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Abstract—Many computational engineering problems ranging
from finite element methods to image processing involve the
batch processing on a large number of data items. While multi-
element processing has the potential to harness computational
power of parallel systems, current techniques often concentrate
on maximizing elemental performance. Frameworks that take
this greedy optimization approach often fail to extract the
maximum processing power of the system for multi-element
processing problems. By ultilizing the knowledge that the same
operation will be accomplished on a large number of items, we
can organize the computation to maximize the computational
throughput available in parallel streaming hardware. In this
paper, we analyzed weaknesses of existing methods and we
proposed efficient parallel programming patterns implemented
in a high performance multi-element processing framework to
harness the processing power of GPUs. Our approach is capable
of levering out the performance curve even on the range of small
element size.

I. INTRODUCTION

A multi-element processing operation consists of three main
ingredients:

1) Fundamental action - A core operation acting on
some logical unit of data (an element).

2) Data - A large number of elements on which the action
is applied.

3) Constraints - The action has elemental independence.
The result neither depends on the order the data is
traversed, nor requires partial computation of the data
to be completed.

These ingredients often exists when we perform operations
on multiple element structures such as 2D/3D unstructured
meshes or n-D volume data in scientific computing and
imaging as well as multi-record data mining and information
exploration. These operations include but not limit to local
computations such as computation of tangent vector field of
a 3D surface mesh or sliding window computations such as
the image convolution. In scientific computing, these opera-
tions are often referred through the represented action in the
batch processing mode, we however present the multi-element
terminology to focus on the uniformity of the action and data
which allows us efficient parallel implementations.

Multi-element processing can be seen in many scientific and
industrial applications, for example in traditional and high-
order finite element analysis [28], [31], [42], [47], robust

image processing [2], [11], [26], [46], [50], photo tourism [22],
[44], video processing [10], [21], [40], super-resolution [6],
[9], and population analysis [18], [24], [39] to name a few.

The total amount of computation and memory consumption
of a multi-element operation are proportional to the com-
plexity of the action as well as the number of elements
and are often so high that parallel processing is required
for real-time processing. While this brings the potential to
harness the computational power of modern multi-processor
and SIMD systems such as graphical processing units (GPUs),
current processing frameworks [1], [49] fail to fully exploit
the processing power of these processing devices for multi-
element algorithms [33]. The main reason is that existing
frameworks often concentrate on maximizing the performance
of an operation on a single large size element.

More specifically, the large computational requirements of
multi-element processing often come from a large number of
input data elements rather than the size of each element. Often,
the computation and memory transfer of a single element is
so small that a single element processing techniques will not
be able to saturate the computation and memory bandwidth
of a parallel processing system. This inefficiency is then
multiply by a large number of elements resulting in wasted
computational resources and inadequate performance.

A potential solution is to use concurrent execution mecha-
nisms [17] which allow multiple devices to execute multiple
functions simultaneously when the computational resources
are available. However, this approach involve constraints and
has very limited influence in practice [43]. Beside, it is
highly-driven by advanced supporting features of the platform,
leading to a platform dependent and unscalable solution.

Another reason for poor performance with multi-element
processing is the implicit synchronization at the boundary
of function calls [14], [17]. Due to arbitrary complexity and
dependency of high level functions, this synchronization is
required to maintain the correctness of a parallel algorithm.
In particular, in a general for loop, there’s no guarantee that
the next iteration does not consume the result of the current
iteration. The synchronization adds overheads because the
stages of the coprocessor device need to be reset and all
the processing IOs need to be finalized. The wide range of
the input parameters of a multi-element processing add the
difficulty. While the overhead is negligible in high range when
the element size is large, it is significant in comparison with



the actual computations required by the algorithms when the
element size is small. Even worse, the overhead is multiplied
by the size of the for loop or the number of elements.

To reduce call overhead, advanced parallel processing
systems [14], [17] offer asynchronous processing mecha-
nisms [36] which allow developers to overlap calls of multiple
asynchronous streams. Consequently, the systems enable a
seamless transformation from a single processing algorithm to
its multi-processing counterpart. However, only the runtime
cost is hidden, the overhead is still exist. In other word,
computational resources are still consumed to process this
redundancy, and hence the overall efficiency is lowered.

We have searched for the answer for the performance
problems using fine-grain parallelism optimization and loop
unrolling techniques.Our experiment shows that not a sin-
gle parallel strategy and data structure can achieve satisfied
performance over a wide range of input parameters. The
optimal solution however requires multiple strategies and data
structures, each need to be applied on certain range of the
number of elements as well as the problem size. This requires a
multi-element processing system to provide both optimization
strategies and algorithm selection mechanism. However, the
latter is the subject of auto-tuning and hence is not the focus of
the paper. Here we concentrate on the former by providing the
abstract multi-element parallel programming patterns which
can be realized to optimal solutions using compiler guidance
techniques or template meta-programming. We aim to a high
level of abstraction in our presentation to be able to cover
a large range of multi-element processing problems. The
optimization of a certain problem is problem dependent that
can be achieved through a specialization process available with
template meta-programming.

In this paper, we introduce a novel software solution based
on multi-element concept. Here, we exploit a priori that the
same operation is to be accomplished on a large number of
items (1)to organize the computation to maximize the use
of available parallel computing resources and (2) to unify
the actions in a single on device function to remove the
overhead entirely. Our framework exploit fine-grain parallel
optimization to handle a range of element sizes from the very
small to the moderately large. Consequently, our method is
able to leverage the performance curve over entire range of
input.

