
Received ; Revised ; Accepted

DOI: xxx/xxxx

Node Failure Resiliency for Uintah Without Checkpointing

Damodar Sahasrabudhe* | Martin Berzins | John Schmidt

1Scientific Computing and Imaging Institute,
University of Utah, Salt Lake City, Utah, USA

Correspondence
*Damodar Sahasrabudhe

Email: damodars@sci.utah.edu

Present Address
Scientific Computing and Imaging Institute

University of Utah

72 Central Campus Dr

Salt Lake City, UT 84112

Summary

The frequency of failures in upcoming exascale supercomputers may well be greater than at present

due to many-core architectures if component failure rates remain unchanged. This potential increase in

failure frequency coupled with I/O challenges at exascale may prove problematic for current resiliency

approaches such as checkpoint restarting, although the use of fast intermediate memory may help.

Algorithm-Based Fault Tolerance (ABFT) using Adaptive Mesh Refinement (AMR) is one resiliency

approach used to address these challenges. For adaptive mesh codes, a coarse mesh version of the solu-

tion may be used to restore the fine mesh solution. This paper addresses the implementation of the

ABFT approach within the Uintah software framework: both at a software level within Uintah and in the

data reconstruction method used for the recovery of lost data. This method has two problems: inaccu-

racies introduced during the reconstruction propagate forward in time, and the physical consistency of

variables such as positivity or boundedness may be violated during interpolation. These challenges can

be addressed by the combination of two techniques: 1. a fault-tolerant MPI implementation to recover

from runtime node failures, and 2. high-order interpolation schemes to preserve the physical solution

and reconstruct lost data. The approach considered here uses a "Limited Essentially Non-Oscillatory"

(LENO) scheme along with AMR to rebuild the lost data without checkpointing using Uintah. Experi-

ments were carried out using a fault-tolerant MPI - ULFM to recover from runtime failure, and LENO to

recover data on patches belonging to failed ranks, while the simulation was continued to the end. Results

show that this ABFT approach is up to 10x faster than the traditional checkpointing method. The new

interpolation approach is more accurate than linear interpolation and not subject to the overshoots found

in other interpolation methods.

KEYWORDS:

Resilience, MPI fault tolerance, interpolation, checkpointing, parallel computing, Uintah

1 INTRODUCTION

The move to a new generation of supercomputers with peak performance at exascale over the next five years or so
presents significant challenges. One of the options to reach exascale within the expected power budget is to increase
thenumber of cores in present leading architectures from10million to100million. Chips are expected to contain 100x
more processing elements than those currently used, which may increase the processing components from approxi-
mately 500,000 in today’s systems to a substantial fraction of one billion by 202X (1). At present, exascale systems
running millions of cores are expected to experience numerous faults every day. This potential challenge has spurred
research in the areaof resiliency. For example, (2, 3) describe someapproaches to resiliencybasedon the typesof prob-
lems that occur. These problems may be categorized as soft failures due to bit flips or hard failures due to core, node
or communications failures. At the same time, it is not clearwhether research in computer architecture can reduce the

0Abbreviations:AMR, AdaptiveMesh Refinement; LENO, limited ENO; ULFM, User Level FailureMitigation

2 Sahasrabudhe ET AL.

number of failures. In any case, with the potential for increased failure due to faults, a development path is needed to
handle any potential resilience issues. The exascale committee report predicts that the time required for an automatic
or the application-level checkpoint/restart will exceed themean time to failure (MTTF) of a full system (1). As a result,
the traditional recovery technique of checkpointing and recomputing from the last checkpoint may prove problematic
in the development of exascale computing in the near future.
This challengemakesAlgorithm-Based Fault Tolerance (ABFT) amore attractive option.WithABFT, data lost during

failure can be reconstructed at runtime, because programmers are aware of the algorithms and functionality of the
particular problem being solved. Since recovery occurs at runtime without using checkpointing (and hence without
disk access), ABFT has the potential to be faster than traditional checkpoint/recovery.
Uintah (4, 5) is an open-source asynchronous many-task software framework. It can be used to generate solutions

of partial differential equations (PDEs), and tomodel complexmulti-physics andmulti-scale problems
in three space dimensions and a time dimension. Uintah has demonstrated excellent strong scaling up to 786K cores

on supercomputers, including NSF Stampede, DOE Titan and DOEMIRA (6, 7, 8). Applications built using Uintah have
been able to scale on CPUs, GPUs and Intel’s Knights Landing architectures (9). Uintah’s task-based approach allows
users to write simulation components to solve a particular problem and hides communications, scheduling, load bal-
ancing, etc. from users by executing tasks through a runtime system. Based on the earlier observations, a different
resilience mechanism might be needed to run Uintah at exascale. This work intends to explore an ABFT resiliency
approach for Uintah by addressing the future work challenge posed by Dubey (10): using lower fidelity solutions on
surviving compute nodes to rebuild a solution for failed nodes.
Uintah supports Adaptive Mesh Refinement (AMR) and provides built-in tasks for coarsening/refining patches as

required by ABFT. In introducing resiliency to Uintah, this workmakes the following contributions:
• AnABFT solution for Uintah is constructed in which:

– Node failures are detected using User-Level Failure Mitigation (ULFM)(11). ULFM is a modified version of
OpenMPI that supports failure detection.

– Surviving ranks are brought back to a stable state, and tasks from lost ranks are redistributed to surviving
ranks.

– Lost patches are recovered using interpolation, and the normal execution of Uintah is continued.
• This ABFT solution is shown to perform faster than the traditional checkpointingmethod.
• An accurate physics-constrained interpolation for recovery is used to reconstruct the solution. Evidence going
back to (12) suggests that for problems involving integration forward in time, new values should be calculated
with sufficient accuracy such that interpolation errors do not pollute the remainder of the time integration. The
approach taken here is to extend Dubey’s work on recovering from node failure by using a simple form of the
limited ENO interpolation (LENO) scheme suggested by Berzins (13) that preserves the positivity and bounded-
ness of the solution. This preservation of the physical bounds on the solution values is important inmany real-life
engineering applications, such as combustion (14) andweather forecasting (15).

• Anovel advection-reaction type problem is developed and used in one- and three-dimensional cases to show the
importance of using interpolation that respects physical bounds on the solution. A three-dimensional version of
Burgers’ equation is used to show the need for high-accuracy interpolation.

2 RELATED WORK

Research has increasingly focused on the area of resiliency to meet the exascale challenge. Faults can be handled
at a system level through either Hardware-Based Fault Tolerance (HBFT) or through Systems software-Based Fault
Tolerance (SBFT) independent of applications (16).
Early works regarding fault tolerance, including dynamic MPI programs with checkpointing and resilient versions

of MPI, are described in (17, 18) with a relatively recent summary found in (19, 20). Cappello (21) has summarized
recentdevelopments in resiliency that targets exascale. Somekey checkpointing approaches includeBLCRcheckpoint-
ing (22), adaptive checkpointing (23), hybrid checkpointing (24), data aggregation (25), and incremental checkpointing
(26). Hussain (27) carried out a theoretical study explaining how non-identical failure distribution among nodes can
help in achieving different levels of replication and deliver faster performance.

Sahasrabudhe ET AL. 3

Checkpointing and restarting are widely used but are inherently time-consuming. Dauwe (2) analyzes different
resiliency techniques such as rollback recovery with checkpointing and restarting, or non-blocking multiple levels of
checkpointing (28), message logging and full or partial redundancy, along with their performance characteristics.

2.1 Algorithm-Based Fault Tolerance

Algorithm-Based Fault Tolerance (ABFT) (16, 29) uses application-specific algorithms to construct more efficient
resilience techniques. Several ABFT techniques have been developed for different algorithms, e.g., ABFT for matrix-
matrix multiplications-based programs (30, 31), which have been further extended to linear algebra routines/bench-
marks (32, 33). The GVR library (34, 35) can maintain and present a global view of distributed arrays along with
versioning of these arrays. GVR provides programmers with the capability to implement ABFT by accessing remote
coarsemesh data structures. Depending on the algorithm and the level of its failure, an appropriate version of an array
can be retrieved from GVR to implement the desired recovery routine (29, 36). Dubey handles soft failures such as
errors due to bit flips at different levels, such as cell or box level, using ABFT (10, 36). She describes two approaches
to handle hard failures such as core or node failure - one based on ABFT and the other on retrievingmissing data from
GVR - but she chooses the latter (10, 36). The solution adopted here is the less expensive but more complex approach
that Dubey (10) described in which the solution is reconstructed on the missing mesh patches due to a node failure.
The accuracy of the datamust be ensuredwhile rebuilding the solution on finemesh patches using coarse data values.
Such issues arise even in standardAMR calculations (12) but are not often referenced. Rebuilding finemesh data using
coarse mesh data may result in reduced accuracy on the fine mesh patch that persists as the solution evolves. The use
of high-order interpolation schemes to regenerate this data helps address the accuracy issue. These schemes, however,
may violate important physical properties of the solution, such as the need for positivity, and may introduce spurious
maxima "overshoots" or spuriousminima "undershoots". For this reason, it is important to consider using interpolation
approaches that respect any underlying desired physical bounds on the solution.

