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Abstract

The solution of large-scale combustion problems with codes such as Uintah on modern

computer architectures requires the use of multithreading and GPUs to achieve perfor-

mance. Uintah uses a low-Mach number approximation that requires iteratively solving

a large system of linear equations. The Hypre iterative solver has solved such systems

in a scalable way for Uintah, but the use of OpenMP with Hypre leads to at least 2×

slowdown due to OpenMP overheads. The proposed solution uses the MPI Endpoints

within Hypre, where each team of threads acts as a different MPI rank. This approach

minimizes OpenMP synchronization overhead and performs as fast or (up to 1.44×)

faster than Hypre’s MPI-only version, and allows the rest of Uintah to be optimized

using OpenMP. The profiling of the GPU version of Hypre shows the bottleneck to be

the launch overhead of thousands of micro-kernels. The GPU performance was im-

proved by fusing these micro-kernels and was further optimized by using Cuda-aware

MPI, resulting in an overall speedup of 1.16–1.44× compared to the baseline GPU

implementation.

The above optimization strategies were published in the International Conference

on Computational Science 2020 [1]. This work extends the previously published re-
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search by carrying out the second phase of communication-centered optimizations

in Hypre to improve its scalability on large-scale supercomputers. This includes an

efficient non-blocking inter-thread communication scheme, communication-reducing

patch assignment, and expression of logical communication parallelism to a new ver-

sion of the MPICH library that utilizes the underlying network parallelism [2]. The

above optimizations avoid communication bottlenecks previously observed during strong

scaling and improve performance by up to 2× on 256 nodes of Intel Knight’s Landing

processor.

Keywords: Hypre, MPI EndPoints, Multithreading, Manycore processors, GPUs,

Performance Optimizations

1. Introduction

The asynchronous many task Uintah Computational Framework [3] solves complex

large-scale partial differential equations (PDEs) involved in multi-physics problems

such as combustion and fluid interactions. One of the important tasks in the solution of

many such large scale PDE problems is to solve a system of linear equations. Examples

are the linear solvers used in the solution of low-Mach-number combustion problems

or incompressible flow. Uintah-based simulations of next-generation combustion prob-

lems have been successfully ported to different architectures, including heterogeneous

architectures and, have scaled up to 96k, 262k, and 512k cores on the NSF Stampede,

DOE Titan, and DOE Mira supercomputers respectively [3]. Such simulation employs

the Arches component of Uintah. Arches is a three dimensional, Large Eddy Simula-

tion (LES) code developed at the University of Utah. Arches simulates heat, mass, and

momentum transport in reacting flows by using a low Mach number (Ma < 0.3) vari-

able density formulation [4]. The solution of a pressure projection equation at every

time sub-step is required for the low-Mach-number pressure formulation. This is done

using the Hypre package [4]. Hypre supports different iterative and multigrid methods,

has a long history of scaling well [5, 6] and has successfully weak scaled up to 500k

cores when used with Uintah [7].

While past Uintah simulations were carried out [3] on DOE Mira and Titan sys-
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tems [7], the next-generation of simulations will be run on manycore processors (such

as DOE’s Theta and NSF’s Frontera) and GPU architectures (such as DOE’s Lassen,

Summit, and Aurora). On both classes of machines, the challenge for library software

is then to move away from an MPI-only approach in which one MPI process runs per

core to a more efficient approach in terms of storage and execution models. On many-

core processors, a common approach is to use a combination of MPI and OpenMP to

exploit the massive parallelism. In the case of GPUs, the OpenMP parallel region can

be offloaded to a GPU with CUDA or OpenMP 4.5. It is also possible to use portability

layers such as Kokkos [8] to automate the process of using either OpenMP or CUDA.

The MPI-only configuration for Uintah spawns one single-threaded rank per core and

assigns one patch per rank. In contrast, the Uintah’s Unified Task Scheduler was de-

veloped to leverage multithreading and also to support GPUs [9]. Work is in progress

to implement portable multithreaded Kokkos-OpenMP and Kokkos-CUDA [8] based

schedulers and tasks to make Uintah portable for future heterogeneous architectures.

These new Uintah schedulers are based on teams of threads. Each rank is assigned

multiple patches, which are distributed among thread teams. Teams of threads then

process the patches in parallel (task parallelism) while threads within a team, work on

a single patch (data parallelism). This hybrid design has proven useful on manycore

systems and in conjunction with Kokkos has led to dramatic improvements in perfor-

mance [8].

The challenge of realizing similar performance improvements with Uintah’s use of

Hypre and its Structured Grid Interface (Struct) is addressed in this work, so that Hypre

performs as well (or better) in a threaded environment as in the MPI case. Hypre’s

structured multigrid solver, PFMG [10], is designed to be used with unions of logically

rectangular sub-grids and is a semi-coarsening multigrid method for solving scalar dif-

fusion equations on logically rectangular grids discretized with up to 9-point stencils

in 2D and up to 27-point stencils in 3D. Baker et al. [10] report that various versions

of PFMG are between 2.5–7× faster than the equivalent algebraic multigrid (AMG)

options inside Hypre because they are able to take account of the grid structure. When

Hypre is used with Uintah, the linear solver algorithm uses the Conjugate Gradient

(CG) method with the PFMG preconditioner based upon a Jacobi relaxation method
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inside the structured multigrid approach [4].

The equation (1) that is solved in Uintah is derived from the numerical solution of

the Navier-Stokes equations and is a Poisson equation for the pressure, p, whose solu-

tion requires the use of a solver such as Hypre for large sparse systems of equations.

While the form of (1) is straightforward, a large number of variables, for example,

6.4 billion in [4], represents a challenge that requires large scale parallelism. One key

challenge with Hypre is that only one thread per MPI rank can call Hypre. This forces

Uintah to join all the threads and teams before Hypre can be called, after which the

main thread calls Hypre. Internally Hypre uses all the OpenMP threads to process cells

within a domain, while patches are processed serially. From the experiments reported

here, it is this particular combination that introduces extra overhead and causes the ob-

served performance degradation. Thus, the challenge is to achieve performance with

the multithreaded and GPU versions of Hypre but without degrading the optimized

performance of the rest of the code.

∇2p = ∇ · F+
∂2ρ

∂t2
≡ R (1)

1.1. Enabling Hypre on New Architectures

In moving Hypre to manycore architectures, OpenMP was introduced to support

multithreading [11]. However, in contrast to the results in [11], a dramatic slowdown

of 3–8× was observed when using Hypre with Uintah in an OpenMP multithreaded

environment compared to the MPI-only version. Baker et al. make similar observations

using a test problem with PFMG solver and up to 64 patches per rank. They observe

a slowdown of 8–10× between the MPI-only and MPI+OpenMP versions [6]. The

challenges of OpenMP in Hypre forces Uintah to either single-threaded (MPI-only)

version of Hypre or to use OpenMP with one patch per rank. This defeats the purpose

of using OpenMP.

