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Abstract. The term prediction implies expected outcome in the future,
often based on a model and statistical inference. Longitudinal imaging
studies offer the possibility to model temporal change trajectories of anatomy
across populations of subjects. In the spirit of subject-specific analysis,
such normative models can then be used to compare data from new sub-
jects to the norm and to study progression of disease or to predict out-
come. This paper follows a statistical inference approach and presents a
framework for prediction of future observations based on past measure-
ments and population statistics. We describe prediction in the context of
nonlinear mixed effects modeling (NLME) where the full reference popu-
lation’s statistics (estimated fixed effects, variance-covariance of random
effects, variance of noise) is used along with the individual’s available ob-
servations to predict its trajectory. The proposed methodology is generic
in regard to application domains. Here, we demonstrate analysis of early
infant brain maturation from longitudinal DTI with up to three time
points. Growth as observed in DTI-derived scalar invariants is modeled
with a parametric function, its parameters being input to NLME popu-
lation modeling. Trajectories of new subject’s data are estimated when
using no observation, only the first or the first two time points. Leave-
one-out experiments result in statistics on differences between actual and
predicted observations. We also simulate a clinical scenario of prediction
on multiple categories, where trajectories predicted from multiple models
are classified based on maximum likelihood criteria.

1 Introduction

Longitudinal data analysis can provide further insight into growth, degeneration
or disease progression by analyzing change trajectories rather than snapshots in
time. In this setting, individual subjects’ trajectories can be compared to the
normative models computed via population modeling. One can then identify
the timing of deviation from typical trajectories, interventions can be targeted
toward a specific developmental period, or predicted trajectories can be used for
assessment of disease risk during prodromal stage or for measuring efficacy of
disease-modifying therapies, for example.
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Fig. 1. Prediction based on reference population and new individual’s scan(s). Left:
Population trajectory constructed based on the reference population. Middle: Popula-
tion trajectory along with predicted interval. Right: Can we predict the new individual’s
trajectory based on new scan(s) and the reference population?

The term prediction can be used in very different contexts and with different
goals. E.g., genetics may predict risk for disease, a patient score or disease status
may be predicted from imaging biomarkers, or physiological age is predicted
from sets of measurements. Here, we focus on the notion of statistical inference
to predict a future observation of a new subject given a model for the temporal
trajectory, comprehensive statistics from training on population data, and a set
of past observations from this subject (Fig. 1). The predicted observation with
confidence bounds, or more general the prediction of the whole trajectory with
variability, can then be used to estimate deviation from the norm. In addition,
given normative models for multiple groups, for example for different patient
categories and/or controls, one can derive prediction trajectories for each group
and classify based on the most likely category.

Prediction of an individual trajectory is possible even if not all the observa-
tions for all time points would be available for that subject by pooling the data
from other subjects in the study along with the available observations for the in-
dividual. Analysis of longitudinal data needs to take into account the correlation
due to repeated measures, variability between subjects, often unbalanced spacing
due to acquisitions at different time points and missing data. All these favor the
use of mixed effects models, which represent a class of statistical methods that
model the correlation of measurements of an individual along with modeling the
mean response of a population over time.

The proposed methodology is generic with respect to any type of data. Here,
we demonstrate proof of concept with a clinical infant neuroimaging study. Lon-
gitudinal brain imaging is increasingly used in clinical studies as it provides a su-
perior characterization of developmental trajectories compared to cross-sectional
studies [2, 3]. Such studies have mostly focused on population analysis. However,
individuals would likely benefit from subject-specific assessments, comparing an
individual’s image-derived data at each given age to the norm, and predictions
of subject-specific growth trajectories and intervals based on measurements of
only one or two time points, predictions which may improve early detection and
therapeutic intervention.



Key aspects discussed in this paper are the selection of optimal nonlinear
models to characterize temporal trajectories, building of normative models for
populations, and the development of a statistical inference framework to predict
future observations based on new scans’ data and statistics from a reference
population (Sec. 2). Predicted trajectories from multiple groups can then be
used for classification and the results are presented in (Sec. 3).