2.2 Fault Detection Mechanisms for a Node Failure

The ABFT approach is feasible only if a reliable fault detection mechanism exists. Many research codes are available,
but, to the best of the authors’ knowledge, only two proposed/experimental standards are in place:
• Fault TolerantMPI (FT-MPI) (37)
• User Level FailureMitigation (ULFM) (11)

Both FT MPI and ULFM provide user-level APIs that can be called from a custom error handler. These APIs can be
used to detect failed ranks and form a consistent view of the MPI world across all surviving ranks. Both approaches
can detect and possibly recover up to n-1 failed processes out of n processes. In both standards, the responsibility for
recovery rests with application developers.
Many studies over the last several years have attempted to address resilience. An early examplewas the novel archi-

tecture of Starfish (17) thatwas based on combining group communications technology and checkpointing. Varma (38)
developed a protocol to detect node failures and create a consistent view of active nodes among MPI ranks. Morris
et al. (39) implemented a fault-tolerant ULFM and ABFT-based PDE solver. However, they used a server-client model
in which servers, immune to failure, maintain the “state” of the system and hand over computational tasks to clients,
whichare allowed to fail. This designensures that a client node failurehampersonlydata andnot the state, but restricts
failure to only parts of the algorithm that are executed on the client nodes. Uintah, on the other hand, does not use
a server-client model. Each rank maintains its own state and can fail at any given time. Hence, a resilient version of
Uintah needs to recreate tasks and rebuild patches belonging to "lost" ranks.

3 UINTAH FRAMEWORK

Uintah (4, 5) is an open-source asynchronousmassively parallel many-task software framework. It can be used to gen-
erate solutions of partial differential equations (PDEs) and to model complex multi-physics and multi-scale problems.
Uintah has demonstrated excellent strong scaling up to 786K cores on supercomputers, includingNSFStampede,DOE
Titan and DOE MIRA (6, 7, 8). Applications using Uintah have been able to scale on CPUs, GPUs, and Intel’s Knights
Landing architectures (9). Uintah allows users to write simulation components in the form of multiple tasks with data

4 Sahasrabudhe ET AL.

dependencies. Uintah compiles tasks into a directed acyclic graph (DAG) with edges serving as dependencies. Tasks
are executed as dependencies are satisfied, which keeps communications, scheduling, load balancing, etc. hidden from
users.
Uintah computes solutions of PDEs with a variety of timestepping methods, such as the Forward Euler method. For

every vertex of every cell, Uintah calculates the solution at the next timestep:
u(t +∆t) = u(t)+∆t.F(u(t))

where u(t +∆t) is the value after time∆t andF(u(t)) defines the time derivative of u(t). More information aboutUintah
can be found in references (4, 5, 7).
The most important feature of Uintah for this work is the support for Adaptive Mesh Refinement (AMR), as

described in detail in (40). Uintah employs a grid of cubic mesh cells grouped into patches. The grid can be divided into
"levels" of patches. With each level, patches can be refined to a higher resolution or can be coarsened back to a lower
resolution. The refinement ratio can be specified for each level to make the transition from fine to coarse patches (or
vice versa). Uintah provides the capability to use a fine mesh locally on a node and replicate coarse patches on other
nodes to reduce the communication overhead (7).

4 IMPLEMENTATION OF RESILIENCE IN UINTAH

This implementation of resilience in Uintah introduces a systematic way to detect and handle failures, as shown in
Figure 1 and Algorithm 1. Statements highlighted in Algorithm 1 indicate the changes that were made to achieve
resiliency. The algorithmalso provides a short descriptionof existing steps for task graph compilation, dependency cre-
ation, automatedMPImessage generation, load balancing, task scheduling, execution, etc.More details on the existing
task execution model of Uintah can be found in references (4, 5, 7). ULFMwas chosen as the resilient MPI implemen-

FIGURE1: Node failures and patch recovery forMPI ranks R0, R1, R2 andR3, with fine patches F0, F1, F2 and F3 and coarse patches C0, C1, C2 and
C3.

tation because of two important features: ULFM provides an abstraction to "revoke" MPI calls, and it can be used by
surviving processes to revoke any pending calls made to the failed rank. Revoking pending MPI calls avoids the dead-
lock of processes that are waiting on the failed rank. ULFM also provides another abstraction to "shrink" the global
communication handle. This abstraction removes failed ranks from the set of active ranks and returns a new global
communication handle containing surviving processes that can be used for recovery and post-crash execution.
The following steps illustrate the resiliency process:
• Patch Coarsening: A new task to generate coarse patches is created and scheduled. This task utilizes the exist-
ing AMR capabilities of Uintah with a refinement ratio of 1:2. Thus, for every eight cells of a fine patch in three
dimensions, there is one cell on a coarse patch. The refinement ratio can be changed depending on accuracy and
performance requirements; however, both coarsening and interpolation tasks should use the same ratio. At the
moment, coarsening is done by simply discarding alternate values in all three dimensions. For the coarsening

Sahasrabudhe ET AL. 5

Algorithm 1Resilient Uintah Algorithm:
1: InitializeMPI world. Set error handler to static ErrorHandler method in new class Resiliency.
2: Read input file (.ups file) to get the problem specification.
3: Create instances of the Scheduler, Load Balancer, Data Archiver and execution component depending on input file and call the Simulation
Controller.

4: Create an instance of Resiliency class, and save pointers to Processor Group (which holds information about MPI world), Simulation
Controller, Scheduler, Load Balancer, Data Archiver and execution component to the Resiliency instance.

5: Create new tasks: 1. to coarsen patches with a dependency on timeAdvance task. 2. A dummy taskwith a dependency on coarsen task.
6: Call "schedule initialize" and "schedule timestep"methods of the components provided by users of Uintah. Thesemethods create and add tasks
to the Scheduler instance.

7: Create Task Graphs (DAG) for all the tasks and their dependencies.
8: Determine neighborhood processors.
9: Addextra tasks to senddata todependent processes.Create extra tasks for neighboringprocessors. These tasks arenot executedon the current
processor but are used for creating dependencies.

10: Assign processing resources for each task.
11: Call EXECUTE()
12: FinalizeMPI.
13:
14: procedure EXECUTE
15: for i = 1 to number of timesteps do
16: Advance DataWarehouse from previous timestep to current timestep.
17: for every task in task graph do
18: PostMPI Receivemessages for dependencies.
19: Execute the task (i.e., the function pointer provided by the users in Scheduler timestep function)
20: PostMPI Sendmessages for dependencies.
21: end for
22: end for
23: end procedure
24:
25: procedure ERRORHANDLER
26: Use ULFMAPIsMPIX_Comm_failure_ack, MPIX_Comm_agree, andMPIX_Comm_failure_get_acked to find out failed ranks, and create a

consistent picture of failed ranks globally.
27: Call ULFMAPIMPIX_Comm_shrink to get new globalMPI communicator handle, which excludes failed ranks.
28: Set newRank = oldRank
29: for every failed rank do
30: newRank = newRank> failedRank ? newRank-1 : newRank
31: end for
32: Call MPI_Comm_split to assign ranks as per newRank.
33: Update comm instances stored in class ProcessorGroup and add error handler for new communicator.
34: Clear existing communication queues.
35: Reassign ’execution rank’ to patches using same logic of newRank.
36: for every task graph do
37: Call load balancermethod to recreate neighborhood, because updating ranks and ’patch execution ranks’ changes neighbors.
38: Reassign task resources as per patches.
39: Clear dependencies of every taskwithin a task graph.
40: end for
41: Merge any reductions/output tasks.
42: Create/update SendOld Data tasks to accommodate new neighbors.
43: Create new tasks corresponding to neighbors on every rank, which is necessary to create dependencies used inMPI communication.
44: Allocatememory for failed patches.