This work shows that the root cause of the slowdown is the use of OpenMP prag-

mas at the innermost level of the loop structure. However, the straightforward solution

of moving these OpenMP pragmas to a higher loop level does not offer the needed per-

formance. The solution adopted here is to use an alternate threading model using MPI

scalable Endpoints [12, 13] to solve the slowdown problem and to achieve a speedup
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consistent with the results observed by [11, 6]. This approach requires overriding MPI

calls to simulate MPI endpoints behavior. The current MPI standard assigns an MPI

rank to a process, and all threads within a process share the same rank. The proposed

endpoints approach allows assigning an MPI rank to an EndPoint (EP), where an EP

can be a thread, a team of threads, or a process [14]. Thus, each thread (or a team of

threads) attached to an EP acts as an individual MPI rank. There can be multiple EPs

with different MPI ranks within a process, and each endpoint can execute its compu-

tations and independently communicate with other EPs using MPI messages. Addi-

tional optimizations such as vectorization, funneled communication , and a lightweight

threading model further improves the performance. In this extension of prior work,

three communication-centered optimizations are introduced: an efficient inter-thread

communication scheme, communication-reducing patch assignment, and utilization of

network parallelism through a state-of-the-art MPICH library capable of mapping logi-

cally parallel MPI communication to distinct network contexts. The new enhancements

improve the scalability of Hypre and result in an overall speedup of 1.7–2.4× over the

MPI-only version.

In optimizing Hypre performance for GPUs, Hypre 2.15.0 was chosen as a baseline

on Nvidia V100 GPUs, to characterize the performance. Profiling on GPU reveals the

launch overhead of GPU kernels to be the primary bottleneck and occurs because of

launching thousands of micro kernels. The problem is fixed by fusing these micro ker-

nels and using GPU’s constant cache memory. Finally, Hypre is modified to leverage

CUDA-aware MPI on the Lassen cluster which gives an extra 10% improvement.

The main contributions of this work are to:

• Introduce the MPI EP model in Hypre (called Hypre-EP) to avoid the perfor-

mance bottlenecks observed with OpenMP. This can enable better overall per-

formance in the future when running the full simulation using a multithreaded

task scheduler within Uintah AMT.

• Identify the bottlenecks in Hypre-EP and improve its performance and scalability

beyond the MPI-only version by adding new communication-centered optimiza-

tions to get the overall speedup of 1.7–2.4× over the MPI-only version.
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• Optimize the CUDA version of Hypre to improve CPU to GPU speedups ranging

from 2.3× to 4× in the baseline version to the range of 3× to 6× in the optimized

version. This enables large-scale combustion simulations on current and future

GPU based supercomputers.

2. CPU Performance Analysis and Optimizations: Phase I

This section analyzes the performance challenges and current limitations of Hypre

with OpenMP. Then, the MPI EndPoints approach is explained, followed by experi-

mental evaluation on a large-scale system.

2.1. Performance Analysis of OpenMP

To understand the slowdown of Hypre with OpenMP, the PFMG preconditioner and

the PCG solver is profiled with a standalone code that solves a 3D Laplace equation on

a regular mesh, using a 7 point stencil. The solve step is the computational core since

it runs iteratively while the setup is executed only once. This representative example

mimicks the use of Hypre in Uintah where each MPI rank derives its patches (Hypre

boxes) based on its rank and allocated the required data structures accordingly. Each

rank owns a minimum of 4 patches to a maximum of 128 patches where each patch is

initialized by its rank owner. Intel’s Vtune amplifier and gprof are used for profiling

on a KNL node with 64 cores. The MPI Only version executes with 64 ranks (where 1

rank is assigned to each core), and the MPI + OpenMP version runs 1x64, 2x32, 4x16,

8x8, and 16x4 ranks and threads, respectively.

The Struct interface of Hypre is called – first to carry on the setup and then to solve

the equations. The solve step is repeated 10 times to simulate timesteps in Uintah.

Each test problem uses a different combination of domain and patch sizes: a 643 or

1283 domain is used with 43 patches of sizes 163 or 323. A 1283 or 2563 domain is

used with 83 patches of sizes 163 or 323. Multiple combinations of MPI ranks, number

of OpenMP threads per rank, and patches per rank is explored and compared against

the MPI Only version. Each solve step takes about 10 iterations to converge on average.

Two main performance bottlenecks observed during profiling are discussed below:
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(a) Existing Control Flow of Hypre (b) New Control Flow of Hypre

Figure 1: Software Design of Hypre

1. OpenMP synchronization overhead and insufficient work. Figure 1a shows

the code structure of how an application (Uintah) calls Hypre. Uintah spawns

its threads, generates patches, and executes tasks scheduled on these patches.

When Uintah encounters the Hypre task, all threads join and the main thread

calls Hypre. Hypre then spawns its own OpenMP threads and continues. With 4

MPI ranks and 16 OpenMP threads in each, Vtune reports a Hypre solve of 595

seconds. Of this time, the OpenMP overhead accounts for 479 seconds, and spin

time is 12 seconds. The PFMG-CG algorithm calls 1000s of micro-kernels dur-

ing the solve step. Each micro kernel performs operations such as matrix-vector

multiplication, scalar multiplication, relaxation, etc. and uses OpenMP to paral-

lelize over the patch cells. The multi-grid nature of the PFMG algorithm causes

the coarsening of the mesh at every level. The number of cells reduces from n3

to 1 and again increases back to n3 with refining. Such a reduction in the num-

ber of cells makes the kernels extremely lightweight. The light workload is not

enough to offset the overhead of the OpenMP thread barrier at the end of every

parallel for and results in 6× performance degradation. Moreover, the OpenMP

overhead grows with the number of OpenMP threads per rank and patches per

rank. As a result, Hypre does not benefit from multiple threads and cores.
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2. Failure of auto-vectorization. Hypre uses loop iterator macros (e.g., BoxLoop)

which expand into multidimensional for loops. These iterator macros use a dy-

namic stride passed as an argument. Although the dynamic stride is necessary

for some use cases, many use cases have a fixed unique stride. As the compiler

cannot determine the dynamic stride a priori, the loop is not auto-vectorized.

2.2. Restructuring OpenMP Loops and MPI Endpoints

A straightforward solution to the bottlenecks identified above is to parallelize the

outermost loop, namely the loop at the patch level. This approach is evaluated for the

Hypre function hypre PointRelax. Table 1 shows execution times for the MPI

Only, default hybrid MPI + OpenMP (with OpenMP pragmas around cell loops), and

the new hybrid MPI + OpenMP implementations. In the new hybrid MPI + OpenMP

code, parallelization is over mesh patches instead of cells and each thread processes

one or more mesh patches.

Table 1: Comparison of MPI vs. OpenMP execution times using 64 323 mesh patches.

Hypre Configuration
Execution

time (s)

MPI Only 64 ranks 1.45

Default hybrid: 4 ranks each with 16 threads, OpenMP over cells 5.61

New hybrid: 4 ranks each with 16 threads, OpenMP over patches 3.19

MPI Endpoints: 4 ranks each with 4 teams each with 4 threads 1.56

The parallelization over mesh patches improves the performance by 1.75×. Nonethe-

less, this is still 2× slower than the MPI Only version.

Adopting the MPI Endpoints (EP) approach, illustrated in Figure 1b, can bridge

this performance gap. In this new approach, each Uintah’s team of threads acts inde-

pendently as if it is a separate rank and calls Hypre, passing its patches. Each team

processes its patches and communicates with other real and virtual ranks (virtual rank

= real rank × number of teams + team id). MPI wrappers convert virtual ranks to real
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ranks and vice versa during MPI communication. This conversion generates an im-

pression of each team being an MPI rank and the behavior is similar to the MPI Only

implementation. The smaller team size (compared to the entire rank) minimizes over-

head incurred in fork-joins in the existing OpenMP implementation, yet can exploit the

abundant data parallelism available on manycore processors.

