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Abstract:

Vector field simplification aims to reduce the complexity of the flow by removing features in order of
their relevance and importance, to reveal prominent behavior and obtain a compact representation
for interpretation. Most existing simplification techniques based on the topological skeleton
successively remove pairs of critical points connected by separatrices using distance or area-based
relevance measures. These methods rely on the stable extraction of the topological skeleton,
which can be difficult due to instability in numerical integration, especially when processing
highly rotational flows. Further, the distance and area-based metrics are used to determine the
cancellation ordering of features from a geometric point of view. Specifically, these metrics do not
consider the flow magnitude, which is an important physical property of the flow. In this paper, we
propose a novel simplification scheme derived from the recently introduced topological notion of
robustness, which provides a complementary flow structure hierarchy to the traditional topological
skeleton-based approach. Robustness enables the pruning of sets of critical points according to a
quantitative measure of their stability, that is, the minimum amount of vector field perturbation
required to remove them within a local neighborhood. This leads to a natural hierarchical
simplification scheme with more physical consideration than purely topological-skeleton-based
methods. Such a simplification does not depend on the topological skeleton of the vector field
and therefore can handle more general situations (e.g. centers and pairs not connected by
separatrices). We also provide a novel simplification algorithm based on degree theory with
fewer restrictions and so can handle more general boundary conditions. We provide an imple-
mentation under the piecewise-linear setting and apply it to both synthetic and real-world datasets.
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Abstract— Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance
and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification
techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices using distance or
area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to
instability in numerical integration, especially when processing highly rotational flows. Further, the distance and area-based metrics
are used to determine the cancellation ordering of features from a geometric point of view. Specifically, these metrics do not consider
the flow magnitude, which is an important physical property of the flow. In this paper, we propose a novel simplification scheme
derived from the recently introduced topological notion of robustness, which provides a complementary flow structure hierarchy to the
traditional topological skeleton-based approach. Robustness enables the pruning of sets of critical points according to a quantitative
measure of their stability, that is, the minimum amount of vector field perturbation required to remove them within a local neighborhood.
This leads to a natural hierarchical simplification scheme with more physical consideration than purely topological-skeleton-based
methods. Such a simplification does not depend on the topological skeleton of the vector field and therefore can handle more
general situations (e.g. centers and pairs not connected by separatrices). We also provide a novel simplification algorithm based on
degree theory with fewer restrictions and so can handle more general boundary conditions. We provide an implementation under the
piecewise-linear setting and apply it to both synthetic and real-world datasets.

Index Terms—vector field simplification, visualization, topological analysis, robustness, well groups.

1 INTRODUCTION

Vector field simplification aims to reduce the complexity of the flow
by removing features in order of their relevance and importance, re-
vealing prominent behavior and obtain a compact representation for
interpretation. In addition, systematically simplifying the flow struc-
ture gives a consistent and multi-scale views of the flow dynamics.

A considerable amount of research has been focused on vector field
simplification based on the notion of a topological skeleton [20, 22].
A topological skeleton consists of critical points connected by spe-
cial streamlines called separatrices, which provides a condensed rep-
resentation of the flow by dividing the domain into regions of uniform
flow behavior. However, existing simplification techniques rely on the
stable extraction of the topological skeleton, which can be difficult
due to instability in numerical integration, especially when processing
highly rotational flows, e.g. Figure 1. Furthermore, the distance and
area-based relevance measures that are commonly used to determine
the cancellation ordering of critical points typically rely on geometric
proximity and do not consider the flow magnitude, which is an impor-
tant physical property of the flow.

In this paper, we propose a new vector field simplification scheme
derived from the recently introduced topological notion of robustness.
Robustness, a notion related to persistence [14, 27], is used to repre-
sent the stability of critical points and thus assesses their significance
with respect to perturbations of the vector fields. Intuitively, the ro-
bustness of a critical point is the minimum amount of perturbation that
is required to cancel it within a local neighborhood, measured under an
appropriate metric taking the flow magnitude into consideration. The
contributions of our approach are:

• We propose a new simplification strategy based on robustness.
Robustness enables the pruning of sets of critical points accord-
ing to a quantitative measure of their stability. Such a strategy is
(a) naturally hierarchical, (b) encodes flow magnitude, (c) gives
a precise ordering of critical points cancellations, and (d) quan-
tifies the amount of perturbation that is needed at each level.
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• By comparing with the distance-based metric, we argue that
the proposed strategy indeed provides a complementary view to
the topological-skeleton-based simplification. The simplification
does not depend on the topological skeleton nor require heuristic
parameters. Therefore, (a) the method can handle more general
situations (e.g. centers and pairs not connected by separatrices),
and (b) the simplification can be computed efficiently based on
sublevel set when separatrices are difficult to integrate.