To demonstrate the efficacy of our approach, we have
developed a GPU APIs for batch processing of linear algebra
operations such as matrix-vector multiplication, matrix-matrix
multiplication and linear system solving (e.g. Cholesky de-
composition with backsolve). There are two main reasons for
choosing linear algebra operations as the illustration for our
solution efficiency. First, linear algebra operations cover a wide
range of complexity from simple linear with BLAS level one
functions to high polynomial power complexity with BLAS
level 3 and LAPACK functions, so it is a good measurement
for the generality of our framework. Second, linear algebra
packages have been the most widely-used components in
scientific computing applications and its efficiency is critical

to many real-time applications.
We present the results of using our system for a myriad

of matrix ranks, from the very small to the moderately large
– a range often neglected by many competing systems. We
show that by exploiting the additional information added when
performing multi-element processing, one can utilize the avail-
able streaming massively SIMD hardware most efficiently. In
particular, we compare our result with NVIDIA CUDA Basic
Linear Algebra Subroutines (cuBLAS) APIs, which has been
longtime developed, highly optimized and constantly improved
over time. Our results show that our method has speed up
many functions significantly from one to two magnitude orders
on small element range.

The paper is organized as follows. In Section II, we outline
the relevant previous work related to multi-element processing.
In Section III, we present the algorithmic overview of our
multi-element processing framework, and describe the imple-
mentation details of our effort. In Section IV, we present
results demonstrating the efficacy of our framework when run
on currently available streaming massively SIMD hardware.
We then present our conclusions and vision for future work
in Section V.

II. RELATED WORK

Our research was primarily motivated by an interest in
seeing how one might efficiently use the GPU when solv-
ing the Poisson equation with the Hybridized Discontinuous
Galerkin (HDG) Method [32]. In that problem setting, we
needs to generate and operate on a large number of tiny
to small sized matrices in order to form the local systems
used within the HDG formulation. In our attempt to formulate
an abstraction of this problem, we realized that this same
multi-element processing idea can be found in a multitude
of application domains (as aforementioned). The design of
such a system also transcends a large number of discipline-
areas within computer science: numerical methods, parallel
languages, GPU computing, performance tuning, compiler
optimization and parallel optimizations. In this section, we
cannot cover all the previous work that might overlap in
some way with our topic focus. Instead, we outline here
some of the major works we considered when formulating
and implementing our multi-element framework.

A. CPU-related previous work

Multi-element processing is a common technique employed
in both traditional and high-order finite element methods
(FEM) [28], [31]. The huge memory bandwidth and com-
putational requirements of these problems naturally demand
parallel strategies. Our work is motivated from FEM research
by Kirby et al. [32], [33] which concentrated on analyzing
the complexity and stability of different spectral element
methods (Continuous Gelerkin CG, Discontinuous Galerkin
DG, and HDG) to solve computational fluid dynamics prob-
lems. These techniques require local computation on discrete
elements, a typical example of multi-processing functions.
An implementation of these methods often excessively use



the highly-optimized linear algebra packages in basic level
(BLAS functions) such as Atlas, Goto Blas, Intel MKL, AMD
ACML [29], [30], [51] and high-level (LAPACK functions)
such as LINPACK, ScaLAPCK, PLAPACK [7], [48]. As far
as we are aware of, these packages are specifically designed
to provide optimal solutions for single element processing;
the batch processing which can be used for multi-element
problems is available in some cases but with limited support.

One reason for this lack of support partially comes from
potential solutions using compiler optimization or parallel
language support. OpenMP [37], a compiler directive ap-
proach, harnesses the uniform for-loop like nature of multi-
element processing to map computations to multi-threaded
CPU architectures. In fact, this is a favorable solution on
CPUs as it harnesses the compiler optimization techniques
which have long been in research and grown to a mature level.
The method also provides portability and maintainability.
However, the complexity of heterogeneous processing systems
(GPUs, Cells, FPGAs) is higher versus homogeneous CPU-
based systems, which makes hardware execution mapping a
challenging task and consequently compiler optimization a less
effective approach. We exploit the unified architecture of GPU
systems to guide the mapping process, to ease compiler duty
and hence to make compiler optimization more efficient.

Parallel programming languages such as MPI, NESL,
HPF etc. [8], [23] provide solutions for a large range of
problems including both single and multi-element processing.
The techniques have been successfully applied on supercom-
puting for large processing systems such as IBM SP-2, CM5,
Cray C90 and J90, MasPar MP2 etc. However, as they are
designed for large machines to solve ultra-large problems,
these languages are not optimized for problems in smaller-
scaled architectures. Also these languages have limited support
on heterogeneous processing systems and are incapable of
harnessing available processing power from these systems.

B. GPU-related previous work

In the last decade, GPUs have arisen as a driving platform
for heterogeneous parallel processing with strong scalability,
power and computational efficiency [12]. In the past few
years, a number of algorithms have been developed to harness
the processing power of GPUs for a number of problems
which require multi-element processing techniques [5], [38],
[43]. However, as far as we know, there is not a single
publication to address the multi-element processing problem
in general on GPUs. Our paper is the first to generalize the
existing solutions from published works. We also combine the
techniques derived from single element processing including
kernel configuration and auto-tuning, high efficiency memory
access, and asynchronous streaming.

