
Improving performance of the Hypre iterative solver for
Uintah combustion codes on manycore architectures

using MPI Endpoints and Kernel Consolidation ?

Damodar Sahasrabudhe� and Martin Berzins

SCI Institute, University of Utah, Salt Lake City, UT, USA
{damodars,mb}@sci.utah.edu

Abstract. The solution of large-scale combustion problems with codes such as
the Arches component of Uintah on next generation computer architectures re-
quires the use of a many and multi-core threaded approach and/or GPUs to achieve
performance. Such codes often use a low-Mach number approximation, that re-
quire the iterative solution of a large system of linear equations at every time step.
While the discretization routines in such a code can be improved by the use of,
say, OpenMP or Cuda Approaches, it is important that the linear solver be able to
perform well too. For Uintah the Hypre iterative solver has proved to solve such
systems in a scalable way. The use of Hypre with OpenMP leads to at least 2x
slowdowns due to OpenMP overheads, however. This behavior is analyzed and a
solution proposed by using the MPI Endpoints approach is implemented within
Hypre, where each team of threads acts as a different MPI rank. This approach
minimized OpenMP synchronization overhead, avoided slowdowns, performed
as fast or (up to 1.5x) faster than Hypre’s MPI only version, and allowed the rest
of Uintah to be optimized using OpenMP. Profiling of the GPU version of Hypre
showed the bottleneck to be the launch overhead of thousands of micro-kernels.
The GPU performance was improved by fusing these micro kernels and was fur-
ther optimized by using Cuda-aware MPI. The overall speedup of 1.26x to 1.44x
was observed compared to the baseline GPU implementation.
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1 Introduction

The asynchronous many task Uintah Computational Framework [4] solves complex
large-scale partial differential equations (pdes) involved in multi physics problems such
as combustion and fluid interactions. One of the important tasks in the solution of many
such large scale pde problems is to solve a system of linear equations. Examples are
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the linear solvers used in the solution of low-Mach-number combustion problems or in-
compressible flow. Uintah-based simulations of next generation combustion problems
have been successfully ported to different architectures, including heterogeneous ar-
chitectures and have scaled up to 96K, 262K, and 512K cores on the NSF Stampede,
DOE Titan, and DOE Mira respectively [4]. Such simulation employs the Arches com-
ponent of Uintah. Arches is a three dimensional, Large Eddy Simulation (LES) code
developed at the University of Utah. Arches is used to simulate heat, mass, and mo-
mentum transport in reacting flows by using a low Mach number (Ma < 0.3) variable
density formulation [15]. The solution of a pressure projection equation at every time
sub-step is required for the low-Mach-number pressure formulation. This is done using
the Hypre package [15]. Hypre supports different iterative and multigrid methods, has a
long history of scaling well [3, 6] and has successfully weak scaled up to 500000 cores
when used with Uintah [12].

While Uintah simulations were carried out [4] on DOE Mira and Titan systems [12],
the next generation of simulations will be run on many core architectures such as DOE’s
Theta, NSFs Frontera, Riken’s Fugaku and on GPU architectures such as DOEs Lassen
Summit, Frontier and Aurora. On both classes of machines, the challenge for library
software is then to move away from an MPI-only approach in which one MPI process
runs per core to a more efficient approach in terms of storage and execution models.
For many cores a common approach is to use a combination of MPI and OpenMP to
achieve this massive parallelism. In the case of GPUs an offload of the OpenMP paral-
lel region to GPU with CUDA or OpenMP 4.5 may be used. It is also possible to use
portability layers such as Kokkos [8] to automate the process of using either OpenMP
or Cuda. The MPI-only configuration for Uintah is to have one single threaded rank per
core and one patch per rank. In contrast, the Uintah’s Unified Task Scheduler was de-
veloped to leverage multi-threading and also to support GPUs [9]. Work is in progress
to implement portable multi-threaded Kokkos - OpenMP and Kokkos - Cuda [8] based
schedulers and tasks to make Uintah portable for future heterogeneous architectures.
These new Uintah schedulers are based on teams of threads. Each rank is assigned with
multiple patches, which are distributed among teams. Teams of threads process patches
in parallel (task parallelism) while threads within a team work on a single patch (data
parallelism). This design has proven useful on many core systems and in conjunction
with Kokkos has led to dramatic improvements in performance [8].