• Our strategy is built on a novel simplification algorithm based on
degree theory. The algorithm can handle more general boundary
configuration without requirements on the Conley Index, com-
pared to the existing methods when canceling pairs of critical
points with opposite index. We provide an implementation under
the piecewise-linear setting, and apply it to a number of synthetic
and real-world datasets.

2 RELATED WORK

Vector field simplification can be classified into topology-based and
non-topology-based techniques [38]. Non-topology-based techniques

(a) (b)

(c)

Fig. 1: Extraction of the topological skeleton. Sinks (and saddle-sink separatrices) are
red, source (and saddle-source separatrices) are green, saddles are blue. (a) A highly
rotational flow field where the pointed critical points are close to Hopf-bifurcations, such
that numerical inaccuracies may accumulate during a long integration and different types
of separatrices may intersect or switch. (b)-(c) Instability of separatrices under a small
perturbation: The upper right sink is not connected with the saddle on the left in (b), but
they are connected after a small perturbation to the vector field in (c).
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typically focus on Laplacian smoothing of the potential of a vector
field [24, 31, 37]. In particular, Tong et al. [31] proposed a multi-scale
decomposition of a vector field using Hodge decomposition with each
component smoothed independently before summing them.

Topology-based techniques modify the vector field topology explic-
itly by merging or cancelling nearby critical points based on the notion
of topological skeleton [5, 11, 13, 20, 22, 33, 38]. One of the earliest
investigations was done by De Leeuw and Van Liere [9, 10, 8]. They
made use of a geometry-based relevance measure (e.g. with respect
to distance or area proximity) to determine the pair of fixed points
to be cancelled. A similar technique followed based on pair anni-
hilations [33]. Tricoche et al. [32] focused on a piecewise analytic
description for the simplified field, which was later extended to time-
dependent 2D flows [34]. Theisel et al. [30] presented an algorithm for
compressing vector fields while preserving their topology, and later
combined it with simplification [29]. Zhang et al. [38] introduced a
framework for fixed point pair cancellation based on Conley index
theory for vector field editing. They extended this operation to critical
point pairs that are not connected by a separatrix, such as a center and
saddle pair. Chen et al. [5] extended this idea to include periodic orbits
and presented a more complete pairwise cancellation framework.

Recently, a multi-scale hierarchy of the vector field topology has
been defined and computed based on Morse decompositions [4, 6],
where an explicit simplification technique based on this hierarchy is
yet to be developed. Simplifications have also been proposed in a com-
binatorial setting [26, 28]. Edelsbrunner et al. [13, 14] performed pair
cancellation on scalar fields defined on surfaces by changing the val-
ues of the scalar function near the fixed point pair. This is equivalent
to simplifying the gradient vector field of the scalar function. Finally,
scale space techniques [21, 27] have also been proposed to assess the
importance of a critical point for topology-based simplification.

In general, topological-skeleton-based methods focus on modifica-
tion of a local region enclosing the critical points of interest while
preserving the flow structure outside the region. There are different
methods to obtain such a region. Zhang et al. [38] and Chen et al. [5]
propose to compute an isolating neighborhood surrounding the critical
points, where a modified vector field can be found by solving a con-
strained optimization problem. This method is particularly relevant in
our context, as we will discuss it further in subsequent sections.

On the other hand, the notion of robustness is closely related to
other measures derived from the concept of persistence [14], such as
interval persistence [12], integral persistence [26], and scale-space per-
sistence [27]. While persistence has been used successfully for scalar
field visualization, robustness, first introduced in [15], is specifically
designed for vector-valued data [3, 16]. Recent work [36] assigns ro-
bustness to critical points in both stationary and time-varying settings,
and obtains a structural description of the vector field. Such a struc-
tural description implies the existence of a hierarchical simplification
strategy based on robustness, which is the main focus of this paper.