Finding efficient implementations for solving linear algebra
problems is one of the most active areas of research in GPU
computing. The NVIDIA CuBlas [17] and AMD APPML [15]
are well-known solutions for BLAS functions on GPUs.
While CuBlas is specifically designed for the NVIDA GPU
architecture based on CUDA [17], the AMD solution using

OpenCL [3] is a more general cross platform solution for
both GPU and multi-CPU architectures. CuBlas has constantly
improved based on a successive number of research attempts
by Volkov et al. [49], Dongarra et al. [1], [45] etc. This results
in a improvement of one or two orders of magnitude speed-
up for many functions from the first release version till now.
On the high level, MAGMA developed by ICL team provides
optimized LAPACK functions for both NVIDIA and AMD
hardware [1]. In recent releases, CuBlas and MAGMA have
been providing batch processing support to improve processing
efficiency on multi-element processing tasks. The support is,
however, neither complete nor efficient and scalable due to the
constraints of their approaches. This motivates us to find of a
more effective and scalable approach and also a more general
solution rather than a linear algebra package for multi-element
processing.

Segmented operations and data structures derived from
prefix sum computation [13] provide solutions for many
non-uniform multi-element processing problems [4]. The
CUDPP [25] and Thrust library [27] provide highly efficient
parallel implementations of scan-based operations used as ba-
sic algorithm blocks for high performance GPU sorting, multi-
grid computation, data compression, LU decomposition etc.
Though segmented scan algorithms and data structures can
handle a number of uniform multi-element processing prob-
lems, as an indirect approach it does not provide a general
solution. It also fails to exploit the regularity of the opera-
tions and data structures leading to more memory bandwidth
and storage requirements, and as a result is less efficient.
We overcome their limitation using uniform data structures
and algorithms, meanwhile we still exploit their optimization
techniques for scan-based functions.

One important aspect of our paper focuses on optimization
techniques to apply with multi-element processing. We make
use of existing optimizations on global memory such as
memory caching [36], pointer redirecting [35], explicit data
blocking [34], and data padding [36]; however in the context of
the multi-element processing problem we provide new insight
to these techniques. We also exploit the results of performance
tuning techniques from CuBlas [49], MAGMA [20], [34] and
Thrust [27] to propose our adaptive selection strategies and
automatic kernel configuration based on occupancy calcula-
tion [16].

1: Input : data pointers, n element size, nE No. of elements
2: Output: multi-element operation
3: #pragma omp parallel for . OpenMP directives
4: for i← 1, nE do
5: Update data pointer to the ith element
6: SPA kernel <<< SE cfg,NULL >>>(...) .

Single element call with configuration SE cfg
7: end for

Algorithm 1: Regular for-loop MPA
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Fig. 1. Single call MPA solution effectively removes the redundancy of a
for-loop MPA approach and adds an extra dimension of parallelism to allow
for scalability.

III. MULTI-ELEMENT PROCESSING FRAMEWORK

A multi-element processing algorithm (MPA) often exploits
independency between elements, hence it can be considered a
multi-session processing pipeline. This makes a multi-element
algorithm a trivial extension of the single element algorithm
(SPA) using a for-loop over all elements (Figure 1(a) and
Algorithm 1). However, this simple approach adds overhead
to the processing time, resulting in inadequate performance of
an MPA. The performance drop due to added overhead is sig-
nificant when the (data) element sizes are small. Unfortunately
many applications employ elements with small size [6], [19],
[31], [32], [46], [47].

Another problem with a for-loop approach is scalability. A
simple for-loop is inherently sequential, hence the scalability
of the algorithm depends on the scalability of the single
element algorithm. However, parallel algorithms often have
poor scalability when involving small data element sizes.

Even though the sequential execution problem could be
addressed, in theory, using a parallel stream execution [36],
batch processing mode [43] (see Algorithm 2) or implicit
compiler directives parallelism such as OpenMP [37], these
approaches do not remove the exiting redundancy. Moreover,
their effectiveness and scalability are largely dependent on the
different means of support provided by the systems used.

In our processing framework, we consider a multi-element
algorithm as a problem by itself rather than an indirect
generalization of the single element processing counterpart.
We analyze the processing redundancy problem and manage
to remove this overhead entirely when working on small data
elements. To address the scalability problem, we express the

1: Input : data pointers, n element size, nE No. of elements
2: Output: multi-element operation
3: Create a stream array st with nE streams
4: for i← 1, nE do
5: Update data pointer to the ith element
6: SPA kernel <<< SE cfg, st[i] >>>(...) .

Execute SPA on ith stream
7: end for

Algorithm 2: Batch mode MPAs using streams

parallelism in one dimension higher (see Figure 1(b)): in
terms of both problem size and the number of elements. This
will guarantee the scalability of our approach even when the
element size is small. Note that our solution is not intended to
be a replacement of general approaches with large element
processing but a cooperative, adaptive range approach that
allows for the selection of the best solution based on the
problem size and available resources of the systems.

A. Multi-element redundancy

A multi-element algorithm is often rather homogeneous: all
elements can be assumed to have similar sizes and common
parameters. If we consider an MPA as a parallel multi-section
extension of a SPA using OpenMP [37] or a asynchronous
processing methods [36], [43], the common parameters can
no longer be shared but need to be duplicated. This copy is a
source of redundancy (see Figure 1(a)).