The challenge addressed here is to make sure that similar improvements may be
seen with Uintah’s use of Hypre and its Structured Grid Interface (Struct) at the very
least performs as well in a threaded environment as in the MPI case. Hypre’s structured
multigrid solver, PFMG, [2] is designed to be used with unions of logically rectangular
sub-grids and is a semi-coarsening multigrid method for solving scalar diffusion equa-
tions on logically rectangular grids discretized with up to 9-point stencils in 2D and
up to 27-point stencils in 3D. Baker et al. [2] report that various version of PFMG are
between 2.5 and 7 times faster than the equivalent algebraic multigrid (AMG) options
inside Hypre because they are able to take account of the grid structure. When Hypre is
used with Uintah the linear solver algorithm uses the Conjugate Gradient (CG) method
with the PFMG preconditioner based upon a Jacobi relaxation method inside the struc-
tured multigrid approach [15].
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The equation (1) that is solved in Uintah is derived from the numerical solution of
the Navier-Stokes equations and is a Poisson equation for the pressure, p, whose solu-
tion requires the use of a solver such as Hypre for large sparse systems of equations.
While the form of (1) is straightforward, the large number of variables, for example
6.4 Billion in [15], represents a challenge that requires large scale parallelism. One key
challenge with Hypre is that only one thread per MPI rank can call Hypre. This forces
Uintah to join all the threads and teams before Hypre can be called, after which the
main thread calls Hypre. Internally Hypre uses all the OpenMP threads to process cells
within a domain, while patches are processed serially. From the experiments reported
here, it is this particular combination that introduces extra overhead and causes the ob-
served performance degradation. Thus, the challenge is to achieve performance with
the multi-threaded and GPU versions of Hypre but without degrading the optimized
performance of the rest of the code.

∇2p = ∇ · F+
∂2ρ

∂t2
≡ R (1)

1.1 Moving Hypre to New Architectures

In moving the Hypre to manycore architectures OpenMP was introduced to support
multithreading [7]. However, in contrast to the results in [7], when using Uintah with
Hypre in the case of one MPI process and OpenMP with multiple cores and mesh
patches, a dramatic slowdown of up to 3x to 8x slowdown was experienced when using
Hypre with Uintah as in a multi-threaded environment, as compared to the MPI-only
version. Similar observations were made by Baker using a test problem with PFMG
solver and up to 64 patches per rank and slowdown of 8x to 10x was observed between
the MPI-only and MPI+OpenMP versions [3]. The potential challenges with OpenMP
and Hypre either force Uintah with Hypre to singlethreaded (MPI only) version or use
OpenMP with one patch per rank. This defeats the purpose of using OpenMP.

This work will show that the root cause of the slowdown to be the use of OpenMP
pragmas at the innermost level of the loop structure. However the obvious solution
of moving these OpenMP pragmas to a higher loop level does not seem to offer the
needed performance either. The solution adopted here is to use a variant of an alternate
threading model ”MPI scalable Endpoints” [5, 17] to solve the problem and to achieve
a speedup consistent with the observed results of [3, 7]. The approach described here is
referred to as ”MPI Endpoints”, and abbreviated as MPI Ep, requires overriding MPI
calls to simulate MPI behavior, parallelizing packing and unpacking of MPI buffers.

In optimizing Hypre performance for GPUs, Hypre 2.15.0 was run as a baseline
code on Nvidia V100 GPUs, to characterize performance. Profiling on GPU reveals the
launch overhead of GPU kernels to be the primary bottleneck and occurs because of
launching thousands of “micro” kernels. The problem was fixed by fusing these micro
kernels together and using GPU’s constant cache memory. Finally, Hypre was modified
to leverage Cuda-aware MPI on Lassen cluster which gives extra 10% boost.

The main contributions of this work are: (i) Introduce MPI EP model in Hypre to
avoid slowdowns observed in the OpenMP version, which can achieve faster overall
performance in the future while running the full simulation using multi-threaded task
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scheduler within Uintah AMT. (ii) Optimize the Cuda version of Hypre to improve
CPU to GPU speedups ranging from 2.3x to 4x in the baseline version to the range of
3x to 6x in the optimized version, which can benefit the future large-scale combustion
simulations on GPU based supercomputers.