6 Sahasrabudhe ET AL.

Algorithm 1Resilient Uintah Algorithm: (continued)
45: for every task graph do
46: Create dependencies.
47: AssignMPImessage tags.
48: Recompute local tasks.
49: end for
50: Schedule and execute an interpolation task for failed patches using sub-scheduler.
51: Call EXECUTE(): This continues execution of timesteps.
52: end procedure

task a “required” dependency is added from the “timeAdvance” task, which is the main task used to implement
the timestepping algorithm within Uintah. Because of task dependencies, Uintah schedules the coarsening task
after timeAdvance and feeds thefinepatches computedby timeAdvance as input to the coarsening task. Figure 1
showsanMPIworldwith four ranks. RanksR0 throughR3computefinepatchesF0 throughF3and thencompute
coarse patches C0 through C3, respectively.

• Coarse Patch Exchange: To exchange coarse patches, each rank creates an empty dummy task and adds a depen-
dency on a coarse patch computedby the (n−1)th rank. The dummy task does not compute anything, but because
of the dependency on the (n− 1)th rank, Uintah generates MPI messages to exchange patches. Thus, each pro-
cess with rank n sends its coarse patches to the (n+1)th rank and receives coarse patches from the (n−1)th rank
in a circular fashion, as shown in Figure 1. This logic has several aspects: if two consecutive ranks fail, then both
the fine and the coarse mesh patches are lost, causing an irreversible loss; or all tasks of failed rank get assigned
to one neighboring rank, creating a severe load imbalance. However, the patch exchange logic is flexible and
can be easily updated to send coarse patches to more than one rank. In the future, better load balancing can be
achieved by usingUintah’s dynamic load balancer to distribute orphan tasks evenly across survivor ranks. Coars-
ening and exchange tasks can also be scheduled at a fixed interval of timesteps rather than scheduling them for
every timestep.

• Determine theFaultyNodes /Ranks:MPI rank failure canbedetectedbychanging thedefaultMPIerrorhandler
from MPI_ERRORS_ARE_FATAL to a custom error handler in the new "Resiliency" class. This "Resiliency" class
is instantiated after instantiating all other infrastructure classes and saves pointers to instances of Scheduler,
Load Balancer, Simulation Controller, Application State andMPIWorld. The error handler can then access these
instance pointers to get the latest “state” of the simulation, and the framework can restore the context after an
exception is caught.
ULFM APIs (MPIX_Comm_failure_ack, MPIX_Comm_agree and MPIX_Comm_failure_get_acked) are used to
determine failed ranks, create a uniform picture of failed ranks across all surviving ranks, create the new global
communicator excluding failed ranks and invoke recovery routines.

• Reassignment of ranks and patches: When the nth rank fails, the (n+1)th rank takes over patches of the nth rank,
and the rank of the process is also updated from (n+1) to n. Subsequently, each rank greater than the failed rank
is decrementedbyone.Whenmultiple ranks fail, the same logic is iterated for every failed rank. The patch to rank
assignment also uses the same logic. This process is shown in Figure 1 where ranks R0 and R2 fail. Rank R1 then
becomes the new rank R0 and rank R3 becomes the new rank R1. The orphan fine patches F0 and F2 are now
allocated to ranks R0 and R1 (old ranks R1 and R3). When the ranks are updated, the patch to rank assignment
for patches F1 and F3 is also updated to R0 and R1, respectively. Algorithm 1 calls MPIX_Comm_split to ensure
the rank are reassigned following the same reassignment strategy.

• Updating the taskgraph: The recoveryprocess createsnewtasks and/or changes theownershipof existing tasks,
except for the reduction tasks that belonged to failed ranks. The reduction tasks are skipped to avoid additional
calls toMPI_Reduce.
New send data tasks are created on behalf of new neighbors to ensure correct dependency creation. All existing
dependencies are then deleted and recreated to reflect new tasks and ranks for the automated MPI message
generation.

• Data Recovery: Finally, the error handler reallocates memory for the adopted fine patches and schedules an
interpolation task to generate fine patches from coarse patches received earlier. A sub-scheduler is used to

Sahasrabudhe ET AL. 7

schedule the interpolation task, because it is a one-time task and is not repeated for subsequent timesteps. The
sub-scheduler creates a new instance of the task graph containing only interpolation tasks and avoids modifying
the main task graph, which gets executed every timestep. Any MPI communication needed for halo exchange is
automatically handled by the sub-scheduler utilizing the Uintah infrastructure. As shown in Figure 1, new ranks
R0 and R1 rebuild fine patches F0 and F2 using coarse patches C0 and C2. Uintah provides three types of vari-
ables - Node Centered (with data points at eight vertices of a cubic cell), Cell Centered (with data points at the
center of a cubic cell) and Face Centered (with data points at centers of six faces of a cubic cell). In three space
dimensions, the algorithmuses Tensor Product interpolation,which is a standard approach described in (41). The
application of this idea to the Newton polynomial approach described in the next section is an adaptive form of
the algorithm that dates back to Narumi (42). The challenge of addressing cell-vertex and cell-centered meshes
requires a complex but straightforward application of the underlying Tensor Product approach. At each stage of
this Tensor Product interpolation, boundedness in the solution is enforced for all intermediate values. The gen-
eral interpolation approach is similar to the way that coarse-fine interfaces are treated in many adaptive mesh
codes (43, 44).

• Continued Execution: Once the failed patches are recovered, execution continues in the usual fashion with the
revised (reduced)MPIworld. Figure1 shows that ranksR0andR1will continueexecuting tasks onpatchesF0, F1
and F2, F3, respectively. Rank R0 will also have coarse patches C2 and C3, and rank R1 will have coarse patches
C0 and C1.
The disadvantage of using the reduced communicator instead of spawning new ranks is the increase in the
execution time for subsequent timesteps due to fewerMPI processes and nodes.
Recreating instances of all components in newly spawned ranks and bringing those instances to the state of the
current timestep ismore involved than using the surviving ranks to take over patcheswith the existing state. This
approach can be considered in the future.

The existing design keeps recovering from failures until only one rank remains at the end provided that certain con-
ditions hold. This requires that the maximum number of simultaneous failures is limited to half the ranks. In addition,
the pattern of patch exchange dictates that two neighboring ranks should not fail at the same time; otherwise the sys-
tem cannot recover from a failure. While failures (which may or may not be concurrent) can occur one after another
until only one rank remains, e.g., in Figure 1, first failure ranks (ranks R0 and R2) and recovery ranks (remaining ranks
R1 and R3 nowwill be renamed ranks R0 and R1) end up owning patches R0:F0, F1, and R1:F2, F3, respectively. If rank
R0 fails now, R1will be renamed as R0, and R0will take over all the patches F0 through F3.

5 INTERPOLATION METHODS

One of the important factors in choosing an interpolationmethod is its accuracy. In real-life numerical simulations, it is
essential tomaintain physical properties such as positivity of the solution and to avoid the introduction of any spurious
overshoots or undershoots. Weather forecasting (15) and combustion problems (14) are two such problems in which
non-physical solution values may not match with the underlying physics. Previous work (12) demonstrated a need for
more accuratemethods than linear interpolation and suggested that cubic interpolation is important if the underlying
discretizationmethod is first or second order.
The difficulty with using cubic interpolation is possible overshoots and undershoots, i.e., interpolated values going

above or below the limit of physically possible values. These overshoots and undershoots can cause errors by violating
the given set of laws governing the system. For example, chemical concentrations cannot be negative. ENO methods
and their extensions such asWENO (45, 46) provide a polynomial interpolant that preserves positivity inmany but not
all cases.
A simple approach inspired by Limited ENO (LENO) (13) is used to curtail overshoots and undershoots: allow only

those divided differences that are sufficiently small. Alternatively, some of the other approaches considered in (13)
might be adopted, such as the use of cubic splines.
The starting point is to use ENO interpolation schemes (13, 45) that employ the Newton divided difference form

of the interpolating polynomial. For example, the cubic interpolation between known data pointsU [xi] andU [xi+1] tocalculateU [x] is given by
U [x] =U [xi]+ (x− xi)U [xi,xi+1]+T 3+T 4