To guarantee the correctness of a parallel algorithm, the
memory and instruction pipeline are required to be persistent
between function calls. As a result, a function is executed
only when the system is in a resident stage: the instruction
pipeline is reloaded, the IOs are completed and the executions
are synchronized at the call boundary [17]. However, this is
another redundancy since the processing between elements is
often independent from the others. Persistence is only required
when the entire operation finishes with all the elements (see
Figure 1(b)).

We address the redundancy problem by implementing an
MPA using a single GPU function. As we consider an MPA
a single problem, we exploit the aforementioned uniformity
to eliminate the unnecessary parameters copies and call over-
heads. We also remove all constraints due to persistent require-
ments. We employed existing GPU mechanisms to express the
parallelism of MPA in order to manipulate and share common
parameters.

We generalize GPU paradigms into two logical models that
express the parallelism of MPAs: the thread-based execution
model (e.g. Algorithm 3) and the block-based execution model
( e.g. Algorithm 4). In the next section, we provide a discussion
and comparison of these two logical models.

B. Thread-based execution model versus block-based execu-
tion model

The thread-based execution model (Figure 2(a)) implements
each GPU thread as an execution unit for single element
computation. Here we exploit instructional parallelism on
the element level and GPU threading on the multi-element
level. Because the number of threads equals the number of
elements, the thread-based execution model scales well with
the number of elements. However, as the resources per thread
(e.g. number of registers, amount of shared memory) are
typically small on most current GPUs, this strategy is only
suitable to “tiny” problem sizes or with algorithms that are
relatively memoryless (such as per thread reduction) .

The block-based execution model (Figure 2(b)) employs
each execution block as the execution unit. Thus, the number
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Fig. 2. Parallel execution mapping for multi-element processing based on
the thread-based execution and block-based execution models.

of execution blocks equals the number of elements. We exploit
the inner threading parallelism of each streaming multiproces-
sor (SM) on the element level and multi-SM parallelism on
the multi-element level. All threads of a single execution block
work together to complete tasks of a single element. Barriers
are normally required to synchronize between a block’s threads
while a scratch memory space (i.e the GPU shared memory)
is used to collaborate results. The granularity of the execution
blocks controls the amount of resources available for each
element’s computation. As the resources are allocated per
block, this strategy can handle a wide range of the inputs.

1: Input : SoA input data, n element size, nE No. of
elements, bl block size

2: Output: multi-element operation
3: Call MPA kernel <<< nE/bl, bl,NULL >>>(...)
4: function MPA KERNEL(SoA data)
5: shared s[blockSize][n]
6: tid← get threadId();
7: id← get globalId();
8: Load data from global-id memory to s[tid]
9: Execute SPA on shared memory s[tid]

10: Output SoA data
11: end function

Algorithm 3: Thread-based MPA

1: Input : input data in AoS format, n element size, nE No.
of elements, bl block size

2: Output: multi-element operation
3: Call MPA kernel <<< nE, bl,NULL >>>(...)
4: function MPA KERNEL(AoS data)
5: shared s[n];
6: bid← get blockId();
7: Cooperative load data of bidth element to s
8: syncthreads (); . sync loading of bth block
9: Coperative parallel SPA on shared memory s

10: syncthreads ();. sync computation of bidth block
11: Output AoS data from shared memory to bidth output
12: end function

Algorithm 4: Block-based MPA

Pr
ob

le
m

 c
la

ss
ifi

ca
tio

n

Domain
mapping

SI
M

D
-

w
av

ef
ro

nt
th

re
ad

-
bl

oc
k

co
m

pu
ta

tio
na

l
- 

gr
id

Execution 
domain

Problem 
domain

no
-s

yn
c

sy
nc

 r
eq

ui
re

si
ng

le
-S

M
m

ul
ti-

SM

si
ng

le
-

th
re

ad

tiny

small

small - 
medium

large

Fig. 3. Problem classification for algorithm mapping

In modern GPUs, the block-based execution models can be
divided into wavefront (or SIMD-width), block (per-SM), and
grid (using entire GPU) executions (illustrated in Figure 3).
The wavefront is a very special case that requires no synchro-
nization as all member threads execute in lock step. We have
exploited this model to remove synchronization redundancy
in reduction functions when the element size, for instance the
vector size in this case, is less than 64. On the other end, we
used the grid approach for large element size (above a hundred
thousand) in conjunction with an asynchronous processing
strategy [24]. This is different from the batch processing model
from MAGMA [1] as our model is based on the optimal
strategy initially proposed for multi-image processing tasks
by Ha et al. [24]. In the current work we concentrate on the
second of the block-based execution models presented, which
maps all instructions per element to an SM, and hence we can
exploit the shared memory resident on that SM. This is the
most reasonable solution for the case when the element size
is in the small to medium range (i.e. able to fit within shared
memory), which is ineffectively covered by existing methods.

As the number of threads per SM and the number of SMs
per GPU increases in modern systems, our thread-based and
block-based execution models will scale well. Furthermore,
by classifying the element size into different ranges and then
applying appropriate execution models, we can amortize the
performance of MPAs. Next, we discuss the data structures
and algorithm mappings needed for efficient MPAs on GPUs.

