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Many mental illnesses are thought to have their origins
at early stages of development, encouraging increased re-
search effort related to early neurodevelopment. Magnetic
resonance imaging (MRI) has provided us with an unprece-
dented view of the brain in vivo. More recently, diffu-
sion tensor imaging (DTI/DT-MRI), a magnetic resonance
imaging technique, has enabled the characterization of the
microstrucutral organization of tissue in vivo. As the brain
develops, the water content in brain tissue decreases while
protein and fat content increase due to processes such as
myelination and axonal organization. Changes of signal
intensity in structural magnetic resonance imaging (MRI)
and diffusion parameters of diffusion tensor imaging (DTI)
reflect these underlying biological changes.

Longitudinal neuroimaging studies provide a unique op-
portunity for understanding early brain maturation by
taking repeated scans of individuals over the first two
years. Despite the availability of anatomical images of
the brain with unprecedented details, there has been lit-
tle progress in accurate modeling of brain development or
in creating predictive models of structures that could help
identify early signs of illness. We have developed method-
ologies for the nonlinear parametric modeling of longitudi-
nal structural MRI and DTI changes over the neurodevel-
opmental period to address this gap. This research pro-
vides a normative model of early brain growth trajectory
as is represented in structural MRI and DTI data, which
will be crucial to improved understanding of timing and
potential mechanisms of atypical development. Growth
trajectories are described via intuitive parameters related
to delay, rate of growth and expected asymptotic values,
all descriptive measures that can answer clinical questions
related to quantitative analysis of growth patterns.

We demonstrate the potential of the framework with ap-
plication to a study of early brain development of healthy
controls (singletons and twins). Our framework is designed
not only to provide qualitative comparisons, but also to
give researchers and clinicians quantitative parameters and
a statistical testing scheme. Moreover, the method in-
cludes modeling of growth trajectories of individuals, re-
sulting in personalized brain maturation profiles.

The statistical framework also allows for prediction of

subject-specific growth trajectories and confidence inter-
vals, a new scheme which will be crucial for efforts to im-
prove diagnosis for individuals and personalized treatment.

Brain Growth as observed in anatomical MRI

Magnetic resonance imaging (MRI) is appropriate for
longitudinal pediatric studies since it does not use ion-
izing radiation and enables safe noninvasive scanning of
young children. The brain undergoes significant changes
during the first 2 years of life, with continued growth into
adulthood. Previous cross-sectional neuroimaging studies
have indicated an overall brain size increase during this
period, reaching 80-90% of adult volume by age 2 Pfef-
ferbaum et al. (1994). More recently, Knickmeyer et al.
(2008) reported that total brain volume increases by 101%
in the first year, followed by 15% in the second year. In
addition to morphometric measures such as volume and
shape, including cortical folding Xue et al. (2007); Knick-
meyer et al. (2008); Huppi (2008); Murgasova et al. (2007),
signal characteristics of brain tissue also change, reflecting
the maturation of the underlying tissue. During the first 6
months after birth, the signal intensities of gray and white
matter in T1-weighted (T1W) and T2-weighted (T2W)
MR images are the reverse of those seen in adults. This is
mainly due to the process of tissue myelination since white
matter is mostly unmyelinated at birth. As white matter
myelinates, signal intensity changes from hypointense to
hyperintense relative to gray matter in T1W images. The
reverse pattern is seen in T2W (from hyperintense to hy-
pointense) as shown in Figure 1.

Myelination follows a spatiotemporal sequence as de-
scribed by histological studies Yakovlev and Lecours
(1967) and qualitatively by neuroradiologists Rutherford
(2002). However, quantitative assessment of the matura-
tion pattern of white matter is still lacking.

Development of cognitive functions is associated with
white matter maturation, and hence abnormalities in ob-
served diffusivity of white matter can be associated with
cognitive deficits diagnosed in later life.
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Figure 1: T1W and T2W images of an individual scanned at about 2 weeks, 1 year and 2 years. The pattern of brain gray and white matter
contrast contrast at birth is the reverse of what is seen at 2 years.