8 Sahasrabudhe ET AL.

whereU [xi,xi+1] =
U [xi+1]−U [xi]

xi+1−xi
and the terms T 3 and T 4 are products of a "multiplier" π and a "divided difference" δ :

T = π.δ . More termsmay be added to obtain still higher order interpolation. The recursive formula for calculating the
multiplier and divided difference for subsequent terms is πk = (x−xi)(x−xi+1)...(x−xi+k−1) and δk =U [xi,xi+1, ...,xi+k]where

δk =
U [xi+1,xi+2, ...,xi+k]−U [xi,xi+1, ...,xi+k−1]

xi+1− xi

The third term (T 3) can be calculated using eitherU [xi−1] orU [xi+2], and δ will depend on what the next interpolation
points are chosen to be. Using xi−1 gives δ as

δ =U [xi−1,xi,xi+1] =
U [xi,xi+1]−U [xi−1,xi]

xi+1− xi−1

and using xi+2 for δ gives
δ =U [xi,xi+1,xi+2] =

U [xi+1,xi+2]−U [xi,xi+1]

xi+2− xi

The ENO method (46) chooses the value of delta with the smallest absolute value, i.e.,
min(|U [xi−1,xi,xi+1]|, |U [xi,xi+1,xi+2]|) to calculate T3. In the same way, subsequent terms can be computed by firstcalculating δ for points on either side, and picking the δ with the smallest absolute value. π is calculated using terms
picked up in the previous δ . ENOmethodsworkwell formany problems, but theymay prove troublesome for problems
bounded by physics (or any domain-specific) constraints. Berzins (13) used an adaptive ENO method that imposes
conditions on the ratios of divided differences and limited the polynomial order if those conditions are violated. A
simpler approach used here is to calculate the linear, quadratic and cubic interpolation terms for the desired point, and
then to pick the highest order value that satisfies the physical requirements of the solution. These requirements may
include that the interpolated values are positive and bounded above, or that the interpolated values lie between the
two nearest coarse mesh values (13). In the worst case, linear interpolation is used. For example, when using an even
mesh in one space dimension, the linear, left quadratic and cubic interpolants that approximate the solution values at
xi+1/2, as denoted by ulinear

i+1/2,u
quadratic
i+1/2 ,ucubic

i+1/2, are then given by

ulinear
i+1/2 =

1
2
(ui +ui+1) (1)

uquadratic
i+1/2 =

1
8
(−ui−1 +6ui +3ui+1) (2)

ucubic
i+1/2 =

1
16

(−ui−1 +9ui +9ui+1−ui+2) (3)
It is straightforward to see that if the condition ui−1+ui+2 > 9(ui+ui+1) holds, then ucubic

i+1/2will be negative, and eitherthe quadratic or linear values should be used. For the quadratic case, if ui−1 > 6ui + 3ui+1, then the linear polynomialmust be used. In effect, this approach employs a subset of the possible ENO interpolants while still ensuring that the
interpolant is bounded. In theexperiments that follow, theaccuracyof linear, cubicENOandLimitedENO interpolation
methodswill be shown. The extension to three space dimensions is achieved using a standard tensor product approach
described in the previous section.

6 EXPERIMENTS AND RESULTS

The computational experiments described below in Sections 6.1 and 6.2 were designed to compare the accuracies of
three interpolation methods, linear, cubic ENO and cubic LENO, for reconstructing fine patches from coarse patches.
Section 6.3 describes further experiments that compare the performance of the ABFT approach (Algorithm 1) against
the performance of checkpointing/restarts.

6.1 A 1D Advection-Reaction Test Problem

A simple but challenging test problem that illustrates someof the challengeswith the interpolationmethods described
above is given by the advection reaction equation

∂u
∂ t

+
∂u
∂x

= 40(c−1)u(1−u), where (x, t) = [0,2]x(0,1.5]. (4)

Sahasrabudhe ET AL. 9

The left boundary condition and the initial condition are given by
u(x, t) = 0.5(1− tanh(20(x− ct)−4.0)) (5)

The discretizationmethod used is the explicitflux limited schemewith forward Euler integration (47). The source term
in this problem is similar to that in (14, 47). Solution values outside the range [0,1]will cause the source term to change
sign, with potentially catastrophic results, particularly if the parameter c is not close to one. At every ten timesteps,
failure is modeled by the fine mesh solution at every other fine mesh point being replaced by an interpolated value
from the coarse mesh. This model represents every fine mesh patch failing at every ten timesteps and is a particularly
stringent test of the need for appropriate spatial interpolation routines. In all cases, the error is the difference between
the computed solution and the exact solution.

c 1.0 0.9 0.8 0.7 0.6
Linear 8.5e-3 9.5e-3 8.0e-3 5.0e-3 1.0e-1
Cubic 1.8e-4 1.8e-3 4.0e-2 NaN Nan
Limited 1.8e-4 1.8e-3 4.3e-2 1.0e-1 1.7e-1
None 1.9e-4 1.9e-3 4.3e-2 1.0e-1 1.7e-1

TABLE 1 1DAdvection Reaction Equation L1 Error Norms CFL = 0.0125

Table 1 shows errors for the advection reaction problem using an even mesh of 1601 points. Different values of the
constant c are used.When c is some distance from one, the numerical wave solution starts to lag behind the true wave
solution. In all cases, the L1 error norm is calculated at time t = 1.5.
Four schemes are shown: linear interpolation, cubic interpolation, limited interpolation and none, which is the

standard scheme without using any interpolation. For the limited interpolation, the accuracy is close to that of the
underlying numerical scheme. For values of c ≤ 0.7, the overshoots introduced by cubic interpolation cause the solu-
tion to become unstable and the calculation to fail. Using linear interpolation surprisingly improves accuracy in some
cases, most probably as it adds extra diffusion due to the interpolation error.

6.2 3D Test Problems

Experiments to test the interpolation accuracy for 3D problems were conducted on a single node with two Sandy
Bridge processors (Intel(R) Xeon(R) CPU E5-2680), each with 8 cores and 90GB of RAM. ULFM version 2.0 was first
built using GCC compiler version 6.1.0. Uintah was compiled using MPI wrappers provided by ULFM. Both builds
used optimization flag -O3. ULFM was built by disabling the support for MPI_THREAD_MULTIPLE. Uintah was com-
piled with a flag -fopenmp to provide OpenMP support. OpenMP pragmas are used in both the timestepping code to
simulate Burgers’ equation and the Advection Reaction equation. They are also used in the interpolation routines to
improve performance through data parallelism.
Simulationswere run for different combinations ofmesh points (ranging from 123 to 963), different numbers of ranks

(4 to 64 by oversubscribing cores), different numbers of sequential failures (from 1 to 5) and different timesteps at
which failure is induced. At any given time, half the ranks (odd or even) are killed simultaneously by raising the sig-
nal sigkill, and the remaining ranks take over execution. Errors in four cases - timestepping without failure, linear
interpolation, ENO, and LENO -weremeasured and compared against the exact solutions.
Two problems were used to evaluate the accuracies of interpolants. The first is a Burgers’ equation problem that

illustrates the accuracy differences from the different interpolation approaches. The second problem is a 3D version
of the 1D advection-reaction that suffers from catastrophic failures when unconstrained cubic interpolation is used.