2 Method

Reference population To prepare discussion of the prediction scheme, we
briefly describe the nonlinear mixed effects model (NLME) [4]. In the mixed
effects model, the observed data are assumed to be a combination of both fixed
effects, β, parameters associated with the entire population (or at least within a
subpopulation), and random effects, b, that are specific to an individual drawn
at random from the population. Random effects account for the heterogeneity
that is present in the population as these effects vary among subjects. NLME is a
generalization of linear mixed effects and nonlinear regression, some or all of the
fixed or random effects enter the model nonlinearly. Each individual’s response
is modeled as:

yi = f(φi, ti) + ei, (1)

where φ = Aiβ+Bibi, and bi are random effects with distribution N ∼ (0, Ψ). Ai
and Bi are design matrices that indicate whether a specific fixed or random effect
should be included in the model. The function f can be any nonlinear function,
and ei is the measurement error and is assumed normally distributed N ∼
(0, σ2). Random effects and measurement errors are assumed to be independent.

The likelihood function for the mixed effects model is written as:

L(β, Ψ, σ2|y) =

M∏
i=1

p(yi|β, Ψ, σ2). (2)

Since non-observable random effects are part of the model, we must integrate
out random effects; thus, the marginal density of yi becomes:

p(yi|β, Ψ, σ2) =

∫
p(yi|β, bi, σ2)p(bi|Ψ, σ2)dbi. (3)

The population growth parameters β and variance components Ψ and σ2 are
estimated by maximizing the likelihood equation of (3). In general there is no
closed form solution to equation 3. We approximate the integral in (3) using
Taylor expansion of the model function f around conditional modes of random
effects b and the current estimate of β [4].

The distribution of the maximum likelihood estimator β of the fixed effects
based on the linear mixed effects approximation [4] is written as:

β̂ ∼ N

β,[ M∑
i=1

X̂T
i V̂

−1
i X̂i

]−1
 , (4)



where V̂ = ẐiΨẐ
T
i + σ2Ini

, X̂i = ∂fi
∂βT |β̂,b̂i , Ẑi = ∂fi

∂bTi
|β̂,b̂i .

Choice of nonlinear function The choice of the nonlinear function,f , is to be
seen as study and data specific. Nonlinear models provide a more parsimonious
model compared to their linear counterparts (i.e. polynomials). More important,
as extrapolation of data beyond the observed range plays an important role in
the prediction of future values, model parameters of nonlinear schemes tend
to have natural interpretations [5]. Data analyzed here are radial diffusivity
(RD) measurements of diffusion tensor imaging (DTI) of early brain development
and age is the covariate. White matter is known to mature more rapidly in
the first year of life than second, with continued maturation but at a much
slower rate into adulthood [1, 6]. This favors functions that have asymptotic
behavior such as exponential, logistic, or Gompertz. We used Akaike Information
Criterion (AIC) [7] for model selection, where AIC = −2log(Li) + 2npar, Li is
the likelihood of model i and npar is the number of model parameters. Among the
tested models, the Gompertz function provided the lowest AIC measure, so that
this function was chosen for infant DTI modeling. Using the Gompertz function,
response y is modeled as y = αe−d e

−rt

, where α is the final asymptotic value,
parameter r specifies the decay in the growth rate, and parameter d controls
the difference between the final and initial values of y. All the parameters of the
Gompertz function are used as fixed effects. Parameters α and d were chosen as
random effects as they provided the best model fit as measured by lower AIC.

Prediction of new individual trajectory Upon availability of new data for
an individual, we can use the reference population parameters along with the
individual’s available data to predict a personalized growth trajectory. We sub-
stitute β̂,ψ̂ and σ̂ of the reference population for the unknown parameters to
predict an approximate empirical Bayes’ estimate of bi. Once the subject’s ran-
dom effects are estimated, the individual’s growth trajectory and future values
can be predicted.