1. Early White Matter Maturation

Diffusion tensor imaging (DTI) provides additional in-
formation about the microstructure of the brain. This
method measures the average displacement of water
molecules within tissue during a fixed time period. There
is more diffusion where molecules can travel freely, and
less diffusion where movement is impeded by obstacles
such as cell membranes, myelin and macromolecules. Be-
cause the diffusion of water molecules is shaped by the
underlying tissue structure, it is possible to gain an under-
standing of the underlying tissue structure by measuring
diffusion. Fiber bundle organization can be depicted in
DTI since water diffuses preferentally parallel to the fiber
direction und to a lesseer extent in cross-sections. This
anisotropic diffusion provides detailed information about
brain axonal organization. As the white matter matures,
diffusion of water molecules becomes more restricted as
brain tissue undergoes structuring and myelination. Mon-
itoring changes of diffusion parameters therefore provides
information about the maturation pattern of white matter.

In diffusion tensor imaging, 3D motion of water
molecules is modeled via a second order tensor at each
voxel Basser et al. (1994). A tensor is represented as
a diffusion matrix and can be visualized as an ellipsoid
where the length of each primary axis represents average
diffusion in each spatial direction Mori and Zhang (2006).
The tensor information can be summarized by simpler in-

variant quantitative measures (independent of the orien-
tation of the reference frame) related to size or shape of
the tensor. For example, one of the most common mea-
surements is fractional anisotropy (FA), an index from 0
(isotropic) to 1 (anisotropic) indicating the shape of the
tensor ranging from a sphere to a thin stick Pierpaoli and
Basser (1996). Another measurement is mean diffusivity
which can be explained by the average length of axes of
the ellipsoid indicating the size of the tensor. This mea-
sure has proved useful for assessing the diffusion drop in
brain ischemia van Gelderen et al. (1994), for example.
More recently, axial diffusivity (AD) and radial diffusiv-
ity (RD) have been proposed to help to better understand
the changes of the diffusion tensor Sadeghi et al. (2010);
Alexander et al. (2007). AD is the length of the longest
axes of ellipsoid indicating the fiber orientation and RD
is the average of the two shorter axes. Analysis of DTI
data of pediatric subjects has illustrated changes of these
indices due to development Gilmore et al. (2007); Dubois
et al. (2006). Cascio et al. found overall increases in frac-
tional anisotropy during development and reduced overall
diffusion due to development Cascio et al. (2007).

FA values can also be color-coded by using the direction
of the main axis of the local tensor ellipsoid. Red is used to
indicate the left-right direction, blue is used for superior-
inferior, and green for anterior-posterior directions Pajevic
et al. (1999). Figure 2 shows color-coded FA images of one
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Figure 2: Color-coded fractional anisotropy (FA) images of an individual subject. Left to right: scans at 2 weeks, 1 year and 2 years.

subject at 2 weeks, 1 year and 2 years. The brightness is
weighted by the fractional anisotropy Pajevic et al. (1999).

Objectives of Longitudinal Neuroimaging Studies

The defining feature of longitudinal studies is that sub-
jects are measured repeatedly over the course of the study.
This is in contrast to cross-sectional studies in which an
individual is measured at only one single time-point. Lon-
gitudinal studies enable assessment of within-individual
changes in the response variable, and thereby have the
capacity to separate between cohort and age effects. The
main aim of a longitudinal study is the characterization
of within-individual changes over time and to determine
whether within-individual changes in the response are as-
sociated with specific covariates such as treatment plan,
clinical group or biological factors.

The main characteristic of longitudinal data is the cor-
relation among repeated measurements. As these mea-
surements are obtained on the same individual, there is a
correlation among the measurements, with measurements
obtained closer in time being more correlated than the ones
further apart. This correlation among repeated measure-
ments violates the fundamental independence assumption
of most statistical regression techniques Fitzmaurice G.M.
(2011) and requires different analysis schemes.

Most longitudinal studies plan to obtain the same num-
ber of measurements for each individual at the same time
points; however, this is difficult to achieve in clinical prac-
tice. With studies that span over a longer period of time,
it is inevitable that some individuals will drop out of the
studies and some might miss their appointments and are
rescheduled for different time points. The statistical analy-
sis method as described in the following can appropriately
handle uneven spacing of time points and also cope with
missing data which can also be caused by exclusion of im-
age data due to subject motion.