2 Analysis of and Remedies for OpenMP Slowdown

The slowdown of OpenMP was investigated by profiling of Hypre using the PFMG
preconditioner and the PCG solver with a representative standalone code that solves a
3D Laplace equation on a regular mesh, using a 27 point stencil. Intel’s Vtune amplifier
and gprof were used to profile on a single node KNL with 64 cores. The MPI-Only
version of the code was executed with 64 single threaded ranks and the MPI + OpenMP
version used 1x64, 2x32, 4x16, 8x8 and 16x4 ranks and threads, respectively. The focus
was on the solve step that is run at every time step rather than the setup stage that
is only called once. This example mimicked the use of Hypre in Uintah in that each
MPI rank derived its own patches (Hypre boxes) based on the rank and allocated the
required data structures accordingly. Each rank owned from a minimum of 4 patches to
a maximum of 128 patches and each patch was then initialized by its respective rank.
The Struct interface of Hypre was then called - first to carry on the setup and then to
solve the equations. The solve step was repeated up to 10 times to simulate timesteps
in Uintah by slightly modifying cell values every time. Then each test problem used
different combinations of domain and patch sizes: a 643 or 1283 domain was used with
43 patches of sizes 163 or 323. A 1283 or 2563 domain was used with 83 patches of
sizes 163 or 323. Multiple combinations of MPI ranks, number of OpenMP threads per
rank and patches per rank were tried and compared against the MPI-only version. Each
solve step took about 10 iterations to converge on average.

(a) Existing Control Flow of Hypre (b) New Control Flow of Hypre

Fig. 1: Software Design of Hypre
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The main performance bottlenecks were noted as follows.
(a) OpenMP fork-join overhead. Figure 1a shows the code structure of how an ap-
plication (Uintah) calls Hypre. Uintah spawns its own threads, generates patches, and
executes tasks scheduled on these patches. When Uintah encounters the Hypre task,
all threads join and the main thread calls Hypre. Hypre then spawns its own OpenMP
threads and continues. With 4 MPI ranks and 16 OpenMP threads in each, Vtune shows
that Hypre solve took 595 seconds. Of this time the OpenMP fork-join overhead was
479 seconds and spin time was 12 seconds. The PFMG-CG algorithm calls 1000s of
“micro-kernels” during the solve step. Each micro kernel performs lightweight opera-
tions such matrix vector multiplication, scalar multiplication, relaxation, etc. and uses
OpenMP to parallelize over the patch cells. However, the light workload does not offset
the overhead of the OpenMP thread barrier at the end of every parallel for and results
into 6x performance degradation. As a result, Hypre does not benefit from multiple
threads and cores, with a performance degradation from OpenMP that grows with the
number of: OpenMP threads per rank, patches per rank and points per patch.
(b) Load imbalance due to serial sections. Profiling detected three main serial parts -
namely: 1. Packing and unpacking of buffers before and after MPI communication, 2.
MPI communication and 3. Local data halo exchanges. Furthermore, the main thread
has to do these tasks on behalf of worker threads while in the MPI-only version, each
rank processes its own data and, of course, it does not have to wait for other threads.
(c) Failure of auto-vectorization. Hypre has “loop iterator” macros (e.g. BoxLoop)
which expand into multidimensional for loops. These iterator macros use a dynamic
stride passed as an argument. Although the dynamic stride is needed for some use
cases, many use cases have a fixed unique stride. As the compiler cannot determine
the dynamic stride a priori, the loop is not auto-vectorized.

2.1 Restructuring OpenMP Loops

One obvious solution to the bottlenecks identified above is to place pragmas at the out-
ermost loop possible, namely the loop at “patch” level. This was tested for the Hypre
function hypre PointRelax. Table 1 shows timings for the MPI only version, de-
fault MPI + OpenMP version with OpenMP pragmas around cell loops and the modified
OpenMP version where OpenMP pragmas were moved from cells to mesh patches, thus
assigning one or more mesh patches to every thread. The shifting of OpenMP pragma

Table 1: Comparison of MPI vs OpenMP Execution time(s) using 64 323 Mesh Patches
Hypre Run Time Configuration Runtime (s)
MPI Only 64 ranks 1.45
Default 4 ranks, each with 16 threads, OpenMP on cells loop 5.61
Modified 4 ranks, each with 16 threads, OpenMP on boxes loop 3.19
MPI Endpoints: 4ranks each with 4teams each with 4threads 1.56

gave a performance boost of 1.75x. However this is still 2x slower than the MPI only
version. The final result in Table 1 is for the new approach suggested here that performs
as well as MPI and is now described.