6.2.1 Burgers’ Equation:
The viscous Burgers’ equation in 1D for u = φ(x, t) is given by

∂φ

∂ t
+u

∂φ

∂x
= v

∂ 2φ

∂x2 (6)
where v is the viscosity of the medium. The function φ(x, t) used for an exact solution for a given timestep at a given
location is given by

10 Sahasrabudhe ET AL.

φ(x, t) =
0.1+0.5∗ e

d− f
v + e

d−g
v

1+ e
d− f

v + e
d−g

vwhere d, f and g are calculated as
a = 0.05∗ (x−0.05+4.95∗ t), b = 0.25∗ (x−0.5+0.750∗ t), c = 0.5∗ (x−0.375) and d = min(a,b,c).
if d == a then f = b and g = c
else if d == b then f = a and g = c
else if d == c then f = a and g = b.
The 1DBurgers’ equation can be extended to 3D (see Appendix A) for u = φ(x, t)φ(y, t)φ(z, t) as

∂u
∂ t

+φ(x, t)
∂u
∂x

+φ(y, t)
∂u
∂y

+φ(z, t)
∂u
∂ z

= ν(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2) (7)

The initial and boundary conditions are given by
u(x,y,z, t) = φ(x, t)φ(y, t)φ(z, t)

Figures 2(a) and 2(b) show the results of using the different interpolation methods for Burgers’ equation for viscosity

(a) 243mesh (b) 963mesh
FIGURE 2: Interpolation accuracy for Burgers’ equation with viscosity of 0.01

ν = 0.01 and domain sizes of 243 and 963 meshes, respectively. The experiment spawned 32MPI ranks and ran for 100
timesteps,withhalf the ranks failing simultaneously at the20th, 40th, 60th and80th timesteps, respectively. Thus, only
two ranks remained at the end. As the number of rankswas reduced, CPUcores remainedunused. The sudden increase
in the error indicates the time at which failure occurred. As the domain resolution increases, the accuracy of the ENO
and LENO interpolants improves faster than that of linear interpolation. For the 243 domain, the ENO interpolation
accuracy was 1.7x times better than that of linear interpolation, but for the 963 domain, ENO interpolation had 3.7x
times better accuracy than linear interpolation. Although the ENOmethod performed better than linear interpolation,
it caused overshoots in the numerical solution. The numbers of overshoots for cases shown in Figures 2(a) and 2(b)
were 17,112 and 25,475, respectively. However, the impact of overshoots is to some extent compensated for by the
small value of the timestep and is not significantly reflected in the error.
Using the LENO interpolant eliminates these overshoots by discarding the terms causing overshoots. The LENO

approach marginally affects the accuracy. In the case of the 243 domain, LENO improved the accuracy over ENO by
2% but degraded the accuracy by 2% for the 963 domain. Similar results were obtained for a three-dimensional heat
problem, but are omitted for reasons of brevity.

6.2.2 3d Advection-Reaction Equation:
The advection-reaction equation used in the one-dimensional test can be extended to three space dimensions as

∂u
∂ t

+
∂u
∂x

+
∂u
∂y

+
∂u
∂ z

= 40(c−1)u(1−u) (8)
The boundary conditions at x = 0,y = 0 and z = 0 and the initial condition are given by

u(x,y,z, t) = φ((x+ y+ z)/3, t) where φ(x, t) is given by u(x, t) in equation 5 (9)

Sahasrabudhe ET AL. 11

c 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
None 2.40E-02 1.08E-01 2.13E-01 2.77E-01 2.81E-01 2.31E-01 1.55E-01 8.44E-02 3.61E-02 1.01E-02
Linear 2.44E-02 1.13E-01 2.26E-01 2.94E-01 2.98E-01 2.44E-01 1.62E-01 8.73E-02 3.67E-02 1.01E-02
ENO 2.41E-02 1.08E-01 2.14E-01 2.77E-01 NaN NaN NaN NaN 3.66E-02 1.02E-02
LENO 2.41E-02 1.08E-01 2.15E-01 2.82E-01 2.88E-01 2.41E-01 1.56E-01 8.44E-02 3.65E-02 1.02E-02

TABLE 2 3DAdvection reaction equation errors compared to the exact solution

and (x,y,z, t) = [0,2]x[0,2]x[0,2]x(0,1.5]. In this case, 32MPI rankswere used,with half of the ranks crashing at the 100th,
200th, 300th, and 400th timestep. A domain size of 243mesh points is used for (x,y,z)∈ [0,2]x[0,2]x[0,2]. Table 2 compares
errors of the numerical solution using various interpolation schemes, namely linear interpolation, ENO and LENO to
the exact solution, whereas “None” represents the errorwithout any failures/interpolation schemes. For this equation,
overshoots and undershoots caused by using the ENOmethod lead to infinite values of the solution for 0.3 ≤ c ≤ 0.6.
However, LENOmethods avoid such errors, which confirms that the accuracy results for the one-dimensional problem
translate into three space dimensions. Similar results were obtained for the Leveque-Yee model problem (14) in one
and three spatial dimensions.

6.3 Experiments to measure scalability

Preliminary strong scaling experiments were conducted to compare the performance of the newABFT approach with
checkpointing using 128 nodes of the Quartz cluster at Lawrence Livermore National Laboratory (LLNL) (48). Uintah
has its own checkpointing and restart functionality. Users can choose a checkpointing interval and the type of I/O pro-
cess among (i) I/O per process, (ii) I/O perN processes (i.e., one process collects output fromNprocesses and performs
I/O) and (iii) using the PIDX (49, 50, 51) high-performance I/O library. For a small node count, I/O per process performs
as well as PIDX on the Lustre file system, which is used by the Quartz cluster (52). For the modest size node counts
used in this study, Uintah’s built-in I/O per process is used for checkpoint and restore and performswell in comparison
tomore sophisticated approaches such as PIDX (49, 50, 51).
Each node of Quartz is equipped with 36 cores of the Intel Xeon E5-2695 v4 processor(s) and 128 GB RAM. ULFM

and Uintah were compiled in the same way as described in the accuracy experiments using GCC 6.1.0. Experiments
were conducted using the three-dimensional Burgers’ equation with a finemesh of size 2563 points and a coarse mesh
of 1283 points (i.e., the refinement ratio of two). Both grids were divided into 4096 patches (total 8192 patches). Thus,
the fine patch size was 163 and the coarse patch size was 83.

FIGURE 3: Overhead of resiliency on LLNLQuartz cluster

Failure Model: Strong scaling starting from two nodes
up to 128 nodes was carried out with one rank per node.
During every run, half of the ranks (odd or even) raise
“sigkill” and simultaneously crash. Soonafter the crash,MPI
detects an error and the custom error handler kicks in.
Unlike themodel used to verify the accuracy, failures occur
at only one instance, i.e. at the 20th timestep. Thus, for
every crash, half of the data (i.e., 2048 patches) is interpo-
lated by the surviving ranks. Although this is not a realistic
failure model with half of the nodes failing at the same
time, the point of considering this the worst-case scenario
was to demonstrate the effectiveness of this approachwith
extreme failure rates. Different studies have been con-
ducted in the past to categorize failure rates and types
(53, 54, 55). For example, Meneses (54) shows that only
29%of the software failures during 2014 affectedmore than four nodes, and only 2%of the hardware failures affected
four ormore nodes on the Titan supercomputer. However, “mean time between failures” (MTBF) of Titan is around 27
hours (54). On the other hand, the DARPA ExaScale Computing Study (56) suggests that the MTBF at exascale could
be as frequent as 35-39minutes. This 45-fold increase in the failure rate indicates the possibility of multiple instances
of failures within the lifetime of a job. Some of these failure instances might have concurrent node failures as well.
Thus, our failure model assumes that half of the nodes crash simultaneously to prepare Uintah for the worst case sce-
nario. Figure 3 shows the overhead incurred by the resiliency tasks during normal timesteps. The “not resilient” plot

12 Sahasrabudhe ET AL.

shows time per timestepwhen resiliency is turned off. The “resilient” plot showswall time per timestep for the resilient
approach and includes tasks to generate coarse patches and to perform the coarse patch exchanges between neigh-
bors. Theplot doesnot include the recoveryphase,which is analyzed later. Thedifferencebetween the twoplots shows
that the overhead of resilience is around 38% for four nodes when each node processes 1024 patches. As the number
of nodes increases, the number of patches per node decreases, resulting in less overhead. Increasing the node count to
64and128, thenumberof patchespernodedecreased to64and32, respectively,with the resultant overheaddecreas-
ing to less than10milliseconds. Typically,Uintah’s domaindecomposition strategyusually assigns1-2patchesper core.
ForQuartz’s 36 core nodes, using this workload of 32 or 64 patches per nodematchesUintah’s domain decomposition
scheme for realistic simulations.
To analyze the performance of resilience, measurements are made of (i) the time to coarsen patches, (ii) MPI com-

munications during regular timesteps and (iii) the time to detect and recover from an error and interpolate lost data
during the recovery timestep. Similar experiments were repeated using checkpoint/restarts instead of using ABFT
resilience. The time spent in IO tasks during checkpointing and in recovery was also measured. Again, the MPI com-
munication timewas alsomeasured for the timesteps in which checkpointing does not take place. These timing values
were also used to deduce the per-patch overhead in bothmethods and tomeasure the communication overheads due
to coarsening, patch exchange and the per-patch recovery time. Threemetrics were used to compare the performance

FIGURE 4: Performance comparison on LLNLQuartz cluster

of ABFT-based resiliency with checkpointing within Uintah.
1. Per patch per timestep time for backup and recovery: For ABFT-based resiliency, this metric is a sum of the
computation and communication wait times needed to execute coarsening tasks per timestep, the time ULFM
takes to detect a set of failed ranks (in the case of simultaneous failures), and the subsequent recovery and
interpolation operations. For the checkpointing approach, this metric is the sum of the time taken by one check-
point operation (equivalent to one coarsening and exchange task of ABFT during one timestep) and the time

Sahasrabudhe ET AL. 13

taken for one recovery from the checkpoint. Coarse patches are exchanged at every timestep, whereas check-
pointing takes place after every four timesteps. Both these frequencies can be adjusted depending upon the
problem to be solved. For a fair comparison, only one checkpoint-restart was timed and compared against one
coarsening + exchange and ABFT recovery. This approach allows for a comparison of the raw execution times.
Figure 4(a) shows that ABFT-based solution performed3.4x faster than checkpointing on two nodes, and the gap
increased with the number of nodes. ABFT performance was almost linear up to 64 nodes, after which it starts
to degrade. However, checkpointing performance degrades as the number of nodes increases. At 128 nodes, the
performance boost fromABFT becomes 20X.