Nonetheless, the design and implementation of MPI EP are not without its chal-

lenges which are outlined below.

(a) Race Conditions: All global and static variables are converted to thread local

variables to avoid race conditions.

(b) MPI Conflicts: A potentially challenging problem is to avoid MPI conflicts

due to threads. In Hypre, only the main thread is designed to handle all MPI

communications. With the MPI EP approach, each team makes its MPI calls. As

Hypre already has MPI wrappers in place for all MPI functions, adding logic in

every wrapper function to convert between a virtual rank and a real rank and to

synchronize teams during MPI reductions is sufficient to avoid MPI conflicts.

(c) Locks within MPI: The MPICH implementation which is the base for Intel

MPI and Cray MPI uses global locks. As a result, only one thread can be inside

the MPI library for most of the MPI functions. This can be a limitation for

the new approach as the number of threads per rank is increased. To overcome

this, an extra thread is spawned called the communication thread and all the

communication is funneled through this thread during the solve phase. This

provides minimum thread wait times and results in the highest throughput.

2.3. Optimizations in Hypre: Phase I

The three key optimizations in the proposed approach are:

MPI Endpoint: A dynamic conversion mechanism between the virtual and the real

rank along with encoding of source and destination team ids within the MPI message

tag simulates MPI Endpoint behavior. Also, MPI reduce and probe calls need extra

processing. These changes are described below.
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int g_num_teams;

__thread int tl_team_id;

int hypre_MPI_Comm_rank( MPI_Comm comm, int *rank ){

int mpi_rank, ierr;

ierr = MPI_Comm_rank(comm, &mpi_rank);

*rank = mpi_rank * g_num_teams + tl_team_id;

return ierr;

}

Figure 2: Pseudo code of MPI EP wrapper for MPI Comm rank.

(a) MPI Comm rank: This command is mapped by using the formula above relat-

ing ranks and teams. Figure 2 shows the pseudo-code to convert the real MPI

rank to the virtual MPI EP rank using the formula “mpi rank × g num teams

+ tl team id”. The global variable g num teams and the thread-local variable

tl team id are initialized to the number of teams and the team id. Thus each

endpoint gets an impression of a standalone MPI rank. Similar mapping is used

in the subsequent wrappers.

(b) MPI Send, Isend, Recv, Irecv: The source and destination team ids

are encoded in the tag values. The real rank and the team id are easily computed

from the virtual rank by dividing by the number of teams.

(c) MPI Allreduce: All teams within a rank carry out a local reduction first

and then only the zeroth thread calls the MPI Allreduce collective passing

the locally reduced buffer as an input. Once the MPI Allreduce returns,

all teams copy the data from the globally reduced buffer back to their output

buffers. Thread synchronization is achieved using lock-free busy waiting using

C11 atomic primitives.

(d) MPI Iprobe and Improbe: Each team is assigned a message queue inter-

nally. Whenever a probe is executed by any team, it first checks its internal queue

for the message. If the handle is found, it is retrieved using MPI mecv. If the

handle is not found in the queue, then the Improbe function is issued and if
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the message at the head of the MPI queue is destined for the same team, then

MPI mecv is again issued. If the incoming message is tagged for another team,

then the receiving team inserts the handle in the destination team’s queue. This

method avoids the blocking of MPI queues when the intended recipient of the

MPI queue’s head is busy and does not issue a probe.

(e) MPI GetCount: In this case, the wrapper simply updates source and tag val-

ues.

(f) MPI Waitall: The use of a global lock in MPICH MPI Waitall stalls other

threads and MPI operations do not progress. Hence a MPI Waitall wrapper is

implemented by calling MPI Testtall and busy waiting until MPI Testtall

returns true. This results in 15-20% speedup over threaded MPI Waitall.

Improving auto-vectorization: The loop iterator macros in Hypre operate using dy-

namic stride which prevents the compiler from vectorizing these loops. To overcome

this limitation, additional macros are introduced specifically for the unit stride cases.

The compiler is then able to auto-vectorize some of the loops and results in an addi-

tional 10 to 20% performance improvement depending on the patch size.

Interface for parallel for and lightweight Hierarchical Parallelism: A down-

side of explicitly using OpenMP in Hypre is possible incompatibilities with other

threading models. In the spirit of [8], an interface is introduced that allows users to

pass their version of parallel for as a function pointer during initialization and

this user-defined parallel for is called by simplified BoxLoop macros. Therefore,

Hypre users can implement parallel for in any threading model. The new inter-

face allows a lightweight implementation of a threading model, in which all the threads,

including the worker threads, are spawned at the beginning of the execution. The main

thread of every team acts as an MPI Endpoint, while worker threads do busy waiting

until needed. When the main thread calls a parallel for, it shares the C++11

lambda and iteration count with the worker threads who execute the lambda in parallel.

This approach is similar to OpenMP in principle but uses the atomic primitives and

busy-waiting to achieve lock-free thread synchronization. As a result, the lightweight
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parallel for performs faster than a for loop parallelized using #pragma omp

parallel for, which typically uses pthread-based locks and conditional variables.

Table 2: OpenMP vs. Custom parallel for on KNL: Execution times in seconds

Patch Size 163 323 643

OpenMP 1.1 1.5 3.2

Custom parallel for 0.28 0.56 2.1

MPI Only 0.15 0.5 2.8

Table 2 shows the solve time per timestep in seconds for a problem with 64 patches

of size 643 on a KNL node. The MPI Only version is run using 64 ranks with one

patch per rank. The OpenMP and custom parallel for versions are run using

four ranks with four teams per rank and four worker threads per team. Each team

gets four patches. Each rank spawns an extra communication thread. The only dif-

ference between the two threaded versions is the threading model. The lightweight

parallel for model runs 3.9×, 2.7×, and 1.5× times faster than the OpenMP

version for the patch sizes 163, 323, and 643, respectively. Increasing the patch size

reduces the performance gap between the two versions because the extra workload

compensates for the OpenMP overhead. The lightweight parallel for performs

in a comparable way to the MPI Only version for a 323 patch and results in a speedup

of 2.7× over the OpenMP-based parallel for. The performance improvement

over Hypre MPI Only is due to vectorization and reduced MPI communication. The

customized lightweight parallel for makes these improvements apparent through

lower overheads than the OpenMP-based parallel for.

The main advantage of using Hierarchical Parallelism is to reduce the number

of EPs compared to pure EP based execution where each thread acts as an EP. Re-

ducing the number of EPs reduces MPI communication, both point-to-point (such as

MPI send-receive) and collective communication (such as MPI Allreduce).

MPI EP with hierarchical parallelism can minimize overheads than either using all

threads as EPs, which wastes a lot of time in MPI waitall or using all threads as

worker threads, which causes huge synchronization overheads (as in the default Hypre-
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OpenMP). As a result, the combination of EP and hierarchical parallelism can result in

the best performance.

2.4. Experimental Setup on Theta

Choosing the patch size: Initial experiments using only the Hypre solve compo-

nent on small node counts shows that the performance improves with the patch size.

