER ARCHITECTURE USED FOR THE PRIMARY AND
AUXILIARY TASKS. THE ARROWS INDICATE FLOW
OF DATA IN THE MODEL
Decoder (Output)

CoN(64+64) — {2xC64} — Cl1
CON(128+128) — {2xC128} — TC641
CON(256+256) — {2xC256} — TC128%
CON(512+512) — {2xC512} — TC256%

TC5121

Encoder (Input)
[2xC64} — MP2]
{2xC128} — MP2|
{2xC256} — MP2|
{2xC512} — MP2]

{2xC1024} — Decoder

Validation loss is computed using a fixed set of patches that
are extracted from the validation data a priori. We have used
a minibatch size of 64 and trained the models for a maximum
of 100 epochs. We have used standard data augmentation
techniques such as random horizontal flip, random rotation,
random rescaling, and noise, which are applied to members
of a minibatch at random. We have found a learning rate of
0.01 for the stochastic gradient descent (SGD) (with Nesterov
momentum) optimizer to be effective for our experiments.
Training of the model (shown in Fig. 3) for the primary
segmentation task and different multitasks involves updating
the decoder parameters associated with a multitask (regular-
ization strategy) by the corresponding loss. Nevertheless, the
encoder parameters are updated by the combined gradient
from the segmentation loss and different multitask losses. For
testing, the CNN processes whole slices for speed to mimic
practical use cases. Moreover, the patchwise evaluation (used
in patch stitching) did not provide better results during model
evaluation.

3) Loss Function: Segmentation (primary task) and ridge
detection are binary classification tasks, and therefore, we use
weighted binary cross-entropy (BCE with logits) as the loss for
those labels. For nonbinary auxiliary tasks (i.e., dip angle and
amplitude), we have used mse loss. When the segmentation
network is trained in conjunction with the auxiliary tasks,
the auxiliary losses are added to the primary segmentation
loss without any scaling factor. This removes the challenge of
tuning the task-specific weighing factors (hyperparameters).

4) Evaluation Metric: For evaluating relative performance,
we use the Jaccard index or intersection over union (IoU)
as the accuracy measurement. For calculating the IoU score,
we threshold the decoder output at 0.5. This evaluation has
several limitations. The IoU score does change with different
choices of the threshold value, but a complete sensitivity study
of this parameter is beyond the scope of this letter. The IoU
score also penalizes minor differences in boundaries of objects
(especially small objects) that are, in this application, nonexact
by nature. Thus, a good/acceptable model prediction might
have an IoU score of less than 1.0. The ground-truth label is
interpreted with the help of the associated confidence mask.
Therefore, for our work, due to the lack of a better accuracy
measurement, the IoU score serves only as an indicator, and
visual feedback from the expert is considered for holistic
model performance evaluation.

IV. RESULTS

Here, we compare the proposed multitask training with two
baseline approaches: 1) a CNN trained on the Parihaka-shallow
and 2) a CNN cotrained on Parihaka-shallow and a small set
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Fig. 4. Training loss versus epochs show that the network trains well for
segmentation in conjunction with the auxiliary tasks.

Ground truth Input Image

Prediction

Fig. 5. Prediction of horizons by the model on the P-deep test data when
trained on P-shallow and five slices of P-deep.

Input Image

Ground truth
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Fig. 6. Prediction of horizon amplitude by the model on the P-deep test data
when trained on P-shallow and five slices of P-deep.

of labeled Parihaka-deep and then tested on both the shallow
(38 test slices) and deep data (19 test slices). For held-out data,
we always consider slices not adjacent to or near the training
data. For the multitask training on the Parihaka-shallow data,
we observe that the auxiliary tasks (green, red, and magenta
curves in Fig. 4) train well with the primary segmentation task
(blue and orange curves), even without using any task-specific
hyperparameters. Figs. 5 and 6 show the model predictions for
different auxiliary tasks.