Longitudinal Pediatric Neuroimaging Studies

Understanding early brain development has great sci-
entific and clinical importance. The human brain under-
goes rapid organization and structuring early in life, and

also there is great heterogeneity among different individ-
uals. Longitudinal modeling of longitudinal data yields a
more accurate average trajectory over time without the
confounding cohort effects Diggle et al. (2002); Fitzmau-
rice G.M. (2011). This is of great importance when the
development itself is in question. Recently, longitudinal
image data have become available for the critical period of
development just after birth. However, normative models
are still not available to describe the normal pattern of
development as shown in structural and diffusion MRI.

By designing appropriate longitudinal statistical analy-
sis, we can model the average trajectory via a parametric
function which can summarize growth with a few param-
eters. This also enables comparison of a normative pop-
ulation model to other groups or to individuals. For ex-
ample, we can model population changes of subjects who
have been diagnosed with a specific disease and compare
this growth curve to the normative model to gain a bet-
ter understanding of the pathology and to the time when
deviation occurs. We can also gain a better understand-
ing of the spatio-temporal sequence of maturation of white
matter in the developing brain.

Once average trajectories for different groups are ob-
tained, we can make inferences about parameters of the
regression. In this work, we consider studying longitudi-
nal changes of diffusion parameters of DTI for a group of
infant subjects (N=26) from 2 weeks to 2 years old to es-
tablish a normative pattern of development along with its
variability. The parametric Gompertz function is used to
characterize these changes over time as it uses intuitive pa-
rameters describing growth: asymptote, delay and speed.
As a proof of concept, white matter regions that are known
to mature at different rates are analyzed and compared.
We also applied the methodology to estimate developmen-
tal trajectories for twins and singletons and compare these
trajectories between the two groups. We hypothesized that
there may be group differences between developmental tra-
jectories of twins and singletons due to differences in pre-
and postnatal environments.
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Figure 3: Population growth models, represented as dashed black curves, obtained using nonlinear least squares (NLS) on the left and
with nonlinear mixed effect modeling (NLME) in the middle. Colored points represent data observations, and colored curves represent the
individual growth trajectories. NLME (solid black) better models how individuals progress on average if compared to NLS (dashed black),
with overlay of both shown on the right.

Growth Models

Brain growth functions clearly show the nonlinear na-
ture of changes, starting with rapid changes which flat-
ten off with increasing age. This characteristics can be
observed in measurements of brain volumes, of head cir-
cumference, tissue contrast in T1 or T2 weighted anatom-
ical MRI, but also in white matter diffusion obtained from
DW-MRI. Linear modeling therefore cannot capture this
structure and have to be replaced by nonlinear growth
modeling. Nonlinear models of growth are generally based
on a differential equation relating growth rate dy/dt to re-
sponse variable y (i.e., size, diffusion parameter) Karkach
(2006). This formulation has led to a variety of growth
models, uch as exponential, monomolecular, logistic and
Gompertz functions. We have demonstrated in Sadeghi
et al. (2013) that the parametric Gompertz function pro-
vides best suits the purpose of modeling early brain de-
velopment. Moreover, the parameters of the Gompertz
function also provide intuitive parameterization of growth
in terms of asymptotic value, delay and growth rate.

y = asymptote exp (−delay exp (−speed t)) (1)

Nonlinear Mixed Effects Model

Mixed effects models provide a powerful and flexible en-
vironment for analyzing longitudinal data, properly ac-
counting for the intercorrelation among observations on
each subject Diggle et al. (2002). In the mixed effects
model, the observed data are assumed to be a combina-
tion of both fixed effects, β, parameters associated with the
entire population (or at least within a subpopulation), and
random effects, b, that are specific to an individual drawn
at random from the population. A mixed effects model
distinguishes between a within-subject source of variabil-
ity and a between-subject source of variability. Correlation
among repeated scans of an individual is accounted for by
incorporating random effects in the model. Mixed effects
model also results in a group trend (fixed effects) that bet-
ter reflect how individuals progress on average compared
to a least square fit as is shown in Figure 3.