Table 3 compares both hybrid MPI+OpenMP and MPI EP implementations against the

MPI Only for different patch sizes. MPI+OpenMP always performs slower than the

MPI Only version, although the performance improves marginally as the patch size

increases. On the other hand, the MPI EP model performs nearly as well as the MPI

Only version for 163 and 323 patch sizes on 2 and 4 nodes but breaks down at the end of

scaling. With 643 patches, however, MPI EP performed up to 1.4× faster than the MPI

Only version. As a result, the patch size of 643 is chosen for the scaling experiments on

the representative problem. These results carry across to the larger node counts. Strong

scaling studies with 163 patches show the MPI+OpenMP approach performs 4× to 8×

slower than the MPI Only version. In the case of Hypre-MPI EP, the worst-case slow-

down of 1.8× is observed for 512 nodes and the fastest execution matched the time of

Hypre-MPI Only. This experience together with the results presented above stresses

the importance of using larger patch sizes, 643 and above, to achieve scalability and

performance.

Table 3: Speedups of the MPI+OpenMP and MPI EP versions compared to the MPI Only version for different

patch sizes.

Patch size: 163 323 643

Nodes MPI+ MPI EP MPI+ MPI EP MPI+ MPI EP

OpenMP OpenMP OpenMP

2 0.2 0.9 0.2 1.2 0.5 1.4

4 0.2 0.8 0.2 0.9 0.4 1.4

8 0.2 0.5 0.3 0.6 0.5 1.3

As the process of converting Uintah’s legacy code to Kokkos based portable code

that can use either OpenMP or CUDA is still in progress, not all sections of the code can
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be run efficiently in the multi-threaded environment. Hence a representative problem

containing the two most time-consuming components is chosen for the scaling studies

on DOE Theta. The two main components are: (i) Reverse Monte Carlo Ray Tracing

(RMCRT) that solves for the radiative-flux divergence during combustion [15] and

(ii) pressure solve which uses Hypre. RMCRT has previously been ported to utilize

a multi-threaded approach that performs faster than the MPI Only version and also

reduces memory utilization [16]. The second component, Hypre solver, is optimized

as part of this work for a multi-threaded environment. The combination of these two

components shows the impact of using an efficient implementation of multi-threaded

Hypre code on the overall simulation of combustion.

Three different mesh sizes are chosen for strong scaling experiments on DOE

Theta: small (5123), medium (10243) and large (20483). The coarser mesh for RMCRT

is fixed at 1283. Each node of DOE Theta contains one Intel’s Knights Landing (KNL)

processor with 64 cores per node, 16 GB of the high bandwidth memory (MCDRAM)

and AVX512 vector support. The MCDRAM is configured in a cache-quadrant mode

for the experiments in this paper. Hypre and Uintah are compiled using Intel Paral-

lel Studio 19.0.5.281 with Cray’s MPI wrappers and compiler flags “-std=c++11 -fp-

model precise -g -O2 -xMIC-AVX512 -fPIC”. One MPI process is launched per core

(i.e., 64 ranks per node) while running the MPI Only version. For the MPI+OpenMP

and MPI EP versions, four ranks are launched per node (one per KNL quadrant) with

16 OpenMP threads per rank. The flexibility of choosing team sizes in MPI EP allows

running the multiple combinations of teams × worker threads within a rank: 16×1,

8×2, and 4×4. The best performing combinations among these are selected.

2.5. Results and Evaluation on Theta

Figure 3a shows the execution time per timestep in seconds for the RMCRT com-

ponent on DOE Theta. The multi-threaded execution of RMCRT shows improvements

between 2× to 2.5× over the MPI Only version for the small problem and 1.4× to

1.9× for the medium size problem. Furthermore, the RMCRT speedups increase with

the scaling. This performance boost is due to the all-to-all communication in the RM-

CRT algorithm that is reduced by 16× when using 16 threads per rank. The multi-
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Figure 3: Theta results: The execution time/timestep in seconds for RMCRT, Hypre and total time.

Table 4: Theta results: Communication wait time for MPI EP.

Nodes 2 4 8 16 32 64 128 256 512

MPI Wait 2.4 1.4 1.7 6 3.9 5 11 7.5 6

Solve 24 13 8 32 16 10 36 18 12

% Comm 10% 11% 21% 19% 24% 50% 30% 42% 50%

threaded version also results in up to 4× less memory allocation per node. However,

the RMCRT performance improvements are hidden by the poor performance of Hypre

in the MPI+OpenMP version. Compared to the MPI Only version, a slowdown of

2× is observed in Hypre MPI+OpenMP despite using 643 patches (Figure 3b). The

slowdowns observed are as worse as 8× for smaller patch sizes. Using an optimized

version of Hypre (MPI EP + partial vectorization) not only avoids these slowdowns but

also provides speedups from 1.16-1.44× over the MPI Only solve. The only excep-

tions are 64, 256, and 512 nodes, where there is no extra speedup for Hypre because

the scaling breaks down. Because of the faster computation times (Figure 3b), lesser

time is available for the MPI EP model to effectively hide the communication and also

wait time due to locks within MPI starts dominating. Table 4 shows the percentage

of solve time spent waiting for communication. During the first two steps of scaling,

the communication wait time also scales, but increases during the last step for 8 and

64 nodes. The MPI wait time increases from 24% for 32 nodes to 50% for 64 nodes
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and the communication starts dominating the computation because there is not enough

work per node.

As both components take advantage of the multi-threaded execution, the combina-

tion of the overall simulation leads to the combined performance improvement of up to

2× (Figure 3c). These results show how the phase I optimizations to Hypre attribute to

overall speedups of up to 2×.

3. CPU Performance Analysis and Optimizations: Phase II

This section provides the performance analysis of Hypre after the first phase of

optimizations. The second phase focuses on the communication-centered optimizations

to improve scalability at large node counts based on the lessons learned from Phase I.

3.1. Performance Analysis of Phase II

The Theta results show significant improvements in the performance of Hypre and

the entire application. However, they also reveal new bottlenecks in Hypre-EP and

present opportunities for targeted optimizations to improve performance. Specifically,

Hypre-EP stops strong scaling after 64 nodes while Hypre-MPI Only continues to scale

(see Figure 3b). The primary reason for the scaling breakdown is the dominating com-

munication cost, as seen from Table 4. Half the solve time is spent waiting for the com-

munication to complete on 64 and 512 nodes. Global locks within the MPI libraries

makes MPI THREAD MULTIPLE communication a major bottleneck. To avoid thread

contention on locks in the MPI library, an extra thread is spawned per rank and all

communications are funneled through the communication thread. This method works

faster than MPI THREAD MULTIPLE communication, but it serializes all the message

exchange and hampers overall performance. The root of this problem can be addressed

by an MPI library that does efficient MPI THREAD MULTIPLE communication and

supports MPI Endpoints functionality. Zambre et al. [2] demonstrate the benefits

of utilizing network-level parallelism for MPI+threads applications by extending the

MPICH implementation to use fine-grained critical sections and virtual communica-

tion interfaces (VCIs). VCIs map to the underlying network hardware contexts and
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represent dedicated communication channels that threads can map to using MPI End-

points or existing MPI objects such as communicators and tags. Using VCIs can help

exploit underlying network level parallelism and can potentially address the serializa-

tion problem observed on Theta.

3.2. Optimizations in Hypre: Phase II

Studies show poor network bandwidth utilization when using fewer ranks per node

[17, 18]. Therefore, an application needs to spawn multiple MPI ranks per node to best

utilize the network resources. Mapping multiple threads to multiple VCIs within a rank

can enable running a single rank per node and still efficiently use network resources.