3 BACKGROUND

We provide relevant background in degree theory and robustness by
reviewing previous work [3, 36] with minimal algebraic definitions
and illustrating the related concepts through examples (Figure 2(a)-
(b)) whenever possible. We also provide introductory descriptions of
isolating neighborhoods and Laplacian smoothing used in vector field
simplification [5, 38].
Degrees. The (Poincaré) index of a critical point x of a vector field,
index(x), is the number of field rotations while traveling along a closed
curve centered at x counter-clockwise [35]. For a 2D vector field,
we consider its first-order singularities, namely critical points such as
sources, sinks, centers, and saddles. They have indices +1, +1, +1
and −1, respectively. A closely related concept is the degree of a con-
tinuous mapping (for its algebraic definition see [18] page 134 and
[3]). For a critical point x in 2D, its degree deg(x) equals its index.
Furthermore, for a (path-)connected component C in the domain that
encloses several critical points, its degree deg(C) is the sum of the re-
spective degrees of those critical points [3]. For our robustness-based
simplification strategy, we rely on a corollary of the Poincaré-Hopf
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Fig. 2: Suppose the vector fields in examples (a) and (b) are continuous, where sinks are
red, source are green and saddles are blue. From left to right: vector fields f , relations
among components of Fr , and augmented merge trees. (a) contains four critical points, a
sink x1, a source x3, and two saddles x2 and x4. (b) contains four critical points, x′1 (sink),
x′2 (source) , x′3 and x′4(saddles).

theorem (which is also employed by topological-skeleton-based sim-
plification, e.g. [33]), which states that if a connected component C in
2D has degree zero, then it is possible to replace the vector field inside
C with a vector field free of critical points.
Merge tree. To analyze a continuous 2D vector field f : R2→R2, we
define a corresponding scalar function f0 : R2→ R which assigns for
each point the magnitude (Euclidean norm) of the corresponding vec-
tor, f0(x) = || f (x)||2. We use Fr = f−1

0 (−∞,r] to denote the sublevel
set of f0 for some r≥ 0. We note that F0 is precisely the set of critical
points of f – the points where the magnitude of the vectors goes to
zero. A value r > 0 is a regular value of f0 if for all sufficiently small
ε > 0, f−1

0 [r−ε,r+ε] and f−1
0 (r) are diffeomorphic; otherwise it is a

critical value. We assume that f0 has a finite number of critical values
and F0 is finite. We highlight the difference between critical points of
f and the critical value of f0.

Increasing r from 0, the space Fr evolves and we can construct a
graph that tracks the (connected) components of Fr as they appear and
merge. This is called a merge tree (or join tree [1]). The root repre-
sents the entire domain of f0 while the leaves represents the creation
of a component at a local minimum. An internal node represents the
merging of two or more components. We further augment the merge
tree with degree information at each node. That is, to each node, we
record an integer that is the degree of the corresponding component in
the sublevel set. Since the degree of a component is the sum of the
degrees of the critical points lying in it, an initial computation of the
degrees of critical points is sufficient to determine the degree of any
component of any sublevel set [3].

Examples of such a tree is shown in Figure 2. We do not show any
components which appear after r = 0 as they have zero degree and do
not correspond to critical points of the vector field. We use α , β , γ , etc.
to represent components of certain sublevel sets. In (a), the mapping
f0 : R2 → R has three critical values, denoted as 0 < r1 < r2 < r3.
The merge tree on the right shows how the components of the sublevel
sets Fr evolve. At r = 0 there are four components α1,α2,α3, and α4
that correspond to the four critical points, each with non-zero degree.
At r = r1 there are three components in Fr, two of which (β2 and β3)
have non-zero degree. When r = r2, components β1 and β2 merge into
a single component γ1 with non-zero degree, while β3 grows into γ2.
Finally at r = r3, the single component ω1 has zero-degree. Similarly
in (b), the degree information is augmented with the internal nodes
of the merge tree as we track the evolution of components in Fr as r
increases.
Static robustness and its properties. The (static) robustness of a
critical point is the height of its lowest degree zero ancestor in the
merge tree [2, 36]. The static robustness quantifies the stability of a
critical point with respect to perturbations of the vector fields through
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the following lemmas explicitly stated in [36].
We first define the concept of perturbation. Let f ,h : R2→ R2 be

two continuous 2D vector fields. Define the distance between the two
mappings as d( f ,h) = supx∈R2 || f (x)−h(x)||2. A continuous mapping
h is an r-perturbation of f , if d( f ,h)≤ r.