C. Multi-element data structures

Data structures are crucial for determining performance. We
have built a multi-element data structure from that of the single
element processing data structure with the target of achiev-
ing maximum throughput. We evaluate the efficiency based
on the coalesced condition [36]. Fortunately, this condition
solely depends on the access pattern of neighboring threads,
encouraging neighbor threads to access continuous data. For
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Fig. 4. Optimal data structure for multi-element processing (a) for the thread-
based execution model and (b) for the block-based execution model.

the thread-based execution model, this turns out to be the
interleaving data structure (see Figure 4(a)) where the first
component of the data of the first element is laid out in the
memory next to the first component of the second element and
so on. For the block-based execution model, it becomes the
concatenated data structure (see (Figure 4(b)) that lays out the
data structure of each of the elements sequentially in memory.

The interleaving and concatenating data structures are well-
known as the Structure of Array (SoA) and Array of Structure
(AoS) respectively. Though SoA is generally preferred for sin-
gle element GPU algorithms, in our multi-element processing
framework it is employed only for the thread-based processing
strategy or tiny-element problems while we exploit the AoS
for a much wider data input range. Here we reaffirm our theory
that there is no ultimate data structure that will serve all needs
optimally, but rather we need to adapt the data structure to the
algorithm strategy to achieve maximal performance.

1) High-performance data adapter: In our processing
framework, we implement a problem-adapted approach for
both algorithms and data structures. While the strategy pro-
vides maximal throughput per GPU kernel, it might introduce
data mismatch between successive processing steps in the
processing pipeline. Fortunately, we have an effective solution
for this problem based on the data adapter modules: the
transpose. As displayed in Figure 4, when we see the data
structure in 2D space, the SoA turns out to be a transpose
of the AoS; hence we can employ the optimal transpose
implementation [41] (which is equivalent to a memory copy) to
build this high-performance data adapter. We also combine the
transpose with other transformed functions to employ different
data structures for inputs and outputs, and hence we can save
bandwidth if further transformations are needed (for example
to take the square of each component value at the output).

2) Data padding strategy: To achieve the highest band-
width efficiency, we apply data padding to guarantee the access
of a thread/block starting at an aligned memory address. In
particular, we employ data alignment per element with the
AoS and data alignment per array with the SoA (see Fig-
ure 4). Our strategy has proven to be simple yet effective and

compact. This alignment strategy only increases the storage
by approximately 10 percent in contrast to the alignment per
data dimension strategy which can be very expensive with high
dimensional input data.

An additional benefit of data padding is that even though
data might have odd size numbers in terms of number of
elements and/or element size, our transpose function always
achieves the highest memory bandwidth efficiency because
execution blocks always access aligned memory for both data
loading and storing. Hence, the added overhead due to the
changing of data structures is minimized.

D. Multi-element algorithms
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Fig. 5. Generalization of MPAs from parallel SPAs

Based upon the similarities between single element and
multi-element processing, we propose two strategies to im-
plement MPAs from existing SPAs: the per-block and the per-
element generalization (Figure 5).

The per-block generalization (Figure 5(b) and Algorithm 5)
is the simplest method to extend from single element process-
ing which preserves the granularity per element. A typical
parallel SPA requires the execution of multiple blocks, with
each block processing one part of the input (Figure 5(a)).
Our per-block generalization employs almost identical kernels
except an additional internal for-loop over all elements. In

1: Input : AoS input data, n element size, nE No. of
elements

2: Output: multi-element operation
3: Call MPA kernel <<< SPA cfg, null >>>(...)
4: function MPA KERNEL(AoS data)
5: bid← get blockId();
6: shared s[n];
7: for i← 1, nE do . Loop inside the kernel
8: Upload bidthblock of ithelement to s;
9: inline SPA algorithm;

10: end for
11: end function

Algorithm 5: Per-block Parallelism MPA



other words, the method replaces the external CPU for-loop
with the internal GPU counterpart. This method has several ad-
vantages: it is simple, able to exploit the existing optimization
for SPAs, and capable of removing the call overheads. For
its simplicity, per-block generalization is the quick solution
for MPAs. However, in practice it is unlikely to be the most
efficient method because the condition for its effective usage
is similar to SPAs – namely large element size; however in
that case the overhead is negligible and the overall speedup is
small.

The per-element method generalizes the SPAs with a con-
straint that a single execution block perform the entire process-
ing of a single element (Algorithm 6). In this case, the internal
structure of a kernel resembles the decomposition of a SPA.
Contrary to the per-block generalization, moving from single
element processing to a per-element method is non-trivial. We
may or may not reuse the existing GPU implementation since
the resource constraint is the amount of memory per execution
block rather than entire GPU system. Though it has limited
resource support, the method turns out to be the most effective
approach for small to medium element sizes. It is also scales
well with the number of elements.

While a per-element method is generally better than a per-
block generalization, there is a turning point where per-block
becomes a better option. We determine this turning point based
on the ability to utilize the parallel processing power of the
system: the number of execution blocks. In the per-element
strategy, it is the number of elements while in the per-block
strategy it is equal to the number of data blocks per element.
Our implementation then chooses the method that gives a
higher number of execution blocks. This selection strategy
is applied for small to medium problem sizes which is the
main concern of our discussion. Again, our selection strategy
depends both on the number of elements and the element size
to achieve maximal processing throughput.