Such a configuration opens up new opportunities for performance optimizations as de-

tailed below.

(a) Non-blocking inter-thread communication. In the funneled communication ap-

proach of Phase I, all send/receive requests for EPs, which does not belong to the

same rank, are pushed into an inter-process communication queue. The communica-

tion queue is monitored by the dedicated communication thread. The communication

thread carries on subsequent communication in the background. After pushing the

external messages to the communication queue, each EP handles inter-thread com-

munication (i.e., communication with the other EPs of the same rank). Each EP first

pushes all the send messages to its inter-thread send queue along with copies of the

send buffers. Creating a copy allows the EP to continue processing as soon as all of its

messages are received without waiting for the send to complete. After queuing all the

sends, EPs busy-wait until all receive messages are placed on the queue by respective

source EPs. However, if the VCIs enable running one rank per KNL node with 64

threads, it is crucial to have efficient inter-thread communication.

A new non-blocking logic, similar to MPI Isend and Irecv, is introduced to enable

efficient inter-thread communication. Each EP simply copies the pointers of send-

receive, source/destination thread ids, message size, and tag to a global data structure

and returns control back to the calling function. Every send / recv call also tries to

progress the communication and copies data from the sender buffer to the receiver

buffer if both the values are available. Finally, when MPI waitall is called, EP
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keeps checking until all inter-threads send-recv calls are completed. The global data

structure allocates different slots to each EP. Every EP writes in its slot only and reads

from other threads’ slots while copying data. The read-write strategy allows the lock-

free implementation of inter-thread communication.

Table 5: Wait time in seconds for blocking and non-blocking inter-thread communication

MPI: MPI Only, B: Blocking, NB: Non-blocking

Patch

size 163 323 643

Threads MPI B NB MPI B NB MPI B NB

16 0.042 0.066 0.01 0.063 0.09 0.01 0.16 0.18 0.05

32 0.055 0.2 0.017 0.08 0.3 0.02 0.16 1 0.047

64 0.062 0.49 0.025 0.09 0.56 0.028 0.29 0.73 0.13

As this optimization aims to improve multi-threading, the experiments are con-

ducted on a single rank without MPI in the mix. Hierarchical parallelism is not used

to avoid synchronization overheads within each team. Each EP thus is a single thread

and not a team of threads. Strong scaling is carried out on a single KNL node for 16,

32, and 64 threads with patch sizes of 163, 323, and 643. The number of patches is set

to 64 - one per core. Table 5 compares the communication times (in seconds) of non-

blocking inter-thread communication with blocking inter-thread communication from

Phase I. The MPI Only implementation is the baseline which spawns 16, 32, and 64

ranks respectively. The measured communication time always increases as the number

of threads increases. Non-blocking communication performs 20× times faster than the

blocking communication for 163 and 323 patches when all 64 threads are spawned.

The speedup reduces to 5.6× for the 643 patch since the memory copy time becomes

significant due to larger data exchanges. The improved communication impact on the

overall solve time is shown in Table 6. The non-blocking code executed 6×, 3×, and

1.3× faster than the blocking version for 163, 323, and 643 patches respectively on 64

threads. As the patch size increases, computation becomes more dominant and results

in lesser speedups. The non-blocking version gave speedups of 1.5×, 1.6×, and 1.5×

over MPI Only code. The speedup over the MPI Only model is because of both vec-

18



torization and reduction in communication wait time.

Table 6: Solve time in seconds for blocking and non-blocking inter-thread communication

MPI: MPI Only, B: Blocking, NB: Non-blocking

Patch

size 163 323 643

Threads MPI B NB MPI B NB MPI B NB

16 0.32 0.47 0.23 1.6 1.8 0.93 10 10 5.3

32 0.22 0.36 0.15 0.87 1.2 0.52 5.2 6.3 2.8

64 0.15 0.62 0.1 0.5 0.95 0.31 2.8 2.4 1.8

(b) Communication-reducing patch assignment. The assignment of a single multi-

threaded rank per node and non-blocking inter-thread communication can reduce MPI

communication. MPI communication can be reduced further by a communication-

aware distribution of patches to ranks. The patch-assignment strategy of Phase I il-

lustrated in Figure 4 divides the total number of patches by the number of ranks and

assigns equal-sized chunks of patches sequentially to ranks. This strategy is similar to

the storage of 3D arrays in sequential memory. In Figure 4, a grid containing 8×8×8

patches (i.e., a total of 512 patches) is divided among eight ranks. Hypre is run with

this configuration on eight KNL nodes with one patch per core. As per the sequen-

tial assignment policy, the rank 0 gets the first 64 patches, rank 1 gets the next 64

patches, and so on. Each rank gets one 8×8 slab of patches. Assuming 64 EPs per

rank, each EP is assigned one patch. Thus, to gather the halo region for the patch, each

EP has to communicate with 26 neighboring patches (ignoring face/corner cases) in a

three-dimensional grid. Now consider any internal patch, which is not on the domain’s

face. The eight patches surrounding the patch in the same slab belong to the same rank

(marked by the same color) and do not require any MPI communication. However,

nine front patches and nine rear patches are assigned to different ranks (indicated by

a different color), and gathering the halo region involves 18×2 (one send and one re-

ceive) = 36 MPI messages. The total number of MPI messages per rank becomes 64

(EPs) × 36 (messages per EP) = 2304. MPI messages from different EPs of the same

rank can not be combined, as this will create a local barrier among threads and thus
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hamper the performance. To avoid such a barrier (and to utilize the network to its full

capacity), each thread needs to send its MPI messages independently.

0 1 6 7 

56 57 62 63 

0 1 6 7 

56 57 62 63 

(b) 3D Blocks (a) Sequential 

Rank 0  Rank 1  Rank 2  Rank 3 Rank 4  Rank 5  Rank 6  Rank 7 

Figure 4: Patch assignment strategies

The number of MPI messages can be reduced by a communication-aware strat-

egy where patches are divided into three-dimensional blocks and assigned to ranks.

Such an assignment reduces the number of patches facing those in another rank, and

MPI communication is replaced with local inter-thread data exchange. Figure 4 (b)

shows the reassignment using 3D blocking. Instead of dividing 512 patches into eight

8×8 slabs, patches are grouped as eight 4×4×4 blocks, and each rank is assigned one

block. Thus each EP gets one patch as before, but now each rank has only 16×3 = 48

patches facing other ranks. The duplicate patches along the edges are not eliminated

because the communication direction is different for different faces. Each patch along

the block’s face only requires 9×2 MPI messages (one send, one receive). All other

communication happens among local threads. Thus the total number of MPI message

per rank is 48×18 = 864, which results in a 2.6× reduction in the number of MPI

messages.

It is straightforward to compute these estimates for the full scale of the Theta su-

percomputer. Assuming one patch per core, the total number of patches required to run

on 4096 nodes is 64×64×64. The sequential patch assignment strategy assigns a strip

of 64 consecutive patches to each rank. Ignoring face and corner cases of the domain,
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each rank generates 24 (only two internal messages) × 64 (patches facing other ranks)

× 2 (send and receive) = 3072 MPI messages per rank. On the other hand, the 3D

blocking patch assignment generates only 9 (other messages will be internal) × 16 ×

6 (patches facing other ranks) × 2 (send and receive) = 1728 MPI messages per rank.