Regional Characterization

Normative Models for White Matter Diffusivities

The nonlinear mixed effects are used to model the longi-
tudinal changes of diffusion parameters within anatomical
regions of interest. A white matter label map developed
and disseminated by Mori et al. (2008) was used to define
regions of interest in our infant image data set. We se-
lect 13 anatomical regions in the atlas space as shown in
Figure 4. In this study, left and right regions of anatomi-
cal locations are combined, giving a total of eight regions.
Future studies on lateralization of growth differences will
analyze left and right regions separately. The labeling of
regions in the atlas space allows automatic partitioning of
each subjects’ scans into the different anatomical regions
as all the subjects have been mapped to the atlas space (for
details on the image processing pipeline please see Sadeghi
et al. (2012)). We then estimate growth trajectories for
these regions using the NLME model of Lindstrom and
Bates (1990). Figure 4 illustrates the average FA for each
region. In all the regions, FA increases with age, however,
each region has its own distinct temporal pattern. Most
of the regions show a rapid growth in the first year with
continued growth but at a slower rate in the second year,
however, genu of corpus callosum shows a steady growth
during the first two years. Genu is one of the regions that
develops later and its maturation seems to continue into
developmental stages later than the two years’ observation
period.

Hypothesis Testing

Parameter estimation of NLME is based on the max-
imum likelihood of marginal density of responses. The
distribution of maximum likelihood of the fixed effects is
approximated by a normal distribution. Knowing fixed
effects and its sampling distribution, approximate confi-
dence intervals of fixed effects can be calculated and hy-
pothesis testing can be performed between regions of in-
terest.
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Figure 4: Average growth trajectories of anterior limb of internal capsule (ALIC), posterior limb of internal capsule (PLIC), genu, body,
and splenium of the corpus callosum (Genu, BCC, and Sp), external capsule (ExCap), retrolenticular part of the internal capsule (RLIC)
and posterior thalamic radiation are shown. FA values increases for all these regions during early brain development, but different structures
depict a distinct spatio-temporal pattern.

We conduct hypothesis testing between pairs of regions
to determine modes of longitudinal changes in terms of
the Gompertz growth parameters. With N number of

regions, we perform N(N−1)
2 pairwise fitting of nonlinear

mixed effect modeling. The significant parameters are de-
termined through t-tests, corrected for multiple compar-
isons by Bonferroni correction. The parameters that are
found to be significant between two pairs of regions can
be interpreted as the distinguishing feature between the
longitudinal trajectories of these regions. Figure 5 shows
population and individual growth trajectories for FA and
RD of genu (shown in blue) compared to splenium (shown
in red). The anterior region of corpus callosum is genu
with tracts ending in prefrontal cortex, whereas splenium
is the posterior region with tracts ending in occipital lobe.
Both of these regions are unmyelinated at birth and de-
velop quickly during the first two years of life. Overall,
genu shows higher MD, RD, and AD during the first two
years while FA shows higher values mostly for the second
year. This suggests genu is less mature at birth but devel-
ops rapidly reaching same level of MD and RD as splenium
by the second year. Both genu and splenium have rela-
tively higher AD compared to other regions of the brain
indicating higher axonal organization for these regions.

Inference and Prediction

In addition to modeling the mean trajectory of diffu-
sion properties over time and hypothesis testing among
different regions, another important aspect of longitudinal
analysis is the direct estimation of intra-individual changes
over time. Even if not all observations for all time points
are available for a subject, by pooling the data from other
subjects in the study along with the available observations

for the individual, prediction of an individual trajectory is
possible. The estimation of personalized growth profiles is
of significant clinical interest as individuals respond differ-
ently to treatment and show different growth trajectories.
The figure below shows the approximate subject growth
trajectory along with the subject-specific prediction inter-
val for RD values of an individual based on the available
scans at neonate and 1 year using NLME. The gray shaded
region in the figure shows the prediction interval based on
the population parameters and variability among individ-
uals, whereas the blue region indicates the subject-specific
prediction interval based on the available population pa-
rameters and the new individuals’ available data. Also,
in cases when only a single scan is available, the intensity
or diffusion parameters of the subject can be compared to
the normative model to indicate whether an individual is
within the normative range of variability. Using such an
estimation scheme, subject-specific growth trajectory and
predictive intervals can be predicted based on only one
scan. Such predictions might improve early detection and
outcome since the subject-specific prediction interval not
only accounts for the population estimated parameters but
also considers the new individual’s available data.