The prediction of bi can be calculated from the posterior distribution of
p(bi|yi) using Bayes’ rule:

p(bi|yi, β, Ψ, σ2) =
p(yi|β, bi, Ψ, σ2)p(bi|Ψ)

p(yi|β, Ψ, σ2)
. (5)

By maximizing the log of the posterior density of bi, we obtain the following
objective function:

l(bi) = − 1

σ2
(yi − f(β, bi))

T (yi − f(β, bi))− bTi Ψ−1bi. (6)

Once b̂i is estimated, E[b̂i] ' Ψ̂ ẐTi V̂
−1
i (yi − f(Aiβ̂ + Bib̂i, ti) + Ẑib̂i), we

can construct continuous growth trajectories of the ith subject. The ith subject
prediction for the corresponding responses yi is: E [ŷi|bi] = f(xTi β̂ + zTi b̂i, t),
where xi represents a vector of fixed effects covariates and zi represents a vector
of covariates corresponding to random effects.



Individual’s prediction interval By knowing the sampling distribution bi ∼
N (b̂i, Ŵ ) and Ŵ = Ψ̂ − Ψ̂ ẐTi V

−1
i ẐiΨ̂ , we can employ a Monte Carlo simulation

to approximate the subject-specific prediction interval. One thousand samples

of β ∼ N
(
β̂,
[∑M

i=1 X̂
T
i V̂

−1
i X̂i

]−1
)

, b ∼ N (b̂i, Ŵ ), and e ∼ N (0, σ̂) were

generated from their respective distributions. Subsequently, 1000 trajectories
were constructed by the NLME model. The prediction interval for the “new”
subject can be calculated by constructing the 1 − α range of values for a given
time point, tij . At each tij , α/2 and 1 − α/2 percentiles were calculated as the
lower and upper limits of the subject-specific interval.

Classification of a new individual An individual’s predicted trajectory is
a combination of the estimated population parameters (fixed effects), and sub-
ject specific random effects. If multiple reference subpopulations are available,
denoted as c ∈ C, mixed effects modeling as described earlier can be used to
estimate fixed effects β̂c, variance-covariance of random effects Ψ̂c, and variance
of noise σ̂c for each subpopulation c. Upon availability of new scans for an indi-
vidual, random effects and individual’s subject’s trajectory can be predicted as
shown. Once random effects (trajectories) are predicted for the new individual,
we classify the subject to belong to the subpopulation that has the highest like-
lihood given the individual’s predicted random effects b̂ic and reference subpop-
ulation parameters Ψ̂c. We assign a subject to a subpopulation c where p(b̂ic|Ψ̂c)
has the highest value among C. This method takes into account not only the
subpopulation trajectory β̂c to predict b̂ic, but also the heterogeneity of subjects
Ψ̂c presented in the subpopulation for classification.

3 Validation and Results

The following discussion is based on clinical data from an ongoing infant DTI
study but focuses on validation by mimicking its potential clinical use via leave-
one-out experiments. We verify two aspects of the proposed methodology based
on two scenarios: 1) predicting a future observation for a new individual, does
it fall into the range of the norm and what is the difference between prediction
and observed value, and 2) having models for two reference populations and thus
two prediction trajectories for new individuals, what is the classification based
on the more likely population (Fig. 4).

We have access to DTI data of 26 subjects with a total of 59 DTI scans
(neonate: 23, year 1: 22, year 2: 14) from a normative study, with preprocessing
and unbiased atlas mapping following [6]. The reference population trajectory is
estimated using all subjects excluding the one used for testing. Fig. 2 shows the
estimated subject growth trajectory along with the subject-specific prediction
interval for RD values of a test subject, overlaid on the population model (gray).
The trajectory of the individual is predicted as discussed in section 2.

Figure 2 left shows the predicted trajectory based on only the first time point
(solid blue curve and light blue region) with the two left out measurements (red
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Fig. 2. Subject prediction interval compared to the overall prediction for RD of PTR.
Left: subject-specific interval calculated based on only one time point (neonate). Right:
subject-specific interval calculated based on scans at neonate and 1 year. Blue dots
represent observations used for prediction, and red dots actual observed measurements.

dots). Upon availability of more time points, future observations are predicted
with increased precision (Fig. 2 right).