Thus, the 3D block assignment policy can reduce the number of messages by 1.7×.

The new patch assignment with the threaded implementation replaces MPI mes-

sages with more efficient inter-thread data exchange. The new policy can be used

for the MPI Only version to replace inter-node MPI messages with intra-node shared-

memory MPI messages, but it will not reduce the total number of MPI messages. Be-

cause inter-thread communication is more efficient than shared-memory MPI commu-

nication, the new patch assignment is expected to benefit the EP version more than the

MPI Only version.

(c) Exposing logical MPI communication parallelism. MPI libraries have re-

cently made significant strides towards improving the communication performance of

MPI THREAD MULTIPLE to match that of MPI everywhere [19, 20, 2]. A key con-

tributing factor to this improved performance has been the mapping of independent

MPI communication to network-level parallelism available on modern interconnects.

These new libraries, however, are helpless if applications do not distinguish between

operations that are ordered and those that are independent. Hence, to leverage the

high-speed multithreaded communication in these new libraries for Hypre-EP, it is im-

perative to expose the communication independence through MPI.

In Hypre-EP, no ordering constraints apply for operations originating from different

Endpoints, that is, each Endpoint’s communication is logically parallel. A straightfor-

ward way to expose this logical communication parallelism with the MPI Endpoints

proposal is to use a distinct MPI Endpoint for each Hypre EP. The MPI forum, how-

ever, has suspended the MPI Endpoints proposal since existing MPI mechanisms, such

as communicators, tags, and windows, can expose the same amount of parallelism as

MPI Endpoints. In fact, Hypre-EP’s mechanism of encoding the sender and receiver

thread IDs into the MPI tag to distinguish between messages targeting the same MPI

rank can double as logical communication parallelism information. But, using tags is

not sufficient with the existing MPI-3.1 standard because of the possibility of wildcards
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on the receive operations even though Hypre-EP does not use wildcards. The upcom-

ing MPI-4.0 standard, however, introduces new Info hints that allow applications, like

Hypre-EP, to inform the MPI library that it does not use wildcards.

Hypre-EP leveraged the new hints in the draft MPI-4.0 standard

(mpi assert no any source and mpi assert no any tag) which allowed the MPICH

implementation used in this work to utilize the encoded parallelism information in

the tags to map to its multi-VCI infrastructure. Like MPI Endpoints, tags with hints

expose all of the available communication parallelism information. In the near future,

most MPI libraries will be capable of mapping logical communication parallelism to

the underlying network parallelism be it through existing MPI objects or through MPI

Endpoints.

(d) One rank per node. As discussed earlier, VCIs allows efficient use of the net-

work resources even with a single multi-threaded rank per node. As a result, intra-node

MPI communication can be replaced with more efficient inter-thread communication

and can result in a faster runtime. A simple change in the runtime configuration can

allow running one rank per node with all the cores on the node utilized by the rank. The

configuration is not an enhancement by itself, but it maximizes the impact from the pre-

vious optimizations such as inter-thread communication and communication-reducing

patch assignment.

The second impact of using more threads is in the RMCRT component within Uin-

tah. As seen from Phase I results, multi-threaded RMCRT with 16 threads per rank

performs 2× to 4× faster than the MPI Only version. The reduction in the number of

ranks reduces the cost of the all-to-all MPI communication in RMCRT. Multi-threading

can thus provide a higher payoff in RMCRT if the number of threads per rank is set to

64 instead of 16.

(e) Hierarchical parallelism. The final optimization is to enable hierarchical paral-

lelism. As described in Section 2.3c, the combination of EP and hierarchical paral-

lelism can minimize both MPI wait time and the thread synchronization overhead. The

experiments show that the patch size and the team size are directly proportional, i.e., a

smaller team size performs better for a small patch size. As the patch size grows, the

workload of a parallel for increases, and the additional synchronization cost due
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to a larger team size can be justified by improved overall performance. For a 643 patch,

a team size of 4 results in the best performance.

3.3. Experimental Setup on Bebop

The Phase I experiments proved the effectiveness of multi-threaded execution on

the overall simulation by speeding up both RMCRT and Hypre. As the focus of this

work is Hypre, the same experiments with RMCRT are not repeated. Instead, a stan-

dalone mini-app is built, which replicates Uintah’s calls to Hypre and produces the

same output. The mini-app provides greater flexibility for in-depth analysis without

incorporating other Uintah complexities such as task graphs, task schedulers, etc. All

the experiments in Phase II are run using the mini-app.

The multi-VCI effort in MPICH currently only supports the Intel Omni-Path and

Mellanox InfiniBand interconnects. Multi-VCI support for Theta’s Aries interconnect

is in progress. Hence, a new set of experiments is run on Argonne National Labora-

tory’s Bebop cluster which uses the Intel Omni-Path interconnect. Bebop features 352

Intel Xeon Phi 7230 (KNL) nodes with 64 cores and 16 GB MCDRAM per node. These

nodes support AVX512 vector instructions. MCDRAM is set in the cache-quadrant

mode for all the experiments. A customized version of MPICH with fine-grained lock

and VCI support is used to compile the code along with Intel Parallel Studio 18.0.5.

The flags provided for Hypre configuration include: “-std=c++11 -fp-model precise -g

-O2 -xMIC-AVX512 -fPIC -fopenmp”.

Multiple strong scaling runs are carried out to evaluate the performance of the new

communication-centered optimizations for a small problem. Funneled communication

from the Phase I experiments is now disabled because VCIs can efficiently perform

multi-threaded MPI communication. Hierarchical parallelism from Phase I is also dis-

abled initially to correctly measure the impact of using VCIs. Thus the new baseline

is a simple endpoint version with vectorization. Without funneled communication and

hierarchical parallelism, the new baseline is expected to perform slower than both the

MPI Only version and the most optimized version from Phase I. However, the use of

this baseline allows the measurement of the impact of each optimization incrementally.

With this aim in mind, the experiments are carried out using the following levels of
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optimizations from Section 3.2:

• EP Baseline: Basic MPI End Points without funneled communication and hier-

archical parallelism.

• O1: Baseline + Non-blocking inter-thread communication.

• O2: O1 + Communication-reducing patch assignment.

• O3: O2 + VCIs

• O4: O3 + VCIs + one rank per node with 64 threads per rank.

• O5: O4 + Hierarchical parallelism.

The baseline, and the O1, O2, and O3 optimizations are run with four ranks per node,

and 16 EPs per rank. The O4 and O5 optimizations are run using one rank per node

with 64 EPs per rank. The O5 enhancement uses different combinations of the number

of EPs (i.e., thread teams) × the number of threads per team (i.e., team size). The

best performing results are chosen from the various combinations: 64×1, 32×2, and

16×4. The MPI Only version is run with 64 ranks per node (i.e., one rank per core) as

a reference.

The number of patches is chosen such that there will be one patch per core at the

end of strong scaling. Strong scaling is carried out at three different levels:

1. A small problem of size 5123 divided among 512 patches (8×8×8) is run on 2,

4, and 8 nodes to incrementally test the various optimizations.

2. A medium problem consists 10243 cells divided among 4096 patches (16×16×16)

and is executed on 16, 32, and 64 nodes.