Lemma 3.1 (Critical Point Cancellation [36]) Suppose a critical
point x of f has robustness r. Let C be the connected component of
Fr+δ containing x, for an arbitrarily small δ > 0. Then, there exists
an (r + δ )-perturbation h of f , such that h−1(0)∩C = /0 and h = f
except possibly within the interior of C.

Lemma 3.2 (Degree and Critical Point Preservation [36])
Suppose a critical point x of f has robustness r. Let C be the
connected component of Fr−δ containing x, for some 0 < δ < r and
r−δ being a regular value. Then for any ε-perturbation h of f where
ε ≤ r−δ , the sum of the degrees of the critical points in h−1(0)∩C is
deg(C). Furthermore, if C contains only one critical point x, we have
deg(h−1(0)∩C) = deg(x). In other words, there is no ε-perturbation
(ε ≤ r− δ ) that could cancel the critical point in C; that is, x is
preserved.

Now we revisit examples in Figure 2, by definition, the robustness
of the critical points in (a), x1, x2, x3, and x4 are r1, r1, r3, and r3, re-
spectively. Since the static robustness of x1 is r1, now for an arbitrarily
small δ , consider a component C⊆Fr1+δ that is slightly larger than β1
and contains x1, then Lemma 3.1 implies the existence of an (r1 +δ )
perturbation that cancels x1 by locally modifying the component C.
In example (b), the static robustness of all four critical points are r′3.
Let C ⊆ Fr′ be a component that is slightly larger than γ ′1 containing
x′1 (where r′2 < r′ < r′3). By construction, deg(C) = +1. Lemma 3.2
states that any r′-perturbation preserves the degree of C. In addition,
since x′4 has robustness r′3, let C′ ⊆ Fr′ be a component slightly larger
than γ ′2 containing only x′4, for r′2 < r′ < r′3. Lemma 3.2 implies that
no r′-perturbation will be able to remove x′4.
Isolating neighborhood and Laplacian smoothing. We now re-
view a distance-based simplification strategy that is based on isolating
neighborhood, the Conley index and Laplacian smoothing. In such
a simplification, we first locate pairs of critical points connected by
separatrices and sort them in order of their Euclidean distance. If cen-
ters are present, we use the field rotated by 90 degrees to determine
the pairing between saddles and centers [38]. For each pair of criti-
cal points, we compute its isolating neighborhood. Finally, we apply
vector-valued Laplacian smoothing to remove high-frequency noise
and reduce the number of critical points.

The concept of isolating neighborhood originates from Conley in-
dex theory. A region C is called isolating if all its boundary points can
be uniquely classified as either an entrance (i.e. inflow) or an exit (i.e.
outflow) point. In other words, C does not contain any inner tangen-
cies along its boundary. If a region C in the domain contains multiple
critical points and has trivial Conley index, then the associated theory
tells us the flow inside C can be replaced with a new vector field free
of critical points, e.g. using Laplacian smoothing [5, 38]. Here we
ignore the technical definition of Conley index [7], and only mention
that a typical situation for C to have trivial Conley index is when its
boundary ∂C contains a single inflow and a single outflow component.

To compute an isolating neighborhood that satisfies the trivial Con-
ley index requirement, existing methods [5, 38] proceed as follows.
Consider a pair of critical points connected by a separatrix, one of
them is referred to as a repeller while the other an attractor based on
the separatrix direction that connects them. In the piece-wise linear
(PL) setting, a region, C+, is grown from the triangle containing the
repeller in the forward direction of the flow. At the same time, an-
other region, C−, is grown from the triangle containing the attractor
in the backward flow direction. The intersection of these two regions,
C =C+∩C−, gives rises to the desired isolating neighborhood.