Next we discuss some of the essential techniques that we
apply in our multi-element processing framework to achieve
maximal performance.

1: Input : input data in AoS format, n element size, nE No.
of elements

2: Output: multi-element operation
3: CallMPA kernel <<< nE, bl,NULL >>>(...)
4: function MPA KERNEL(AoS data)
5: bid← get blockId();
6: shared s[n];
7: loop i← first block to last block;
8: Upload the ithblock of bidthelement to s;
9: Process s then output AoS data of the ithblock;

10: end loop
11: end function

Algorithm 6: Per-element MPA kernel

E. Optimizations for multi-element processing

1) Execution block configuration: Kernel configuration
(number of threads, number of blocks) determines the paral-
lelism granularity and has strong influences on performance.
While a tuning strategy is often required to maximize perfor-
mance [49], it is important to start with a good estimation
as the configuration space is large and displays non-linear
behavior. A good estimator must satisfy two conditions: it
scales well across platforms and it is adapted to the problem
size. That means it has to take into account the hardware
configuration of the running system (i.e number of registers,
size of the shared memory) and the kernel information (i.e.
number of threads, shared memory usage and problem size).

Our estimator employs a multi-level strategy. The first
heuristic is based on occupancy calculations [16]. GPU mem-
ory offers very high bandwidth but also high latency. The
occupancy number reflects the capability to hide this memory
latency. We chose the occupancy calculation methodology as
it takes into account both the information of the underlying
system and the execution kernel, making it an estimator that
scales well. This is also the choice employed by the Thrust
library [27].

Even though high occupancy indicates a good parallelism
efficiency, it does not necessarily directly correspond to a high
performance. We observed significant variation in the perfor-
mance of an algorithm even in the permissible configuration
range of high occupancy. In order to narrow down the search
space, we employ the second strategy based on the capability
of the system to use high performance resources: the registers.
The idea comes from an observation by Volkov et al. [49]
that between all admissible setups, the configuration using a
minimum number of threads enables a maximal number of
registers per execution threads will run faster.

We propose a combined approach which starts with the
minimal block size – the wavefront – and increase a minimal
step (wavefront size) each time till the occupancy requirement
is met. This is reversed to the maximal block size strategy
employed by Thrust [27] which starts the search with the max-
imum block size. Our strategy prevents idle threads from being
generated, and reserve computational resource for working
threads. As shown in Table I, we achieve higher performance
with our minimal block size strategy in comparison to the
fixed size strategy [49] and maximal block size strategy [27].

Configuration Occupancy Runtime (µs) Notes
768 100% 80.5 Thrust
512 100% 79.1
256 100% 77.8
192 100% 77.4 Ours
128 75% 83.9
64 50% 119.7 Volkov

TABLE I
OUR INITIAL CONFIGURATION BASED ON MINIMAL ADMISSIBLE

OCCUPANCY CALCULATION SHOWS BETTER PERFORMANCE THAN
EXISTING APPROACHES.
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Fig. 6. The connection between data in 2D data domain to 2D execution
block and the physical 1D execution thread on GPUs which determines the
coalesced condition of 2D execution grid.

2) Mapping with a 2D grid: A 2D execution grid is
often employed in image processing and matrix computation
algorithms since it allows a one-to-one mapping from the exe-
cution grid to the processing space (Figure 6). One intriguing
question is that how the 2D configuration might influence the
performance of a kernel.

We evaluate the efficiency of a 2D configuration based
on the coalesced condition. As the cache line has a 32-byte
granularity, to achieve 100% bus utilization for a column-wise
mapping we need at least 8 threads per row for single floating
point (fp) computation and 4 for double (db). We validate and
reconfirm this hypothesis using a 2D copy kernel with different
configurations which yield the same number of threads. As
shown in Table II, when the bus is under-utilized (one or two
threads), accessing less data (with fp) is not faster than more
data (with db); however when the bus is fully-utilized (eight
threads and more) the transfer time with db is twice as large as
with fp. The minimum number of threads per rows, eight for
4-byte data (fp) and four for 8-byte data (db) explains why in
practice some configurations are generally preferred such as
8× 8 or 16× 16.

Based on the number of threads determined by the con-
figuration estimator and the constraint of a 2D mapping, we
propose an adaptive 2D configuration as follows:

• Compute the number of threads in 1D using the occu-
pancy calculation.

• Choose the number of threads per row n as a multiplier
of eight (floating) or four (double).

• Compute the number of rows m, giving preference to the
configuration with m = n for square domain computa-
tions.

Configuration float double Note
128× 1 0.7 0.69 float is not faster than double
64× 2 0.37 0.36
32× 4 0.22 0.21 double-coalesced
16× 8 0.13 0.20 float-coalesced
8× 16 0.11 0.20 float is twice as fast as double
4× 32 0.11 0.20

TABLE II
PERFORMANCE OF DIFFERENT 2D BLOCK CONFIGURATION (DATA COPY

FOR 256 MATRIX 128× 128

3) Shared memory and double computation: Working with
shared memory is an essential technique to extract maximum
parallel processing power. Shared memory is an explicit pro-
grammable cache memory which has very low latency. Shared
memory contents can be accessed in parallel through different
memory banks. Bank conflicts happen when threads in the
same wavefront accesses the same memory bank, in which
case the action will be serialized. Regular one-to-one mappings
often suffer from bank conflicts, for example, when threads
access data row-wise. A typical technique to remove this bank
conflict is to use padding.