3. A large problem consists of 20483 cells decomposed into 32k patches (32×32×32)

and is run on 128 and 256 nodes of Bebop, respectively. Unfortunately, the Be-

bop cluster does not have 512 nodes and the last step in strong scaling cannot be

performed.
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In all the cases, the patch size remains fixed, i.e., 643. Medium and large-scale prob-

lems are run on a larger number of nodes to compare the most optimized EP version

with the MPI Only model. Each problem is run for ten timesteps and for 60 CG-solver

iterations per timestep. The setup time is discarded as it is done only during the zeroth

timestep. Average solve time and communication time from the rest of the timesteps

are measured and presented in the subsequent sections.

3.4. Results and Evaluation on Bebop

Table 7: Solve and communication times in seconds for the small problem with different optimizations.

Solve time Communication time

Nodes MPI EP O1 O2 O3 O4 O5 MPI EP O1 O2 O3 O4 O5

2 39 39 33 29 36 24 24 6.5 20 14 9.2 16 2.4 1.6

4 24 32 21 20 34 14 12 7.4 23 12 10 24 3 1.2

8 17 28 20 16 28 9.7 7 7.1 24 15 12 22 3.5 1.4

MPI: MPI Only, 64 ranks/node; EP: EP baseline, no funneled comm, 4 ranks/node,

16 EPs/rank; O1: EP + Non-blocking inter-thread comm; O2: O1 + Comm reducing

patch assignment; O3: O2 + VCIs; O4: O3 + 1 rank/node, 64 EPs/rank; O5: O4 +

Hierarchical Parallelism: 1 rank/node, 16 EPs per rank, 4 worker threads per EP

Table 7 compares the strong scaling of solve and communication times of the dif-

ferent optimizations for a 5123 problem. The MPI Only version provides a refer-

ence. As expected, turning off funneled communication and hierarchical parallelism

slowed down the Hypre-EP baseline more than Hypre-MPI Only. However, overall

performance improved with each optimization and the final version is faster than the

MPI Only version. Enabling non-blocking inter-thread communication improved EP-

baseline performance by 1.3–1.4×, and EP now runs within +/- 15% of the MPI Only

version. The second optimization–communication-reducing patch assignment–did not

show much impact on two and four nodes but improves performance by 20% on eight

nodes, which makes Hypre-EP perform as fast or even faster than Hypre-MPI Only. In-

troducing VCIs, however, proved to be inefficient. The VCI abstractions in the MPICH
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library are not yet tuned for intra-node shared memory communications, which resulted

in the performance drop shown in the O3 column of Table 7. The situation is remedied

by using a single rank per node, as indicated by column O4, which is the primary goal

in introducing VCIs, and the speedup over the MPI Only version improves by 1.7×

on four and eight nodes. Hierarchical parallelism provides an additional performance

increase as indicated by the column O5 and the final improvement over the MPI Only

version reaches 2× and 2.4× on four and eight nodes, respectively. The Phase I op-

timizations results in 1.3–1.4× speedup for the same setup, which indicates that the

Phase II optimizations further improve performance by 1.7× over Phase I. The main

reason behind this significant improvement is the reduced communication wait time.

The O5 optimization in Table 7 shows up to a 5× reduction in communication wait

time than the MPI Only version. Figure 5 shows strong scaling of Hypre-MPI Only
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and Hypre-EP-O5, the most optimized EP version, up to 64 nodes. The performance

improvement for a 5123 problem on two, four, and eight nodes are 1.6×, 2×, and

2.4×, respectively. The 10243 problem shows improvements of 1.7×, 2×, and 2.1×

on 16, 32, and 64 nodes, respectively. The large problem of size 20483 run on 128 and

256 nodes of Bebop demonstrated improvements of 1.78× and 2×, respectively. The

Phase I experiments are run on Theta and Phase II experiments on the Bebop cluster.

Although both the machines deploy Intel’s KNL processors, the underlying networks

are different. Hence, the results can not be directly compared with each other. There-
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fore, the performance of Hypre-EP over Hypre-MPI Only is compared between Phase

I and Phase II, as shown in Figure 6. Recall that Phase I hits the strong scaling limit at

64 nodes and 256 nodes for the medium and large size problems, respectively, and the

results show no improvements over the MPI Only version. Furthermore, the speedups

during Phase I decreased for the given problem size as strong scaling progressed. Phase

II optimizations address this communication bottleneck and result in faster overall ex-

ecution time and results into speedups up to 2× on 256 nodes. Table 8 compares the

Table 8: Percent communication wait time for MPI EP in Phase I vs. Phase II.

Nodes 2 4 8 16 32 64 128 256

Phase I 10% 11% 21% 19% 24% 50% 30% 42%

Phase II 7% 10% 20% 12% 19% 28% 18% 27%

communication wait times of the experiments in Phase I and Phase II. Phase II shows a

significant reduction in the percentage of time spent in communication wait routines on

16 through 256 nodes. As a result, the speedups over the MPI Only version increases

for a given problem size as the number of nodes increases, which indicates improved

strong scaling.

4. GPU Performance Characterization and Enhancements

While Hypre has had CUDA support from version 2.13.0, version 2.15.0 is used

here to characterize performance, to profile for bottlenecks and to optimize the solver

code. The GPU experiments are carried out on LLNL’s Lassen cluster. Each node is

equipped with two IBM Power9 CPUs with 22 cores each and four Nvidia V100 GPUs.

Hypre and Uintah both were compiled using gcc 4.9.3 and cuda 10.1.243.

4.1. Performance Characterization and Optimizations for GPUs

The initial performance characterization was done on 16 GPUs of Lassen using a

standalone mini-app which called Hypre to solve a simple Laplace equation and run

for 20 iterations. GPU strong scaling is carried out using 16 “super-patches” of vary-

ing sizes 443, 643 and 1283. The observed GPU performance is evaluated against the
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Figure 7: GPU performance variation based on patch size

Table 9: Top five longest running kernels before and after merging

Before merging After Merging

Name Calls Avg Time Name Calls Avg Time

MatVec 3808 29.067us MatVec 3808 29.040us

Relax1 2464 22.453us Relax1 2464 22.463us

Relax0 2352 19.197us Relax0 2352 19.126us

InitComm 20656 1.8650us Axpy 1660 21.484us

FinComm 20688 1.8310us Memcpy-HtoD 12862 2.0750us

corresponding CPU performance, which is obtained using the MPI only CPU version

of Hypre. Thus, corresponding to every GPU, 10 CPU ranks are spawned and super-

patches are decomposed smaller patches into smaller patches to feed each rank, keep-

ing the total amount of work the same. Figure 7 shows the CPU performs 5x faster

than the GPU for patch size 443. Although 643 patches decrease the gap, it takes the

patch size of 1283 for GPU to justify overheads of data transfers and launch overheads

and deliver better performance than CPU. Based on this observation, all further work

as carried out using 1283 patches. HPCToolkit and Nvidia nvprof were used to pro-

file CPU and GPU executions. The sum of all GPU kernel execution time shown by

nvprof was around 500ms, while the total execution time was 1.6 seconds. Thus the

real computation work was only 30% and nearly 70% of the time was spent in the

bottlenecks other than GPU kernels. Hence, tuning individual kernels would not help

as much. This prompted the need for CPU profiling which revealed about 30 to 40%

time consumed in for MPI wait for sparse matrix-vector multiplication and relaxation
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routines. Another 30 to 40% of solve time was spent in the cuda kernel launch over-

head. It should be noted that although the GPU kernels are executed asynchronously,

the launching itself is synchronous. Thus to justify the launching overhead, the kernel

execution time should be at least 10µs - the launch overhead of the kernel on V100

(which was shown in the nvprof output).