Given a vector field f and an isolating neighborhood C, a modified
vector field f inside C can be found by solving a constrained opti-
mization problem, referred to as Laplacian smoothing. Specifically, a

vector-valued discrete Laplacian equation is solved over C in the do-
main (e.g., a triangular mesh) where the vector values at the boundary
vertices of C are fixed. We employ the equation

f (vi) = ∑
j

ωi j f (v j),

where vi is an interior vertex and v j’s are the adjacent vertices that
are either in the interior or on the boundary of C. The weights ωi j
are usually determined using Floater’s mean-value coordinates [17].
This is a sparse linear system, which can be solved using a conjugate
gradient method [25]. Although this framework typically performs
well in practice, there is no guarantee that a critical point free field can
always be found due to the method that is employed to solve for the
linear system and, more importantly, the spatial discretization.

4 ROBUSTNESS-BASED SIMPLIFICATION ALGORITHMS

In robustness-based simplification, we first locate sets of critical points
that share the same lowest zero-degree ancestors in the merge tree and
sort them based on their robustness values. For each such set with
shared robustness value r, we compute the corresponding component
of the sublevel set C ⊆ Fr that contains it. Since by construction
deg(C) = 0, we can apply our simplification strategy to remove the
critical points in C.

While the distance-based strategy applies simplification to an iso-
lating neighborhood with trivial Conley index, the robustness-based
strategy applies simplification to components in the sublevel set of the
flow magnitude function with zero degree. For the remaining of this
section, we introduce relevant concepts and algorithmic procedures
with intuitive illustrations and synthetic examples whenever possible.

4.1 Preliminary
In this section, we introduce the relevant concepts and constructions.
First we consider them in a smooth setting, and then translate the cor-
responding language into the PL setting.

Given a 2D vector field restricted to the degree-zero component C,
f : C→ R, we define the image space of C, denoted as im(C). For
each point p ∈ C, we have a vector vp = f (p) ∈ R2. im(C) ⊂ R2 is
constructed by mapping a point p to its vector coordinates vp. The
origin in im(C) corresponds to the critical points (0-magnitude vec-
tors) in C. Since C ⊆ Fr, it follows that ∀p ∈C, ||vp||2 ≤ r, therefore
im(C) is contained within a 2D disk of radius r in R2. We denote the
boundary of such a disk as S.

Now suppose the boundary of C, denoted as ∂C, is a simple closed
curve1. Note that the above mapping maps ∂C to S, obtaining its
image as im(∂C). We refer to the boundary of im(C) to be uncov-
ered, if im(∂C)⊂ S, otherwise, it is covered. Figure 3(a)-(b) illustrate
these concepts. Note that both examples have zero degree. In 3(a),
the region C encloses a saddle-sink pair connected by separatrix. By
traversing counter-clockwise along ∂C and observing how its image
im(∂C) wraps around S, we see that the boundary of im(C) is uncov-
ered. In 3(b), the region C encloses a saddle-sink pair not connected
by separatrix, and the boundary of im(C) is covered.

In the PL setting, the vector field f is restricted to a triangulation
K of C, f : K → R2, where the support of K, |K| = C. We construct
the image of C by mapping each vertex p ∈ K to its vector coordinates
vp = f (p). Through linear interpolation, this also maps edges and
triangles in K to edges and triangles in im(C). This process is illus-
trated in Figure 4. The concept of covered and uncovered boundaries
of im(C) can be defined similarly up to a small additive constant.

4.2 Algorithm Overview
Our simplification strategy consists of three operations which are ap-
plied to C (while keeping its boundary fixed):

• Smoothing(C): Perform Laplacian smoothing on C (as de-
scribed in Section 3).

1This is not strictly needed, but it simplifies the algorithm and exposition.
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Fig. 4: An example component and its image space under the PL setting where a few
vector mappings are highlighted.

• Cut(C): Deform the vector field in its image space im(C) to
remove critical points in C.

• Unwrap(C): Modify the vector field in its image space im(C)
such that part of its boundary is uncovered.

There are three possible cases which are classified by the Conley index
of C, denoted as CH∗(C). The operations which are applied to simplify
each case are:

• Case (a): If CH∗(C) is trivial, return C1 = Smoothing(C).