2. MPI overhead exchange of coarse patches: In the ABFT approach, the coarsening and exchange tasks execute
more frequently than recovery. These tasks should have minimal overhead. The coarse task did not need any
communicationandwasobserved tobe scalable from125ms for twonodes to1.8ms for128nodes (not shown in
the chart for simplicity). However, exchanging coarse patches adds a small amount of overhead duringMPI com-
munication, as shown in Figure 4(b). The difference between the MPI wait time of Uintah when coarse patches
are exchanged, and theMPIwait timewhen coarse patches are not calculated and not exchanged, shows theMPI
overhead due to the coarsening tasks.
Uintah is designed to overlap computation and communication. However, if coarse patches are exchanged in
an overlapped fashion, there is a risk of failure before the patch exchange is completed, and the recovery will
become impossible. To avoid this situation, no other tasks are allowed to execute before coarse patch exchange is
completed during every timestep. A communication overhead is visible in Figure 4(b), even for eight nodeswhere
each rank has enough computation to effectively hide this exchange. As the number of nodes increases, the num-
ber of coarse patches exchanged per node decreases, and the overhead decreases from 700% for 16 nodes to
10% for 128 nodes. This overhead can be further reduced by introducing a timestep lag during the exchange, and
thus the recovery routinewill have to execute one extra timestep. At 128 nodes, communication starts dominat-
ing computation (for the entire calculation and not just coarsening tasks). The effect can be seen in Figures 4(a)
and (c) as the number of nodes increases to 128. This strong scaling pattern of coarsening computations andMPI
overheads concurs with Figure 3, where the resiliency overhead decreases as the number of nodes increases.

3. Strong scaling of backup and recovery: Thismetric compares thewall clock time of similar operations involved in
the per patch metric, but now the wall clock time to coarsen/recover or checkpoint/recover all patches is mea-
sured. This metric demonstrates strong scaling of both approaches. Figure 4(c) shows that ABFT scales better
than checkpointing. There is one seeming contradiction between Figures 4(a) and (c). The speed-up in Figure 4(a)
is twice that of the speed-up shown in Figure 4(c). The reason for the apparent paradox is the number of ranks is
halved after the recovery from a failure. In other words, for 128 nodes, one cannot expect the wall clock time to
be 0.93 (per patch time) * 4096 (number of patches) / 128 (number of nodes) = 29.76milliseconds. After the fail-
ure, only 64 nodes execute the program and, hence, the expected wall time will be 0.93 (per patch time) * 4096
(number of patches) / 64 (number of nodes) = 59milliseconds, which is close to the observed value of 58millisec-
onds. Experiments also demonstrated that, in the case of multiple simultaneous failures, the wall clock time to
recover from one failure remains the same as the wall clock time to recover from 64 failures, as recovery takes
place in parallel. Figure 4(d) gives a breakdown of thewall clock time in three categories - error detection + state
recovery, interpolation and the MPI wait time for halo exchange required by interpolation tasks. Due to the use
of OpenMP enabled loops, interpolation tasks execute faster than error detection + state recovery, which is a
single-threaded task.

Comparison to high-performance checkpointing: PIDX is a high-performance I/O library built for high-performance
computing, and performs better than the state-of-the-art I/O libraries (49, 50, 51). Uintahwith PIDXwas able to utilize
80% of the theoretical disk bandwidth onMIRA (52). Compared to naive per process I/O, PIDX achieved a speed-up of
2x to 10x as the number of processes increased from8192 to 262,890 (52). However, the speed-up on Edisonwas lim-
ited to0.7x to1.3xas thenumberof cores increased from1024 to8192. This difference inperformanceoccursbecause
Edison’s Lustre filesystem performs better while handling large numbers of files compared to MIRA’s GPFS file sys-
tem (52). Charm++ has a resiliency capability using in-memory checkpointing on the “buddy” process, which provided
about 100x speed-up over checkpointing (57). Zheng (58) further optimized the performance that resulted in check-
pointing and restart finishing in a fewmilliseconds. This performance is as good as the ABFT performance achieved by
resilientUintah. Dong (59)was able to reduce the checkpointing overhead to 2−3% using non-volatile RAM (NVRAM)
for checkpointing. In a similar work, Kannan (60) reported checkpointing overhead to 6% of the total run time.
In spite of these advances, checkpointing has it own challenges. Its performance also depends on environmental

factors using shared resources. Moody (61) experienced an increase from 3.5 minutes (for 4096 processes on 512

14 Sahasrabudhe ET AL.

nodes) to 1.5 hours (for 8192 processes on 1024 nodes) for checkpointing. The drastic slowdown was due to the load
from other jobs and not the increased number of ranks (61). The MTBF increased from 1.5 hours to 1.5 days when
the Scalable Checkpoint/Restart (SCR) library was used instead of traditional checkpointing on the Atlas cluster at
Lawrence Livermore National Laboratory (61). Nevertheless, it will be interesting to compare the performance of
Resilient Uintah with these techniques at scale.

7 CONCLUSION

The combination of ULFM, AMR, and interpolation used here has been shown to be a faster recovery method than
using the standardapproachof checkpointing. The recovery routineswereable to recover fromrepeated simultaneous
failures until only one rank remained. Furthermore, recovery is treated as just another task that requires only a load-
balancing step, which makes this approach more flexible without placing an extra burden on the runtime system. This
approach has the potential to completely avoid delays and interruptions, because survivor ranks can always continue
the execution of other tasks while recovery is in progress.
Using ULFM to detect failed ranks and using interpolation for patch recovery provides a lightweight approach to

ensure that Uintah is more resilient in the face of future generations of architectures with significantly higherMTBF.
The results presented here demonstrate the effectiveness of using limited ENO over linear interpolation and ENO

methods to recover data lost by node failures. The LimitedENOmethodprovides physicallymeaningful solution values
that do not cause difficulties with associated physics routines. The combination of AMR with physically appropriate
interpolation methods along with fault-tolerant ULFM and simple recovery tasks ensures that the ABFT approach for
Uintah is fault-tolerant for future architectures.

8 FUTURE WORK

Many opportunities exist to optimize the current implementation and compare it against other resiliency approaches.
The dynamic load-balancing capability of Uintah can minimize any load imbalance created by the recovery pro-

cess. Overlapping the communication and computation while exchanging coarse patches will significantly reduce the
resiliency overhead - especially at a smaller node count. An alternative to AMR and interpolation is the compression
and duplication of data to neighboring nodes, which can be transferred and uncompressed to recover from failures.
The ABFT approach has the advantage of strong scaling and communication only to neighboring nodes. Hence, it will
be interesting to compare the performance of ABFT at large scale with the latest checkpointing methods that use
non-volatile RAM and in-RAM.
Future work may explore an option to allocate extra “reserve” nodes and ranks at the beginning, and to manipulate

theMPI communicator to maintain a fixed number of “active” ranks. On failure, reserve ranks can replace failed ranks.
The challenge for this approachwill be passing the active state of the simulation to the reserve ranks. Finally, increasing
the number of nodes for the exchange of coarse patches from the current design of a single node to two ormore nodes
will allow a greater level of fault tolerance and flexibility.

9 ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under Grant No. 1337145. The authors are grateful to
Alan Humphrey for his help with Uintah.