Table 9 shows the top five longest running kernels for the solve time of 1283 patches

on 16 GPUs with one patch per GPU. InitComm and FinComm kernels which are used

to pack and unpack MPI buffers are fourth and fifth in the list. The combined timing

of these two kernels can take them to the second position. More interestingly, together

these kernels are called for 41,344 times, but the average execution time per kernel

execution is just 1.8 µs. On the other hand the launch overhead of the kernel on V100

is 10µs (which was revealed in the profile output). Thus the launch overhead of pack-

unpack kernels consumes 0.4 seconds of 1.6 seconds (25%) of total execution time.

The existing implementation iterates over neighboring dependencies and patches

and launches the kernel to copy required cells from the patch into the MPI buffer (or

vice a versa). This results in thousands of kernel launches as shown in Table 9, but the

work per launch remains minimal due to a simple copying of few cells. The problem

can be fixed by fusing such kernel launches - at least for a single communication in-

stance. To remedy the situation, the CPU code first iterates over all the dependencies

to be processed and creates a buffer of source and destination pointers along with in-

dexing information. At the end, all the buffers are copied into GPU’s constant memory

cache and the pack (or unpack) cuda kernel is launched only once instead of launching

it for every dependency. After the fix InitComm and FinComm disappeared from the

top five longest running kernels as shown in Table 9. The combined number of calls for

InitComm and FinComm reduced from 41,344 to 8338. As a result, the communication

routines perform 3x faster than before and the overall speedup in solve time achieved

was around 20%. The modified code adds some overhead due to copying value to the

GPU constant memory, which is reflected Memcpy-HtoD being called 12862 times

compared to 4524 times earlier, but still the new code performs faster.

With the first major bottleneck resolved, the second round of profiling using HPC-

Toolkit showed that the MPI wait time for matrix vector multiplication and for relax-

29



1 2 4 8 16 32 64 12
8
25
6
51
2

0.2

0.4
0.6
1

2

4
6
8

Number of GPUs

S
o
lv
e
T
im

e(
s)

CPU GPU GPU-Opt

Figure 8: Strong Scaling of Solve time

4 8 16 32 64 12
8
25
6
51
2

0.2

0.4

0.6

Number of GPUs

S
o
lv
e
T
im

e(
s)

small medium large

Figure 9: Weak Scaling of Solve time

ation routines was now more than 60%. The problem is partially overcome by using

cuda aware MPI supported on Lassen. The updated code directly passes GPU pointers

to the MPI routines and avoids copying data between host and device. This decreased

the communication wait time to 40 to 50% and resulted in an extra speedup of 10%.

4.2. GPU Experiments on LLNL’s Lassen

The GPU experiments were carried out on LLNL’s Lassen cluster. Each node is

equipped with two IBM Power9 CPUs with 22 cores each and four Nvidia V100 GPUs.

Hypre and Uintah both were compiled using gcc 4.9.3 and cuda 10.1.243 with compiler

flags “-fPIC -O2 -g -std=c++11 –expt-extended-lambda”.

Strong and weak scaling experiments on Lassen were run by calling Hypre from

Uintah (instead of mini-app) and the real equations originating from combustion simu-

lations were passed to generate the solve for the pressure at each mesh cell. Strong scal-

ing experiments were conducted using three different mesh sizes: small (512x256x256),

medium (5123) and large (10243). Each mesh is divided among patches of size 1283 -

such a way that each GPU gets one patch at the end of the strong scaling. CPU scaling

was carried out by assigning one MPI rank to the every available CPU core (40 CPU

cores/node) and by decomposing the mesh into smaller patches to feed each rank.

4.3. GPU Results on Lassen

The strong scaling plot in Figure 8 shows GPU version performs 4x faster than

CPU version in the initial stage of strong scaling when the compute workload per GPU
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is more. As the GPU version performs better than the CPU version, it runs out of

compute work sooner than the CPU version and the scaling breaks down with speedup

reduced to 2.3x. Similarly, the optimized GPU version performs up to 6x faster than the

CPU version (or 1.44x faster than the baseline GPU version) with the heavy workload.

As the strong scaling progresses, the speedup by the optimized version against CPU

reduces to 3x (or 1.26x against baseline GPU version). The communication wait time

of both GPU versions is reduced by 4x to 5x as the number of ranks is reduced by

ten times (not shown for brevity). Thanks to faster computations, the optimized GPU

version spends 15 to 25% more time in waiting for MPI compared to the baseline GPU

version.

The weak scaling was carried out using one 1283 patch per GPU (or distributed

among ten CPU cores) from four GPUs to 512 GPUs. Figure 9 shows good weak

scaling for all three versions. The GPU version shows 2.2x to 2.8x speedup and the

optimized GPU code performs 2.6x to 3.4x better than the CPU version.

Preliminary experiments with the MPI EP model on Lassen showed that the MPI

EP CPU version performed as well as the MPI Only CPU version (not shown in Figure

8 for brevity). Work is in progress to improve GPU utilization by introducing the

MPI EP model for the GPU version and assigning different CUDA streams to different

endpoints which may improve overall performance.

5. Conclusions and Future Work

This paper shows that the MPI-Endpoint approach makes a threaded version of

Hypre up to 2.4x faster than the MPI-only version. One of the bottlenecks for the MPI

EP version was locks within MPI. This problem was resolved using an MPICH imple-

mentation that supports fined-grained locks and allows threads to exploit network level

parallelism using VCIs. It proves the impact of using VCIs on a real-life application

and shows how a combination of a well designed multi-threaded implementation sup-

ported by VCIs can lead to better performance on modern architectures. The overall

performance improvement of 1.7x–2.4x and a communication wait time reduction up

to 5x can prove to be a significant advantage on CPU based supercomputers such as
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Fugaku, and TACC Frontera in the future. Other multi-threaded applications can ben-

efit from the combination of VCIs supported EndPoints and hierarchical parallelism to

achieve overall speedup as demonstrated by Uintah and Hypre on Theta and Bebop.

Similarly, improved GPU speedups can help in gaining overall speedups for other

Hypre-cuda users.

Not only Hypre, but Uintah may also also benefit from VCIs, and it will be excit-

ing to see if VCIs can be used to avoid any communication bottlenecks in Uintah. On

GPUs the current optimized version shows around 40 to 50% time is consumed in wait-

ing for MPI communication during sparse matrix vector multiplication and relaxation

routines. If the computations and communications are overlapped, then a new kernel

needs to be launched to undertake the dependent computations after the communica-

tion is completed. As these kernels do not have enough work to justify the launch,

this resulted into slightly slower overall execution times during the initial experiments

of overlapping communications. Similar behavior was observed by [21]. A possible

solution is to collect kernels as “functors” and to launch a single kernel later, which

calls these functors one after another as a function call. Another option for speeding up

the algorithm is to use communication avoiding approaches e.g., see [22] which uses

a multi-grid preconditioner and spends less than 10% of the solve time in the global

MPI reductions on Summit. As this work here also used a multi-grid preconditioner

[23], similar behavior was observed in our experiments and the global reduction in the

CG algorithm is not a major bottleneck so far. However, these options will be revisited

when applying the code to full scale combustion problems at Exascale.
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