• Case (b): If CH∗(C) is non-trivial and the boundary of im(C) is
uncovered, then C1 = Cut(C), and return C2 = Smoothing(C1).

• Case (c): If CH∗(C) is non-trivial and the boundary of im(C) is
covered, then (i) C1 = Unwrap(C), (ii) C2 = Cut(C1) and return
C3 = Smoothing(C2).

By construction, deg(C) = 0 in all 3 cases. Indeed, deg(C) 6= 0 is
a sufficient condition such that there exists no simplification. As we
go from the most restrictive case (a) to the least restrictive case (c),
additional processing is required, as detailed in the next section.

4.3 Algorithm Details
We now describe the Cut and Unwrap operations in detail. Note that
Smoothing is an operation we employ to achieve visually appealing
results, we focus on Cut and Unwrap operations and discuss the max-
imum amount of perturbation needed due to these operations.
Cut operation. Suppose the boundary of im(C) is uncovered. The
idea behind the Cut operation is to deform the vectors in im(C) such
that there is a small neighborhood surrounding the origin that is not
covered by im(C). This corresponds to the situation where there is no
critical point in C after the deformation and is illustrated in Figure 5.

vq

ε

vp

c∗

v′p v′qs

`

O

vyvx

`′ ε
s

`

O

c∗

Fig. 5: Cut operation. Left: The projection of edges which intersect ` during the Cut op-
eration. Right: After Cut, the light blue region represents im(C) which no longer contains
(covers) the origin and so is critical point free.

As shown in Figure 5 left, first we pick a vector, whose initial point
is located at the origin O and its terminal point is at an arbitrary point
c∗ from the uncovered part of the circle S (we refer to such a point
as the cut point). Let ` be a line that coincides with such a vector
passing through c∗. Define another line `′ which is orthogonal to ` and
is ε away from the origin. The point s ∈ `′ is at a distance ε from the
origin. Next, we find all the mesh edges vpvq (corresponding to the
edge pq in K) in the interior of im(C) that intersect with the line `,
and project their end points along the direction of ` onto `′, forming
the projected edge v′pv′q. In the original domain, the vectors at p,q∈K
are deformed from vp and vq to the vectors v′p and v′q respectively.
Third, we locate all the mesh edges vxvy where x ∈ ∂C (and so vx is on
the boundary of im(C)) and vy is in the interior. We move the point vy
to s so that the edge vxvy no longer crosses ` and the boundary vector
remains unchanged. Since the boundary of im(C) is uncovered, there
is no edge that intersects ` whose end points are both located on the
boundary of im(C) (i.e. whose corresponding points are both in ∂C).

The above operation therefore creates an empty wedge around the
origin (as shown in Figure 5 right), which ensures that there is no
critical points in C after the modification. By construction, the amount
of perturbation is less than r+ ε .

The procedure to find a cut point c∗ is illustrated in Figure 6(a)-(b).
In (a), by traversing counter-clockwise along ∂C and observing how
its image im(∂C) (blue curve) wraps around S, we define the angle
θ of a point along S to be its phase. In (b), we showcase (in blue)
the corresponding phase plot (a.k.a. angle-valued function), that is, a
function h : ∂C→ θ where θ ∈ [−π,π]. Traversing ∂C again, we can
use phase-unwrapping to give us a continuous function ϕ : ∂C→ φ

for φ ∈ R (shown in red) using the following equation

ϕ(i) =
⌊

θ(i)−φ(i−1)+
1
2

⌋
+θ(i).

Since the boundary of im(C) is uncovered, it follows that max∂C(ϕ)−
min∂C(ϕ) < 2π . We set the cutting angle φ∗ as the mid-point of the
uncovered part and recover the corresponding cut point on S by

φ
∗ =

max∂C(ϕ)+min∂C(ϕ)

2
+π,

c∗ = (r cosφ
∗,r sinφ

∗),

where r is the robustness parameter of the sublevel set (and the diam-
eter of the disk in the image space). By finding this cut point c∗ using
the phase parameter θ , we do not have to worry about the PL effects
in determining where the boundary is uncovered.
Unwrap operation. Suppose the boundary of im(C) is covered. In
this case, we must first Unwrap the boundary so that part of it becomes
uncovered, then we perform the Cut procedure and finally restore the
boundary.