Since each bank has a fixed width (typically 4-bytes) the
amount of padding will differ based on the type of data. For
example, the row-wise access with a padded array s[32][33]
suffers no bank conflicts with fp data but a 2-way bank
conflict with db. One might try to remove this bank-conflict
by storing the high word and low-word of a db separately on
two different 32-bit arrays. However, this approach requires
extra loading, storing and format conversion instructions. It
turns out that these additions outweigh the benefits of 2-way
bank conflict removal. Also note that db computations require
higher arithmetic intensity than fp computations, so they will
suffer less performance loss due to the shared memory bank
conflict. We conclude that the same shared memory structures
could be used for both fp and db computation. That facilitates
the use of template programming to yield a unified code base
for both fp and db computation.

4) Hybrid model based on SIMD-width: There are certain
cases when the computation only requires a sub-block amount
of memory and can not be handled by a single thread, for ex-
ample the matrix vector multiplication with small ranks. While
the block-based approach can handle the problem, we again
face the resource inefficiency of a large element algorithm on
small elements. This also leads to a large performance gap
between thread-based execution and block-based execution
results as shown on Figure 9.

We propose a hybrid approach which maps multiple
threads— a group—to a single element, but the entire block is
split amongst multiple elements. We allocate an equal number
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of threads—a group size—to an element and the shared
memory is divided between groups—per element similar to
the thread—based approach. The members of a group perform
the computation cooperatively on shared memory. Here are
two options to perform the computation: interleaving and
contiguous groups.

In the interleaving option (Firgure 7(a)), two neighboring
threads belong to two different element groups. This option is
vital when the computation per thread is independent, as their
is no need for synchronization between elements in the same
group. The SoA data structure is used for this model as each
thread per group works on contiguous elements in memory.

In practice, the computation is dependent and normally re-
quires synchronization points similar to block-based methods.
This might hurt the performance. Fortunately, the synchro-
nizations can be effectively removed if all the group members
belong to the same wavefront (SIMD width) - the contiguous
groups (Figure 7(b)). This allow us flexible block sizes which
are divisors of wavefront size, which is 32 on current GPU
architecture. The AoS data structure is the preferred with this
model as it allow cooperative works and data IOs between
threads of the same group.

We observed a significant improvement on BLAS2 oper-
ations with small rank matrices when we apply the hybrid
model. There exists data reuse between threads mapped to
a given element; however, it is insufficient to allocate an
entire block to that element. Therefore, it would be better to
divide the resources of a single block to multiple elements just
enough to amortize the per-element performance.

F. Optimal processing framework for large elements

While the focus of the paper is on “small” element process-
ing, our framework also provides a solution for large elements.
Based on the assumption of the uniformity of the data and
operations, we exploit the optimal asynchronous framework
for multi-image processing—the ISP—by Ha et al. [24] for
MPAs with large elements. We further extend the idea for
small elements when the memory requirements are larger
than GPU main memory. In such a case, we divide our data
into chunks, each including a number of small elements that
can fit within GPU main memory. We then apply both the
asynchronous streaming framework on our multiple chunks
structure and our MPA for each chunk. Besides the capability
to handle the problem with an arbitrarily large number of
elements, the chunk structure also improves the GPU-CPU
transfer as it reduces the data overhead and reaches the
minimum size requirement for effective out-of-core bandwidth
usage.

IV. RESULTS

In this section, we report the results of implementing our
multi-element framework in the context of linear algebra
operations. The system we used in our experiments is a PC
server, 16 Intel Xeon Core x5770 running at 2.93Ghz, 12-
GB DDR3 1600, with four NVIDIA Tesla C2050 cards. The

program is compiled with CUDA NVCC 4.2. Run-time of each
function is measured in milliseconds.

We perform tests on synthetic data randomly generated to
cover different ranges of element (matrix) size, number of
elements and data type (float or double). While our framework
is not limited to linear algebra functions, we found it more
appropriate to compare our implementation to generally-used
and highly-optimized packages such as NVIDIA’s CuBlas and
MAGMA. Note that currently CuBlas and MAGMA are start-
ing to support batch mode processing; however their features
do not cover all the functions such as BLAS Level 1 and
BLAS Level 2. We compare our direct MPA implementation
to the batch mode available with the CuBlas (MAGMA) and
our batch processing model using multiple streams 2 .

The tests were conducted by using a large array of structures
(AoS) or structure of arrays (SoA) so that we nearly maximize
the GPUs memory capacity. For our tests, we repeat the
operations iteratively, effectively simulating many operations.
The number of array operations was well over 107 in all cases.
This ensures that the performance of the algorithm reaches its
peak for a given input size.

Due to the nature of mapping computations to the GPU
with thread blocks, there will be performance oscillations with
respect to problem size for various BLAS operations. Peak
performance is attained when the problem size is divisible
by the block size. We demonstrate the performance of our
framework for three canonical BLAS1, BLAS2, and BLAS3
operations: dot product of two vectors, matrix-vector multi-
plication, and matrix-matrix multiplication, respectively. The
tests we show are only for double precision, although our
framework supports single precision as well.