The MPI Endpoints approach adopted to overcome these challenges is shown in
Figure 1b. In this new approach, each Uintah “team of threads” acts: independently as
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int g_num_teams;
__thread int tl_team_id;
int hypre_MPI_Comm_rank( MPI_Comm comm, int *rank ){

int mpi_rank, ierr;
ierr = MPI_Comm_rank(comm, &mpi_rank);

*rank = mpi_rank * g_num_teams + tl_team_id;
return ierr;

}

Fig. 2: Pseudo code of MPI EP wrapper for MPI Comm rank

if it is a separate rank (also known as MPI End Point or EP) and calls Hypre, passing its
own patches. Each team processes its own patches and communicates with other real
and virtual ranks. The mapping between teams and ranks is virtual rank = real rank *
number of teams + team id. MPI wrappers are updated to convert virtual ranks to real
ranks and vice versa during MPI communication. This conversion generates an impres-
sion of each team being an MPI rank and the code behaves as if it is MPI only version.
The smaller team size (compared to the entire rank) minimizes overhead incurred in
fork join in the existing OpenMP implementation, yet can exploit data parallelism.

The design and implementation of this approach posed the following challenges.
(a) Race Conditions: All global and static variables were converted to thread local
variables to avoid race conditions.
(b) MPI Conflicts: A potentially challenging problem was to avoid MPI conflicts due to
threads. In Hypre only the main thread was designed to handle all MPI communications.
With the MPI Endpoints approach, each team is required to make its own MPI calls. As
Hypre already has MPI wrappers in place for all MPI functions, adding some code
in every wrapper function to convert between a virtual rank and a real rank and to
synchronize teams during MPI reductions was enough to avoid MPI conflicts.
(c) Locks within MPI: The MPICH implementation used as a base for Intel MPI and
Cray MPI for the DOE Theta system uses global locks. As a result, only one thread can
be inside the MPI library for most of the MPI functions. This is a potential problem
for the new approach as the number of threads per rank are increased. To overcome the
problem, one extra thread was spawned and all the communication funneled through
the communication thread during the solve phase. This method provides a minimum
thread wait time and gives the best throughput.

2.2 Optimizations in Hypre

The implementation of this approach needed following changes:
(a) MPI Endpoint The approach adopted a dynamic conversion mechanism between
the virtual and the real rank along with encoding of source and destination team ids
within the MPI message tag. Also MPI reduce and probe calls need extra processing.
These changes are now described below.
(i) MPI Comm rank: this command was mapped by using the formula above relating
ranks and teams. Figure 2 shows pseudo code used to convert the real MPI rank to the
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virtual MPI EP rank using formula “mpi rank * g num teams + tl team id”. The global
variable g num teams and the thread local variable tl team id are set to the number of
teams and the team id during initialization. Thus the each end point gets an impression
of a standalone MPI rank. The similar conversion is used in the subsequent wrappers.
(ii) MPI Send, Isend, Recv, Irecv: The source and destination team ids were
encoded in the tag values. The real rank and the team id are easily recalculated from the
virtual rank by dividing by the number of teams.
(iii) MPI Allreduce: All teams within a rank carry out a local reduction first and
then only the zeroth thread calls the real MPI Allreduce and passes the locally re-
duced buffer as an input. Once the real MPI Allreduce returns, all teams copy the
data from the globally reduced buffer back to their own output buffers. C11 atomic op-
erations are used for busy waiting rather than using any locks.
(iv) MPI Iprobe and Improbe: Each team is assigned with a message queue in-
ternally. Whenever a probe is executed by any team, it first checks its internal queue
for the message. If the handle is found, it is retrieved using MPI mecv. If the handle is
not found in the queue, then the real Improbe is issued and if the message at the head
of the MPI queue is destined for the same team, then again MPI mecv is issued. If the
incoming message is tagged for another team, then the receiving team inserts the handle
in the destination team’s queue. The method avoids the blocking of MPI queues when
the intended recipient of the MPI queue’s head is busy and does not issue probe.
(v) MPI GetCount: In this case, the wrapper simply updates source and tag values.
(vi) MPI Waitall: A use of global global locks in MPICH MPI Waitall stalls
other threads and MPI operations do not progress. Hence a MPI Waitallwrapper was
implemented by calling MPI Testtall and busy waiting until MPI Testtall re-
turns true. This method provided about 15-20% speedup over threaded MPI Waitall.
(b) Parallelizing serial code The bottleneck of fork - join was no longer observed after
profiling MPI Endpoints. However, this new approach exposed a load imbalance due
to serial code. The packing and unpacking of MPI buffers and a local data transfer are
executed by the main thread for all the data. Compared to the MPI-only version, the
amount of data per rank is “number of threads” times larger, assuming the same work-
load per core. Thus the serial workload of packing - unpacking for the main thread also
increases by “number of threads” times. The solution was to introduce OpenMP prag-
mas to parallelize the loops associated with these buffers. Thus each buffer could then
be processed independently.
(c) Interface for parallel for: A downside of explicitly using OpenMP in Hypre
is possible incompatibilities with other threading models. in the spirit of [8] an inter-
face was introduced that allows users to pass their own version of “parallel for”
as a function pointer during initialization and this user-supplied parallel for is called by
simplified BoxLoop macros. Users of Hypre can implement parallel for in any
threading model they wish and pass on to Hypre to make flexible.
(d) Improving auto-vectorization: The loop iterator macros in Hypre operate using
dynamic stride which prevents the compiler from vectorizing these loops. To fix the
problem, additional macros were introduced specifically for the unit stride case. The
compiler was then able to auto-vectorize some of the loops and gave additional 10 to
20% performance boost depending on the patch size.
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Fig. 3: GPU performance variation based on patch size