The Unwrap operation is divided into several steps illustrated in
Figure 6(c)-(e). We must first determine the optimal unwrap point.
This step is similar to determining the cut point. As before, we traverse
∂C and compute a phase plot (a.k.a. an angle-valued function) h :
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(a) (b) (c) (d) (e)

Fig. 6: (a)-(b) Locating a cut point for the Cut operation: (a) Track the angle (a.k.a. phase) of a point in im(∂C) along S as we move along ∂C counter-clockwise. (b) The corresponding
phase plot (a.k.a. angle-valued function) is shown in blue. The result of phase-unwrapping is shown in red. (c)-(e) Locating an unwrap point in Unwrap operation: (c) Track the angle
of a point in im(∂C) along S as we move along ∂C counter-clockwise. (d) The corresponding angle-valued function (shown in blue), the result of phase-unwrapping (shown in red), and
the optimal unwrap point c∗ corresponding to phase φ ∗. (e) The modified boundary of im(C) (shown in purple) which becomes uncovered.

∂C→ θ , and apply phase-unwrapping to obtain a continuous function
ϕ : ∂C→ φ (Figure 6(c)-(d)). The unwrap point c∗, is defined by

φ
∗ =

max∂C(φ)+min∂C(φ)+2nπ

2
,

where n is the smallest integer such that |min(θ)+2nπ−max(θ)|<
π , and c∗ = (r cosφ∗,r sinφ∗).

To Unwrap the boundary, let X ∈ ∂C be the set of points on the
boundary such that φ(X)> φ∗−δ , and Y ∈ ∂C be the set of points on
the boundary such that φ(Y )< φ∗+δ −2nπ . To Unwrap we set

φ(X) = φ
∗−δ , φ(Y ) = φ

∗−2nπ +δ ,

as illustrated in Figure 6(e) and set the corresponding vectors to

vx = (r cos(φ(x)),r sin(φ(x))) x ∈ X
vy = (r cos(φ(y)),r sin(φ(y))) x ∈ Y

where r is the magnitude of the vectors on the boundary (e.g. the sub-
level set parameter). The final step is to restore the boundary to its
original values, which again covers the boundary but keeps the origin

(a) (b)

(c) (d)

(e) (f)

x1

x2 x3

x4

Fig. 7: SyntheticA. (a) The original vector field, sinks are red, sources are green and
saddles are blue. (b) The topological skeleton, saddle-sink separatrices are red, saddle-
source separatrices are green. (c)-(d) 1st level simplification: before (left) and after (right)
Smoothing. (e)-(f) 2nd level simplification: before (left) and after (right) Smoothing.

uncovered. While not as obvious as in case (b), the deformation is
again bounded by r + ε . We omit the proof here, but the key obser-
vation is that we only move internal nodes by less than r+ ε . While
the unwrapping may introduce larger deformations, it allows us to de-
termine how to deform the internal vector field, as the output has its
boundary restored (e.g. re-wrapped). This procedure is showcased in
the next section with the SyntheticC example.

4.4 Synthetic Examples
We illustrate our robustness-based simplification strategy on three PL
synthetic examples, highlighting the three different cases.

SyntheticA (Figure 7) corresponds to the example in Figure 2(a).
It involves paris of critical point connected by separatrices. At r1, we
have a component which contains critical points x1 and x2 and at r2
we have a component which contains all four critical points x1 to x4.
The simplification hierarchy involves two steps ranked by robustness
values: we first simplify x1 and x2 then simplify x3 and x4. Since both
components (marked by yellow boundary) have trivial Conley index,
their simplifications correspond to case (a), where only Smoothing
operations are needed.

(a) (b)

(c) (d)

(e) (f)

Fig. 8: SyntheticB. (a) The original vector field. (b) The topological skeleton. (c)-(d)
Single level simplification before (c) and after (d) by combining Cut and Smoothing.
(e)-(f) Only applying Smoothing does not make the region a critical point free field.