Brain Maturation Differences Singletons versus
Twins

Twin studies have provided a valuable insight into the
heritability of disease; however, it might be difficult to
generalize these findings to a singleton population due to
differences between twins and singletons in pre- and post-
natal environments Knickmeyer et al. (2011); Hulshoff Pol
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Figure 5: Left: Color FA of corpus callosum at 6, 12, and 24 months (left side of the image is the posterior region (splenium) whereas the
right side is the anterior region (genu) of cc). Right: Population and individual growth trajectories for genu (blue) and splenium (red). Thick
curves are the average growth trajectories, whereas dashed curves are individual trajectories. The following Gompertz parameters where
significantly different (p < 0.05) between these two regions: FA: asymptote and speed, RD: speed.

et al. (2002). The intrauterine environment might be sub-
optimal as twins share the womb and compete for nu-
trition. Also, the family environment can be subopti-
mal due to limited resources and competition between the
twins Hay and O’Brien (1983).

A recent study by Knickmeyer et al. found significant
differences in gray matter development in MZ twins com-
pared to DZ twins and singletons, but no differences were
found in intracranial volume, total white matter volume
and lateral ventricle volume Knickmeyer et al. (2011). In
this study we examine the compatibility of white matter
developmental trajectories between twins and singletons.

Comparison of mean trajectories among monozygotic
(MZ), dizygotic (DZ) and singletons indicated that growth
trajectories of monozygotic and dizygotic twins are very
similar. No significant differences were found between the
growth curves of MZ and DZ in terms of Gompertz param-
eters of asymptote, delay and speed for any of the diffusion
measurements. To further investigate whether twins and
singletons show any developmental differences, DZ and MZ
individuals were combined as there were no differences in
their growth trajectories. Gestational age was controlled
in the analysis as twin subjects are generally born ear-
lier than singletons, in our study by three weeks. When
comparing the combined twin group to singletons, the fol-
lowing regions showed significant differences in the delay
parameter of the axial diffusivity measures: right and left
anterior limb of the internal capsule and right and left an-
terior corona radiata (Figure 8). There were no significant
differences in asymptote and speed parameters between
these two groups for any of the regions analyzed. There
were also no significant differences between FA and RD
measures between these two groups. These preliminary

findings suggest that twins and singletons follow similar
growth trajectories for most white matter regions. This
study compared 21 anatomical regions, including projec-
tion fibers such as internal capsule and corona radiata,
association fibers including superior longitudinal fascicu-
lus and external capsule, and commissural fibers such as
genu, body and splenium of corpus callosum. Fractional
anisotropy and radial diffusivity did not differ between
twins and singletons in all the regions that were analyzed
after correction for multiple comparisons. However, twins
and singletons did exhibit differences in axial diffusivity
measures in the anterior limb of the internal capsule and
the anterior region of the corona radiata. There were sig-
nificant differences in the delay parameter of the Gompertz
function for these regions, indicating that twins were de-
layed compared to singletons. However, twins appear to
have caught up to singletons by 3 to 4 months postterm as
though they experience a period of catch-up growth post-
birth (Figure 8). There were no significant differences in
the asymptote parameter of the Gompertz function, sug-
gesting that the twin-singleton differences observed early
on in these regions disappear by early childhood.
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Figure 7: Comparison of AD growth trajectories of twins and singletons for the anterior limb of the internal capsule and the anterior corona
radiata. The delay parameter (p < 0.05) was significantly different between twins and singletons in these two regions.

Figure 8: Differences in axial diffusion (AD) of Twins vs. Singletons ((Twin - Singleton)/Singleton)*100. Top: Differences in AD between
twins and singletons at birth. Bottom: Differences at 3 months. The changes from dark blue at birth to light blue at 3 months indicate that
differences between twins and singletons quickly become much smaller reach the same white matter maturation values.
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