3 GPU Hypre Performance Characterization and Profiling

While Hypre has had CUDA support from version 2.13.0, version 2.15.0 is used here to
characterize performance, to profile for bottlenecks and to optimize the solver code. The
GPU experiments are carried out on LLNL’s Lassen cluster. Each node is equipped with
two IBM Power9 CPUs with 22 cores each and four Nvidia V100 GPUs. Hypre and
Uintah both were compiled using gcc 4.9.3 and cuda 10.1.243. The initial performance
characterization was done on 16 GPUs of Lassen using a standalone mini-app which
called Hypre to solve a simple Laplace equation and run for 20 iterations. GPU strong
scaling is carried out using 16 “super-patches” of varying sizes 443, 643 and 1283. The
observed GPU performance is evaluated against the corresponding CPU performance,
which is obtained using the MPI only CPU version of Hypre. Thus, corresponding to
every GPU, 10 CPU ranks are spawned and super-patches are decomposed smaller
patches into smaller patches to feed each rank, keeping the total amount of work the
same. Figure 3 shows the CPU performs 5x faster than the GPU for patch size 443.
Although 643 patches decrease the gap, it takes the patch size of 1283 for GPU to
justify overheads of data transfers and launch overheads and deliver better performance
than CPU. Based on this observation, all further work as carried out using 1283 patches.
HPCToolkit and Nvidia nvprof were used to profile CPU and GPU executions. The sum

Table 2: Top five longest running kernels before and after merging
Before merging After Merging

Name Calls Tot Time Avg Time Name Calls Tot Time Avg Time
MatVec 3808 110.69ms 29.067us MatVec 3808 110.59ms 29.040us
Relax1 2464 55.326ms 22.453us Relax1 2464 55.350ms 22.463us
Relax0 2352 45.153ms 19.197us Relax0 2352 44.987ms 19.126us
InitComm 20656 38.544ms 1.8650us Axpy 1660 35.664ms 21.484us
FinComm 20688 37.894ms 1.8310us Memcpy-HtoD 12862 26.689ms 2.0750us

of all GPU kernel execution time shown by nvprof was around 500ms, while the total
execution time was 1.6 seconds. Thus the real computation work was only 30% and
nearly 70% of the time was spent in the bottlenecks other than GPU kernels. Hence,
tuning individual kernels would not help as much. This prompted the need for CPU
profiling which revealed about 30 to 40% time consumed in for MPI wait for sparse
matrix-vector multiplication and relaxation routines. Another 30 to 40% of solve time
was spent in the cuda kernel launch overhead. It should be noted that although the GPU
kernels are executed asynchronously, the launching itself is synchronous. Thus to justify
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the launching overhead, the kernel execution time should be at least 10µs - the launch
overhead of the kernel on V100 (which was shown in the nvprof output).