References

[1] Exascale Computing The ASCAC Subcommittee. The Opportunities and Challenges of Exascale Computing. Summary Report of the Advanced Scientific
Computing Advisory Committee (ASCAC) Subcommittee. 2010;.

[2] Dauwe D., Pasricha S., Maciejewski A. A., Siegel H. J.. An Analysis of Resilience Techniques for Exascale Computing Platforms. In: 2017 IEEE
International Parallel and Distributed Processing SymposiumWorkshops (IPDPSW) , :914-923; May 2017.

[3] Dauwe D., Pasricha S., Maciejewski A. A., Siegel H. J.. A Performance and Energy Comparison of Fault Tolerance Techniques for Exascale Computing
Systems. In: 2016 IEEE International Conference on Computer and Information Technology (CIT) , :436-443; Dec 2016.

Sahasrabudhe ET AL. 15

[4] Peterson B., Humphrey A., Schmidt J., Berzins M.. Addressing Global Data Dependencies in Heterogeneous Asynchronous Runtime Systems on GPUs.
Awarded Best Paper. In: Proceedings of the Third International Workshop on Extreme Scale Programming Models and Middleware - ESPM2’17 , ACM;
2017.

[5] Peterson B., Xiao N., Holmen J., et al. Developing Uintah’s Runtime System For Forthcoming Architectures. Refereed paper presented at the RESPA 15
Workshop at SuperComputing 2015 Austin Texas.. : SCI Institute; 2015.

[6] Berzins Martin, Beckvermit Jacqueline, Harman Todd, et al. Extending the uintah framework through the petascale modeling of detonation in arrays of
high explosive devices. SIAM Journal on Scientific Computing. 2016;38(5):S101–S122.

[7] Humphrey A., Sunderland D., Harman T., Berzins M.. Radiative Heat Transfer Calculation on 16384 GPUs Using a Reverse Monte Carlo Ray Tracing
Approach with Adaptive Mesh Refinement. In: 2016 IEEE International Parallel and Distributed Processing SymposiumWorkshops (IPDPSW) , :1222-
1231; May 2016.

[8] Meng Qingyu, Humphrey Alan, Schmidt John, Berzins Martin. Investigating applications portability with the uintah dag-based runtime system on
petascale supercomputers. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis , :96:1–
96:12ACM; 2013.

[9] Holmen J. K., Humphrey A., Sutherland D., Berzins M.. Improving Uintah’s Scalability Through the Use of Portable Kokkos-Based Data Parallel Tasks.
In: Proceedings of the Practice and Experience in Advanced ResearchComputing 2017 on Sustainability, Success and Impact , no. 27 in PEARC17:27:1–
27:8; 2017.

[10] Dubey Anshu, Mohapatra Prateeti, Weide Klaus. Fault Tolerance Using Lower Fidelity Data in Adaptive Mesh Applications. 2013;:3–10.

[11] Bland W. User Level Failure Mitigation in MPI. Euro-Par 2012: Parallel ProcessingWorkshops. 2013;:499–504.

[12] Berzins M., Capon P.J., Jimack P.K.. On Spatial Adaptivity and Interpolation When Using the Method of Lines. Applied Numerical Mathematics.
1998;26:117–134.

[13] Berzins M.. Adaptive Polynomial Interpolation on Evenly Spaced Meshes. SIAM Review. 2007;49(4):604–627.

[14] LeVeque Randall J, Yee Helen C. A study of numerical methods for hyperbolic conservation laws with stiff source terms. Journal of computational
physics. 1990;86(1):187–210.

[15] LIGHT D., Durran D.. Preserving Nonnegativity in Discontinuous Galerkin Approximations to Scalar Transport via Truncation and Mass Aware
Rescaling (TMAR). MonthlyWeather Review. 2016;144:4771–4786.

[16] Huber M, Gmeiner B, Rüde U, Wohlmuth B. Resilience for Massively Parallel Multigrid Solvers. SIAM Journal on Scientific Computing.
2016;38(5):S217-S239.

[17] Agbaria Adnan, Friedman Roy. Starfish: Fault-Tolerant Dynamic MPI Programs on Clusters of Workstations. In: Proceedings of the 8th IEEE
International Symposium on High Performance Distributed Computing , HPDC ’99:31–IEEE Computer Society; 1999; Washington, DC, USA.

[18] Bosilca G., Bouteiller A., Cappello F., et al. MPICH-V: Toward a Scalable Fault Tolerant MPI for Volatile Nodes. In: SC ’02: Proceedings of the 2002
ACM/IEEE Conference on Supercomputing , :29-29; 2002.

[19] J. Dongarra, T. Herault, Y. Robert. Fault Tolerance Techniques for High-Performance Computing. In: J. Dongarra, T. Herault, Y. Robert, eds.Fault-
Tolerance Techniques for High-Performance Computing , Springer; 2015.

[20] Boutellier A.. Fault Tolerant MPI. In: Fault-Tolerance Techniques for High-Performance Computing , Springer; 2015.

[21] Cappello F, Geist A, Gropp W, Kale S, Kramer B, Snir M. Toward Exascale Resilience: 2014 Update. Supercomputing Frontiers and Innovations: an
International Journal. 2014;1(1):5–28.

[22] Hargrove P, Duell J. Berkeley lab checkpoint/restart (blcr) for Linux clusters. Journal of Physics: Conference Series. 2006;46:494.

[23] Shi Xuanhua, Pazat Jean-Louis, Rodriguez Eric, Jin Hai, Jiang Hongbo. Adapting grid applications to safety using fault-tolerant methods: Design,
implementation and evaluations. Future Generation Computer Systems. 2010;26(2):236–244.

[24] Wang Chao, Mueller Frank, Engelmann Christian, Scott Stephen L. Hybrid checkpointing for MPI jobs in HPC environments. In: Parallel andDistributed
Systems (ICPADS), 2010 IEEE 16th International Conference on , :524–533IEEE; 2010.

[25] Islam Tanzima Zerin, Mohror Kathryn, Bagchi Saurabh, Moody Adam, De Supinski Bronis R, Eigenmann Rudolf. McrEngine: a scalable checkpointing
system using data-aware aggregation and compression. Scientific Programming. 2013;21(3-4):149–163.

[26] Bronevetsky Greg, Marques Daniel, Pingali Keshav, McKee Sally, Rugina Radu. Compiler-enhanced incremental checkpointing for openmp applications.
In: Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on , :1–12IEEE; 2009.

[27] Hussain Zaeem, Znati Taieb, Melhem Rami. Partial Redundancy in HPC Systems with Non-uniform Node Reliabilities. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage, and Analysis , SC ’18:44:1–44:11IEEE Press; 2018; Piscataway, NJ,
USA.

16 Sahasrabudhe ET AL.

[28] Sato Kento, Maruyama Naoya, Mohror Kathryn, et al. Design and modeling of a non-blocking checkpointing system. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis , :19:1–19:10IEEE Computer Society Press; 2012.

[29] Huang Kuang-Hua, Abraham Jacob. Algorithm-based fault tolerance for matrix operations. IEEE Transactions on Computers. 1984;100(6):518–528.

[30] Chen Zizhong, Dongarra Jack. Algorithm-based checkpoint-free fault tolerance for parallel matrix computations on volatile resources. In: Parallel and
Distributed Processing Symposium, 2006. IPDPS 2006. 20th International , :10–ppIEEE; 2006.

[31] Chen Zizhong, Dongarra Jack. Algorithm-based fault tolerance for fail-stop failures. IEEE Transactions on Parallel and Distributed Systems.
2008;19(12):1628–1641.

[32] Davies Teresa, Chen Zizhong. Correcting soft errors online in LU factorization. In: Proceedings of the 22nd international symposium on High-
performance parallel and distributed computing , :167–178ACM; 2013.

[33] Davies Teresa, Karlsson Christer, Liu Hui, Ding Chong, Chen Zizhong. High performance linpack benchmark: a fault tolerant implementation without
checkpointing. In: Proceedings of the international conference on Supercomputing , :162–171ACM; 2011.

[34] Chien A, Balaji P, Dun N, et al. Exploring versioned distributed arrays for resilience in scientific applications: global view resilience. The International
Journal of High Performance Computing Applications. 2016;.

[35] Fang A, Cavelan A, Robert Y, Chien A A.. Resilience for Stencil Computations with Latent Errors. In: International Conference on Parallel Processing
(ICPP) , ; August 2017.