Figure 3 shows the difference between observed and predicted values for
RD of posterior thalamic radiation (PTR). The population trajectory was con-
structed using scans of 25 subjects. We then test our methodology for predicting
RD at years 1 and 2, i.e. closeness of the predicted trajectory (solid blue line)
to the observed measures (red dots) shown in Fig. 2. Predicting 1 year values
was based on 19 subjects with at least neonate and 1 year time points, whereas
prediction at 2 years was obtained from 9 subjects that have three time points
available. Without any observation available for a new individual, the predicted
RD value at years 1 and 2 are the population averages. However, as one obser-
vation becomes available the RD values at years 1 and 2 can be predicted with
more accuracy (Fig. 3 middle). With two observations, variability of differences
between predicted and observed RD values is further reduced (Fig. 3 right).

The predicted subject trajectories can also be used for classification. To il-
lustrate a clinical scenario with two populations (e.g. controls vs. disease), we
construct an example using two different regions representing two categories. Fig-
ure 4 illustrates the concept of classification into the categories PTR or splenium.
We construct the population trajectories for RD of both PTR and splenium of
25 subjects, and then predict left out subject’s RD trajectory for a test region
as if the region could be either splenium or PTR. Looking at the test region’s
first time point (Fig. 4), it seems that it would be splenium, but the second time
point is more similar to PTR; illustrating that analysis at single time points can
easily lead to contradictory results. We predict the RD trajectories of the test
region based on the PTR population (purple dashed line in Fig. 4) and splenium
(yellow dashed line). With the two predictions for the test region, we then use
the classification method of section 2 to assign the most likely category. The ex-
periment is repeated for all the subjects with available scans at neonate and year
1. Overall, only one subject’s splenium was misclassified as PTR and vice-versa,
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Fig. 3. Distribution of differences between observed and predicted values for radial
diffusivity (RD) of PTR. Left two figures: using population mean as predicted value
for prediction at year 1 (left) and year 2 (right). Middle two figures: using RD at
neonate and reference population to predict RD at year 1 (left) and year 2 (right).
Right figure: using population reference and both neonate and year 1 RD to predict
year 2 RD. Note: the reference population was estimated based on 26 subjects with 59
scans (minus the test subject), but only 9 subjects had data for all three time points.
Plots illustrate increased prediction performance from using no observation over one
and then two observations (left, middle, right). RD differences displayed here have been
scaled up by 105.

compared to the overlapping distributions and also conflicting classifications at
single time points.

4 Discussion and Conclusion

This paper describes a framework for prediction based on a statistical inference
approach in the mixed-effects-modeling setting, with emphasis on its application
to discrete-time data, the use of nonlinear parametric temporal functions, and
employing nonlinear mixed-effects-modeling (NLME). Given a new, unseen indi-
vidual, estimated subject-specific trajectories and prediction intervals not only
take into account parameter estimates of the normative population but also
consider existing observations from the new individual. Experimental tests with
a leave-one-out scheme clearly demonstrate that the resulting subject-specific
prediction interval, representing uncertainty, is steadily narrowing from using
no additional observation over the use of one and then two individual mea-
surements. Here, we are making the assumption that an individual will have
a temporal trajectory similar to that of the reference population. This allows
transfer of information from the estimated population model to the prediction
of a new individual trajectory, thus specifically tailored to the new subject.

Although current work focuses on application to clinical longitudinal neu-
roimaging studies, we here decided to demonstrate the potential use of prediction-
based classification in a simulation procedure. Whereas comparing trajectories
of two different anatomical regions may be seen somewhat artificial in view of
standard clinical studies with control and patient populations, it nevertheless
highlights the interesting properties and new potential of the proposed scheme.
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Fig. 4. Test if a new region’s RD measures are representing PTR or splenium. Left:
scatterplot of longitudinal measurements of radial diffusivity (RD) for the two cate-
gories. Middle: population trajectories for PTR and splenium. Right: trajectories of the
test region predicted for each category (dashed lines). The test regions’ trajectory with
highest likelihood determines the classification, here classified into the PTR category.
RD values displayed here have been scaled up by 105.

Results clearly demonstrate that classification based on estimated trajectories
with use of reference population statistics and few observations is more powerful
than cross-sectional classification based on data at single time-points.
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