Table 2 shows the top five longest running kernels for the solve time of 1283 patches
on 16 GPUs with one patch per GPU. InitComm and FinComm kernels which are used
to pack and unpack MPI buffers are fourth and fifth in the list. The combined timing
of these two kernels can take them to the second position. More interestingly, together
these kernels are called for 41,344 times, but the average execution time per kernel
execution is just 1.8 µs. On the other hand the launch overhead of the kernel on V100
is 10µs (which was revealed in the profile output). Thus the launch overhead of pack-
unpack kernels consumes 0.4 seconds of 1.6 seconds (25%) of total execution time.

The existing implementation iterates over neighboring dependencies and patches
and launches the kernel to copy required cells from the patch into the MPI buffer (or
vice a versa). This results in thousands of kernel launches as shown in Table 2, but the
work per launch remains minimal due to a simple copying of few cells. The problem can
be fixed by fusing such kernel launches - at least for a single communication instance.
To remedy the situation, the CPU code first iterates over all the dependencies to be
processed and creates a buffer of source and destination pointers along with indexing
information. At the end, all the buffers are copied into GPU’s constant memory cache
and the pack (or unpack) cuda kernel is launched only once instead of launching it
for every dependency. After the fix InitComm and FinComm disappeared from the top
five longest running kernels as shown in Table 2. The combined number of calls for
InitComm and FinComm reduced from 41,344 to 8338. As a result, the communication
routines perform 3x faster than before and the overall speedup in solve time achieved
was around 20%. The modified code adds some overhead due to copying value to the
GPU constant memory, which is reflected Memcpy-HtoD being called 12862 times
compared to 4524 times earlier, but still the new code performs faster.

With the first major bottleneck resolved, the second round of profiling using HPC-
Toolkit showed that the MPI wait time for matrix vector multiplication and for relax-
ation routines was now more than 60%. The problem is partially overcome by using
cuda aware MPI supported on Lassen. The updated code directly passes GPU pointers
to the MPI routines and avoids copying data between host and device. This decreased
the communication wait time to 40 to 50% and resulted in an extra speedup of 10%.

4 Experiments

4.1 CPU (KNL) Experiments

Choosing the patch size: Initial experiments using only the Hypre solve component on
a small node count showed the speedups increase with the patch size. Both MPI+OpenMP
and MPI EP versions were compared against the MPI only version for different patch
sizes. As shown in Table 3, MPI+OpenMP version always performs slower than the MPI
Only version, although the performance improves a little as the patch size is increased.
On the other hand, the MPI EP model performed nearly as well as the MPI Only version
for 163 and 323 patch sizes on 2 and 4 nodes, but broke down at the end of scaling. With
643 patches, however, MPI EP performed up to 1.4x faster than the MPI Only version.
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As a result, the patch size of 643 was chosen for the scaling experiments on the repre-
sentative problem. These results carry across to the larger node counts. Strong scaling
studies with 163 patches show the MPI+OpenMP approach works 4x to 8x slower than
the MPI Only version. In case of Hypre-MPI EP, the worst case slowdown of 1.8x was
experienced for 512 nodes and the fastest execution matched the time of Hypre-MPI
Only. This experience together with the results presented above straces the importance
of using larger patch sizes, 643 and above, to achieve scalability and performance.

Table 3: Speedups of the MPI+OpenMP and MPI EP versions compared to the MPI
Only version for different the patch sizes

Patch size: 163 323 643

Nodes MPI+OpenMP MPI EP MPI+OpenMP MPI EP MPI+OpenMP MPI EP
2 0.2 0.9 0.2 1.2 0.5 1.4
4 0.2 0.8 0.2 0.9 0.4 1.4
8 0.2 0.5 0.3 0.6 0.5 1.3

As the process of converting Uintah’s legacy code to Kokkos based portable code
which can use either OpenMP or cuda is still in progress, not all sections of the code
can be run efficiently in the multi-threaded environment. Hence a representative prob-
lem containing the two most time consuming components was chosen for the scaling
studies on DOE Theta. The two main components are: (i) Reverse Monte Carlo Ray
Tracing (RMCRT) which is used to solve for the radiative-flux divergence during the
combustion [10] and (ii) pressure solve which uses Hypre. RMCRT has previously been
converted to utilize multi-threaded approach that preforms faster than the MPI only ver-
sion and also reduces memory utilization [13]. The second component, Hypre solver,
is optimized as part of this work for a multi-threaded environment. The combination of
these two components shows the impact of using an efficient implementation of multi-
threaded Hypre code on the overall simulation of combustion. Three different mesh
sizes were used for strong scaling experiments on DOE Theta: small (5123), medium
(10243) and large (20483). The coarser mesh for RMCRT was fixed to 1283.