[36] Dubey A., Fujita H., Graves D.T., Chien A., Tiwari D.. Granularity and the Cost of Error Recovery in Resilient AMR Scientific Applications. In:
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis , SC ’16:42:1–42:10IEEE Press; 2016;
Piscataway, NJ, USA.

[37] Fagg G, Dongarra J. FT-MPI: Fault tolerant MPI, supporting dynamic applications in a dynamic world.. 7th European PVM/MPI Users Group Meeting
on Recent Advances in Parallel Virtual Machine andMessage Passing Interface. 2000;:346–353.

[38] Varma Jyothish, Wang Chao, Mueller Frank, Engelmann Christian, Scott Stephen L.. Scalable, Fault Tolerant Membership for MPI Tasks on HPC
Systems. In: Proceedings of the 20th Annual International Conference on Supercomputing , ICS ’06:219–228ACM; 2006; New York, NY, USA.

[39] Rizzi Francesco, Morris Karla Vanessa, Cook B, et al. Performance Scaling Variability and Energy Analysis for a Resilient ULFM-based PDE Solver.. :
Sandia National Lab.(SNL-CA), Livermore, CA (United States); 2016.

[40] Luitjens J., Berzins M.. Improving the Performance of Uintah: A Large-Scale Adaptive Meshing Computational Framework. In: Proceedings of the 24th
IEEE International Parallel and Distributed Processing Symposium (IPDPS10) , :1–10; 2010.

[41] Gasca Mariano, ThomasSauer . On the history of multivariate polynomial interpolation. Journal of Computational and Applied Mathematics.
2000;122:23–35.

[42] Narumi S.. Some formulas in the theory of interpolation of many independent variables. TohokuMath. J.. 1920;18:309–321.

[43] McCorquodale Peter, Colella Phillip, Grote David P, Vay Jean-Luc. A node-centered local refinement algorithm for Poisson’s equation in complex
geometries. Journal of Computational Physics. 2004;201(1):34–60.

[44] Martin Daniel F, Colella Phillip. A cell-centered adaptive projection method for the incompressible Euler equations. Journal of computational Physics.
2000;163(2):271–312.

[45] Harten A., Engquist B., Osher S., Chakravarthy S. R.. Uniformly high-order accurate essentially nonoscillatory schemes. III, J. Comput. Phys.
1987;49(4):231–303.

[46] Shu Chi-Wang. High order ENO and WENO schemes for computational fluid dynamics. In: High-order methods for computational physics , Springer
1999 (pp. 439–582).

[47] Ahmad I., Berzins M.. MOL Solvers for Hyperbolic PDEs with Source Terms. Mathematics and Computers in Simulation. 2001;56:1115–1125.

[48] https://hpc.llnl.gov/hardware/platforms/Quartz. ;.

[49] Kumar S., Vishwanath V., Carns P., et al. PIDX: Efficient Parallel I/O for Multi-resolution Multi-dimensional Scientific Datasets. In: Proceedings of The
IEEE International Conference on Cluster Computing , :103–111; 2011.

[50] Kumar S., Vishwanath V., Carns P., et al. Efficient data restructuring and aggregation for I/O acceleration in PIDX. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis , :50:1–50:11IEEE Computer Society Press; 2012.

[51] Kumar S., Hoang D., Petruzza S., Edwards J., Pascucci V.. Reducing Network Congestion and Synchronization Overhead During Aggregation of
Hierarchical Data. In: 2017 IEEE 24th International Conference on High Performance Computing (HiPC) , :223-232; 2017.

[52] Kumar S., Humphrey A., Usher W., et al. Scalable Data Management of the Uintah Simulation Framework for Next-Generation Engineering Problems
with Radiation. In: Supercomputing Frontiers , :219–240Springer International Publishing; 2018.

Sahasrabudhe ET AL. 17

[53] Di Martino Catello, Kalbarczyk Zbigniew, Iyer Ravishankar K, Baccanico Fabio, Fullop Joseph, Kramer William. Lessons learned from the analysis of
system failures at petascale: The case of blue waters. In: 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks ,
:610–621IEEE; 2014.

[54] Meneses Esteban, Ni Xiang, Jones Terry, Maxwell Don. Analyzing the interplay of failures and workload on a leadership-class supercomputer. computing.
2015;2(3):4.

[55] Gupta Saurabh, Patel Tirthak, Engelmann Christian, Tiwari Devesh. Failures in large scale systems: long-term measurement, analysis, and implications.
In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis , :44ACM; 2017.

[56] Bergman Keren, Borkar Shekhar, Campbell Dan, et al. Exascale computing study: Technology challenges in achieving exascale systems. Defense
Advanced Research Projects Agency Information Processing Techniques Office (DARPA IPTO), Tech. Rep. 2008;15.

[57] Zheng Gengbin, Shi Lixia, Kalé Laxmikant V. FTC-Charm++: an in-memory checkpoint-based fault tolerant runtime for Charm++ and MPI. In: 2004
ieee international conference on cluster computing (ieee cat. no. 04EX935) , :93–103IEEE; 2004.

[58] Zheng Gengbin, Ni Xiang, Kalé Laxmikant V. A scalable double in-memory checkpoint and restart scheme towards exascale. In: IEEE/IFIP International
Conference on Dependable Systems and NetworksWorkshops (DSN 2012) , :1–6IEEE; 2012.

[59] Dong Xiangyu, Muralimanohar Naveen, Jouppi Norm, Kaufmann Richard, Xie Yuan. Leveraging 3D PCRAM technologies to reduce checkpoint
overhead for future exascale systems. In: Proceedings of the conference on high performance computing networking, storage and analysis , :57ACM;
2009.

[60] Kannan Sudarsun, Gavrilovska Ada, Schwan Karsten, Milojicic Dejan. Optimizing checkpoints using nvm as virtual memory. In: 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing , :29–40IEEE; 2013.

[61] Moody Adam, Bronevetsky Greg. Scalable I/O systems via node-local storage: Approaching 1 TB/sec file I/O. : Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States); 2008.

APPENDIX A: DERIVATION OF 3D BURGERS’ EQUATION

∂u
∂ t

=
∂φ(x, t)

∂ t
φ(y, t)φ(z, t)

+φ(x, t)
∂φ(y, t)

∂ t
φ(z, t)

+φ(x, t)φ(y, t)
∂φ(z, t)

∂ t

(A1)

Now using equation 6, burger’s equations for independent individual dimensions as can be specified as :
∂φ(x, t)

∂ t
=−φ(x, t)

∂φ(x, t)
∂x

+ν
∂ 2φ(x, t)

∂x2 (A2)
∂φ(y, t)

∂ t
=−φ(y, t)

∂φ(y, t)
∂y

+ν
∂ 2φ(y, t)

∂y2 (A3)
∂φ(z, t)

∂ t
=−φ(z, t)

∂φ(z, t)
∂ z

+ν
∂ 2φ(z, t)

∂ z2 (A4)
Substituting A2, A3, A4 and in 6:

∂u
∂ t

=− 1
φ(y, t)φ(z, t)

u
∂u
∂x

+ν
∂ 2u
∂x2

− 1
φ(x, t)φ(z, t)

u
∂u
∂y

+ν
∂ 2u
∂y2

− 1
φ(x, t)φ(y, t)

u
∂u
∂ z

+ν
∂ 2u
∂ z2

18 Sahasrabudhe ET AL.

Or alternative form is:
∂u
∂ t

=−φ(x, t)
∂u
∂x

+ν
∂ 2u
∂x2

−φ(y, t)
∂u
∂y

+ν
∂ 2u
∂y2

−φ(z, t)
∂u
∂ z

+ν
∂ 2u
∂ z2

This can be further simplified into:
∂u
∂ t

+φ(x, t)
∂u
∂x

+φ(y, t)
∂u
∂y

+φ(z, t)
∂u
∂ z

= ν(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2) (A5)

	Node Failure Resiliency for Uintah Without Checkpointing
	Abstract
	Introduction
	Related Work
	Algorithm-Based Fault Tolerance
	Fault Detection Mechanisms for a Node Failure

	Uintah Framework
	Implementation of Resilience in Uintah
	Interpolation Methods
	Experiments and Results
	 A 1D Advection-Reaction Test Problem
	3D Test Problems
	Burgers' Equation:
	3d Advection-Reaction Equation:

	Experiments to measure scalability

	Conclusion
	Future work
	Acknowledgments
	References
	Derivation of 3D Burgers' Equation