Table IT shows the mloU results for both the shallow and
deep test data under various training scenarios. The same test
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+Amplitude  +Horizons

+Dip Angle

Fig. 7. Segmentation results (in red) for different scenarios on the P-shallow
test data when trained on P-shallow only.

Segmentation
+ Amplitude + Horizons Segmentation  Ground truth

+ Dip Angle

Segmentation Segmentation Segmentation
+All

Fig. 8. Segmentation results (in red) on the P-deep test data when trained
on P-shallow and five slices of P-deep.

dataset (for both the volumes) is used to report the mloU
scores. For training only on the shallow data, we see that
the combination of all the multitask regularization achieves
the best performance (highlighted in bold), followed by the
regularization with amplitude (in italics). A similar trend is
observed for Parihaka-shallow data even when it is cotrained
with few slices from the deep data, where the best-performing
method is produced by amplitude (using three slices) and
a combination of all the multitasks (using five slices). For
the datasets considered in this work, horizon amplitude is
observed to be an important regularization strategy, as it
produces the best mloU score even for the Parihaka-deep
data with limited supervision (three and five slices). Other
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TABLE I

MIOU SCORES FOR CHANNEL SEGMENTATION ON THE PARIHAKA-
SHALLOW AND PARIHAKA-DEEP TEST DATA. BEST MIOU SCORES
ARE REPORTED IN BOLD AND THE SECOND BEST IN ITALICS

P-shallow P-deep
= Training Scenario (mlIoU over (mIoU over
§5 g% 38 slices) 19 slices)

IR Segmentation 0.497 0.039
B2~ g + Horizons 0553 0202
EE22 + Amplitude 0.557 0.065
iz + Dip Angle 0532 0222
+ All Aux Tasks 0.572 0.219

5
g c: '0'9) Segmentation 0.339 0.317
o A~ + Horizons 0.412 0.409
g5 £ + Amplitude 0.503 0.431
ERER= + Dip Angle 0.413 0415
E9 3 + All Aux Tasks 0.427 0.327

A O

2

53
g l: 8 Segmentation 0.386 0.475
o B A + Horizons 0.277 0.516
£E2§ + Amplitude 0.316 0.587
5 8& + Dip Angle 0.271 0.420
& g8 + All Aux Tasks 0.478 0.506

regularization methods proved to be effective under different
scenarios, such as the dip angle and horizons producing the
second-best score for the Parihaka-deep data using three and
five slices, respectively. The combination of all the auxiliary
tasks is possibly leading to overregularization for the Parihaka-
deep volume, resulting in low mloU scores for both three and
five slices. Drop in the best mloU scores for the Parihaka-
shallow data when cotrained with Parihaka-deep slices could
be attributed to the difference in structure/statistics between the
volumes that makes the problem harder. Overall improvement
in model performance over the baseline using the proposed
regularization strategies demonstrates the efficacy of the reg-
ularization methods.

The qualitative results also show some improvement from
the multitask regularization. Figs. 7 and 8 show segmentations
on test data (overlaid on the seismic data in red) under various
training scenarios for shallow and deep, respectively. The
training with auxiliary tasks shows fewer mispredictions and
(in most cases) complete identification of channels.

V. CONCLUSION

This letter demonstrates the advantage of application-
specific, self-supervised auxiliary tasks for better generaliza-
tion in the limited training data scenario in seismic image
processing. Under different testing scenarios, some of the
regularization strategies are observed to be more effective than
others, illustrating their advantage based on the statistics of
the seismic features. Among all the proposed regularization
strategies, horizon amplitude has consistently produced better
results, followed by horizons and dip angle. Empirical evalua-
tion of the proposed auxiliary tasks holds strong motivation
for us to devise new self-supervised tasks to improve the
interpretation of seismic data and extend this work to detect
other seismic features and/or geobodies. Moreover, the rich
latent representation built by the encoder using the proposed
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strategy finds potential application in several downstream tasks
with limited supervision, aka few-shot learning.
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