Each node of DOE Theta contains one Intel’s Knights Landing (KNL) proces-
sor with 64 cores per node, 16 GB of the high bandwidth memory (MCDRAM) and
AVX512 vector support. The MCDRAM was configured in cache-quadrant mode for
the experiments. Hypre and Uintah were compiled using Intel Parallel Studio 19.0.5.281
with Cray’s MPI wrappers and compiler flags “-std=c++11 -fp-model precise -g -O2 -
xMIC-AVX512 -fPIC”. One MPI process was launched per core (i.e., 64 ranks per
node) while running the MPI only version. For the MPI+OpenMP and MPI EP version,
four ranks were launched per node (one per KNL quadrant) with 16 OpenMP threads
per rank. The flexibility of choosing team size in MPI EP allowed running the multiple
combinations of teams x worker threads within a rank: 16x1, 8x2 and 4x4. The fastest
results among these combinations were selected.

4.2 GPU Experiments

The GPU experiments were carried out on LLNL’s Lassen cluster. Each node is equipped
with two IBM Power9 CPUs with 22 cores each and four Nvidia V100 GPUs. Hypre
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and Uintah both were compiled using gcc 4.9.3 and cuda 10.1.243 with compiler flags
“-fPIC -O2 -g -std=c++11 –expt-extended-lambda”.

Strong and weak scaling experiments on Lassen were run by calling Hypre from
Uintah (instead of mini-app) and the real equations originating from combustion simu-
lations were passed to generate the solve for the pressure at each mesh cell. Strong scal-
ing experiments were conducted using three different mesh sizes: small (512x256x256),
medium (5123) and large (10243). Each mesh is divided among patches of size 1283 -
such a way that each GPU gets one patch at the end of the strong scaling. CPU scaling
was carried out by assigning one MPI rank to the every available CPU core (40 CPU
cores/node) and by decomposing the mesh into smaller patches to feed each rank.

5 Results

5.1 KNL Results on Theta:

Table 4: Theta results: The execution time per timestep in seconds for RMCRT, Hypre
and total time up to 512 KNLs.

MPI Only MPI+OpenMP MPI EP
Nodes Solve RMCRT Total Solve RMCRT Total Solve RMCRT Total

2 36 35 71 76 17 93 24 16 40
4 18 23 41 38 10 48 13 9 22
8 10 18 28 20 7 27 8 7 15

16 40 34 74 80 25 105 32 24 56
32 20 30 50 41 19 60 16 17 33
64 10 29 39 22 15 37 10 15 25
128 42 74 116 83 23 106 36 21 57
256 19 82 101 44 21 65 18 21 39
512 11 72 83 23 20 43 12 22 34

Table 4 shows the execution time per timestep in seconds for the RMCRT and Hypre
solve components on DOE Theta. The multi-threaded execution of RMCRT shows im-
provements between 2x to 2.5x over the MPI Only version for the small problem and
1.4x to 1.9x for the medium size problem. Furthermore, the RMCRT speedups increase
with the scaling. This performance boost is due to the all to all communication needed
for the RMCRT algorithm is reduced by 16 times when 16 threads are used per rank.
The multi-threaded version also results in up to 4x less memory allocation per node.
However, the RMCRT performance improvements are hidden by poor performance of
Hypre in the MPI+OpenMP version. As compared to the MPI Only version, a slow-
down of 2x can be observed in Hypre MPI+OpenMP in spite of using 643 patches. The
slowdowns observed are as bad as 8x for smaller patch sizes. Using optimized version
of Hypre (MPI EP + partial vectorization) not only avoids these slowdowns, but also
provides speedups from 1.16x to 1.5x over the MPI Only solve. The only exceptions
are 64 nodes and 512 nodes, where there is no extra speedup for Hypre because the
scaling breaks down. Because of the faster computation times (as observed in “Solve
Time” of Table 4), lesser time is available for the MPI EP model to effectively hide the
communication and also wait time due to locks within MPI starts dominating. Table 5
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shows the percentage of solve time spent in waiting for the communication. During first
two steps of scaling, the communication wait time also scales, but increases during the
last step for eight and 64 nodes. The MPI wait time increases from 24% for 32 nodes to

Table 5: Theta results: Communication wait time for MPI EP.
Nodes 2 4 8 16 32 64 128 512
MPI Wait 2.4 1.4 1.7 6 3.9 5 11 6
Solve 24 13 8 32 16 10 36 12
% Comm 10% 11% 21% 19% 24% 50% 30% 50%

50% for 64 nodes and the communication starts dominating the computation because
there is not enough work per node.