A. BLAS Level 1 functions

Figure 8 shows our result for BLAS Level 1 functions. As
the computational complexity of these functions is low, their
performance characteristics are constrained by memory band-
width, so we use the bandwidth efficiency as its appropriate
measurement. The results show the following:

• Our approaches were capable of reaching up to 65%
of the theoretical bandwidth while other methods are
hundreds of times slower.

• The thread-based model using the SoA data structure
shows a steady performance which is higher than that
of the block-based approach for tiny element sizes.
However, when the element size increases (larger than
160), the latter, which allows cooperative computation,
becomes faster.

• The performance variation with different block sizes
(64 and 128) is significant even in the range of high
occupancy configurations (up to 20 GB/s, 50% at a vector
size of 160). The 64 threads configuration is faster. These
observations confirm our discussions in the previous
section about optimal block size strategy.

• CuBlas algorithms fail to perform well in batch streaming
modes due to implicit synchronization as data was copied
from GPU output to CPU memory.



(a)

(b)

Fig. 8. Performance results for BLAS1 functions with different configurations
(64, 128 block size) and execution models (block-based, thread-based models
as well as for-loop and batching model from cuBlas) demonstrating that our
method can leverage performance and out-perform existing methods.

Fig. 9. Performance results for BLAS 2 functions. The hybrid approach is
virtually capable of closing the performance gap between the thread-based
and block-based models.

B. BLAS Level 2 functions

As illustrated on Figure 9, as the complexity increases,
the performance gap between our methods and the batch
mode is narrower: about four times higher over the range.
The thread-based model performs well with tiny matrices;
however, its range is limited to matrices of size less than
16 × 16. Our hybrid method helps increase the amount of
shared memory per-element and exploits the parallelism of
SIMD threads, hence it extends the range while providing solid

Fig. 10. Performance results for BLAS Level 3 functions, as the algorithms
depend on block subdivision and have high computational intensity, our
performance matches existing methods at the block size bounds while being
significantly better with off-bound ranges.

performance gains. It closes the gap in performance between
the thread-based and block-based approaches. Our simple
batching method (Algorithm 2) shows significant improvement
over the sequential-for-loop approach, and is comparable to an
optimized CuBlas batch function.

C. BLAS 3 Level functions

BLAS Level 3 operations are compute-bounded and require
a considerable amount of resources. The following observa-
tions can be made based upon the data presented in Figure 10:

• Our methods significantly improve over other methods
for small sizes (from 2× 2− 32× 32).

• We provide competitive performance for large matrix
sizes. Given that the memory and computational require-
ments increase algebraically, when the computational in-
tensity is high enough to saturate the GPU computational
power, we do not improve much over the CuBlas function
running batch mode.

• Our adaptive method which chooses the model and block
size based on number of elements and element sizes gives
us competitive performance on the entire input range.

The performance of our execution models from BLAS Level
1, 2, and 3 show that we have addressed the problem of
existing methods when dealing with small matrix sizes, and
our models are capable of saturating the performance even
with small element sizes.

D. LAPACK Functions

We compare our LAPACK functions with Cholesky and
LU decomposition provided by MAGMA [43]. It is clear that
our method outperforms the MAGMA solutions and is able
to reach 50 GFLOPS at relatively small matrix sizes on the
order of 120 × 120. Our performance curve is low at small
sizes due to the fact that the our algorithm is generalized from
the block subdivision strategy which performs poorly at sizes
smaller than a single block. We envisage that improvements
can be made in the decomposition to help eek out further
performance gains at small matrix sizes.



Fig. 11. Our experiments on batch LAPACK-type operations.

V. SUMMARY AND CONCLUSIONS

In this paper we present the algorithmic articulation of
a framework designed to exhibit strong performance char-
acteristics when applied to multi-element processing. The
main contribution of our work is the demonstration of a
framework that is specifically designed to overcome the two
main deficiencies that exist within current multi-element pro-
cessing frameworks. First, our framework has been designed
to handle a range of element sizes from the very small to the
moderately large. Second, our framework has been specifically
constructed to address the aforementioned overhead issue.
Instead of hiding the overhead, we remove it entirely. To
demonstrate the efficacy of our approach, we have developed a
GPU library for batch processing of linear algebra operations
such as dot-product (BLAS1), matrix-vector multiplication
(BLAS2), matrix-matrix multiplication (BLAS3) and linear
system solving (e.g. Cholesky decomposition with backsolve).

We presented the results of using our system for a myriad
of matrix ranks, from the very small to the moderately large –
a range often neglected by many competing systems. We show
that by exploiting prior information when we perform multi-
element processing, we then can utilize the available massively
SIMD streaming hardware more efficiently.

The framework we provide is not limited to only linear
algebra operations. By its construction, it can be exploited
for any multi-element processing operation. By adding the
extra dimension provided by “batch” processing, we were able
to more fully utilize the capabilities of available massively
SIMD hardware. In future work, we envisage extending this
framework to other important linear algebra operations (such
as eigenvalue computation and singular value decomposition),
as well as to other non linear algebra operations such as batch
image processing.

Though our results have confirmed our hypotheses, we
believe we have just open the door of multi-element processing
problems. The optimal solutions for a particular problem is
still a challenge, our framework only provide tools to set a
quick, lower bound solution. A final solution might requires
a combination of different strategies. And we see this as our
future works.
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