As both the components take advantage of the multi-threaded execution, the com-
bination the overall simulation can lead to the combined performance boost of up to 2x
as can be observed in the “Total” column of Table 4. It shows how the changes made to
Hypre attribute to an overall speedups up to 2x.

5.2 GPU Results on Lassen
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Fig. 4: Strong Scaling of Solve time
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Fig. 5: Weak Scaling of Solve time

The strong scaling plot in Figure 4 shows GPU version performs 4x faster than CPU
version in the initial stage of strong scaling when the compute workload per GPU is
more. As the GPU version performs better than the CPU version, it runs out of compute
work sooner than the CPU version and the scaling breaks down with speedup reduced
to 2.3x. Similarly, the optimized GPU version performs up to 6x faster than the CPU
version (or 1.44x faster than the baseline GPU version) with the heavy workload. As the
strong scaling progresses, the speedup by the optimized version against CPU reduces
to 3x (or 1.26x against baseline GPU version). The communication wait time of both
GPU versions is reduced by 4x to 5x as the number of ranks is reduced by ten times (not
shown for brevity). Thanks to faster computations, the optimized GPU version spends
15 to 25% more time in waiting for MPI compared to the baseline GPU version.

The weak scaling was carried out using one 1283 patch per GPU (or distributed
among ten CPU cores) from four GPUs to 512 GPUs. Figure 5 shows good weak scaling
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for all three versions. The GPU version shows 2.2x to 2.8x speedup and the optimized
GPU code performs 2.6x to 3.4x better than the CPU version.

Preliminary experiments with the MPI EP model on Lassen showed that the MPI EP
CPU version performed as well as the MPI Only CPU version (not shown in Figure 4
for brevity). Work is in progress to improve GPU utilization by introducing the MPI EP
model for the GPU version and assigning different CUDA streams to different endpoints
which may improve overall performance.

6 Conclusions and Future Work

In this paper it has been shown that the MPI-Endpoint approach makes a threaded
version of Hypre as fast or faster than the MPI-only version when used with multi-
ple patches and enough workload. Thus other multi threaded applications which use
Hypre could benefit from this approach and achieve overall speedup as demonstrated
on Theta. Similarly, improved GPU speedups can help in gaining overall speedups for
other Hypre-cuda users.

One of the bottlenecks for the MPI EP version was locks within MPI - especially for
smaller patches. This bottleneck can be improved if the lock-free MPI implementations
are available or if the End Point functionality [5] is added into the MPI standard. This
work used MPI EP to reduce the OpenMP synchronization overhead. However, the EP
model can achieve a sweet spot between “one rank per core” and “one rank per node
with all cores using OpenMP” and reduce the communication time up to 3x with the
minimal OpenMP overhead, which can lead to better strong scaling as shown in [16].

On GPUs the current optimized version shows around 40 to 50% time consumed
in waiting for MPI communication during sparse matrix vector multiplication and re-
laxation routines. If the computations and communications are overlapped, then a new
kernel needs to be launched for the dependent computations after the communication is
completed. As these kernels do not have enough work to justify the launch it resulted
into slightly slower overall execution times during the initial experiments of overlapping
communications. Similar behavior was observed by [1]. A possible solution is to collect
kernels as “functors” and to launch a single kernel later, which calls these functors one
after another as a function call. This is the work in progress, as is the application of the
code to full-scale combustion problems. Another option for speeding up the algorithm
is to use communication avoiding approaches e.g., see [11] which uses a multi-grid pre-
conditioner and spends less than 10% of the solve time in the global MPI reductions on
Summit. As this work here also used a multi-grid preconditioner [14], similar behavior
was observed in our experiments and the global reduction in the CG algorithm is not
a major bottleneck so far. However, these options will be revisited when applying the
code to full scale combustion problems at Exascale.
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