SyntheticB (Figure 8) corresponds to example (b) in Figure 2. It in-
volves a group of four critical points which are interconnected by sep-
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(a) (b)

(c) (d)

Fig. 9: SyntheticC. (a) The original vector field. (b) The topological skeleton. (c)-
(d) Single level simplification before (c) and after (d) by combining Unwrap, Cut and
Smoothing.

aratrices, which could be simplified in a single level using robustness-
based strategy. Since the component of interest has non-trivial Conley
index, directly applying Laplacian smoothing fails (as shown in Figure
8 (e)-(f)). The component’s boundary is uncovered, so we apply case
(b) of our simplification by combining Cut with Smoothing.

SyntheticC (Figure 9) corresponds to case (c) of our algorithm. This
is an untypical case involving a pair of critical points not directly con-
nected by a separatrix. In this case, the component of interest C has
non-trivial Conley index, and the boundary of its image is covered.
The robustness-based strategy cancels the critical point pair without
any issue by combining Unwrap, Cut and Smoothing operations. We
further focus on this example by illustrating the image space of C,
im(C), during various steps of simplification in Figure 10. In Fig-
ure 10(a), the entire boundary and disk are covered. However, from
the left phase plot in Figure 11, we can see that the degree is 0. Once
the optimal unwrapping point is computed, we perform the Unwrap
operation, giving the right phase plot in Figure 11 and the image space
in Figure 10(b), leaving the boundary S uncovered. The effect of the
Cut operation in image space is shown in Figure 10(c), creating a void
surrounding the origin. Lastly, in Figure 10(d), the boundary is re-
stored to its original value while leaving the origin uncovered.

(a) (b) (c) (d)

Fig. 10: SyntheticC. The image space is shown through the different steps: (a) original,
(b) after Unwrap, (c) after Cut and (d) final output.

5 RESULTS

We demonstrate our robustness-based simplification strategy on a
number of real-world datasets. Whenever possible, we compare our

2π

π

0

π

2π

π

0

π

Fig. 11: SyntheticC. Left: The phase plot, original version (blue) and the phase-unwrapped
version (red). Right: The phase plot with optimal unwrap point (orange) and the modified
phase plot with boundary uncovered (purple).

simplification hierarchy and results with distance-based simplification.
The first real-world dataset we explore is the simulation of global

oceanic eddies [23] for 350 days of the year 2002. We consider
the top layer of the 3D simulation which is represented as a 2D
time-varying vector field of resolution 3600× 2400. We extract tiles
from this simulation data, representing the flow in the central Atlantic
Ocean (60×60) and construct standard triangulation on the point sam-
ples. We select multiple time slices from this data: OceanA contains
slices #21217 and #21311; OceanB and OceanC corresponds to slices
#20904 and #20821, respectively; OceanD includes a time-varying se-
quence of slices from #20710 to #20715.

Our second real-world dataset is taken from the simulation of
homogeneous charge compression ignition (HCCI) engine combus-
tion [19]. The domain has periodic boundary and is represented as
a 640×640 regular grid. The 2D time-varying vector field consists of
299 time-steps with a time interval of 10−5 seconds. We selected slice
#173 from this data, referred to as the Combustion dataset.

5.1 Topologically Equivalent Scenarios
In many scenarios, our approach produces topologically equivalent
results to the distance-based approach. The resulting modifications
to the vector field may differ; however, the obtained simplified vec-
tor fields are topologically identical using both approaches. OceanB
dataset (Figure 12(a)) provides an example where both approaches
agree. The two critical point pairs of interest are highlighted by the
black dashed boxes in the top row left. Here critical points are colored
by their robustness values, with red being low and white being high
robustness. The upper right pair has higher robustness than the lower
middle pair, and is further apart in distance. The simplification results
generated by distance-based and the robustness-based approach are
shown in the second and third row respectively. The approximated iso-
lating neighborhoods are highlighted by the white boxes (middle row)
while the sublevel sets the yellow enclosure (bottom row). From the
comparison, we observe that: First, both the distance and robustness-
based metric generate the same pairs of critical points. Second, the
simplification orderings determined by these two metrics agree. How-
ever, a subtle difference in the resulting vector fields from the two
approaches is visible due to the different local regions determined by
the two metrics and different algorithms for modifying the local vec-
tor fields. Note that, the local regions determined by the computa-
tion of isolating neighborhood are typically larger than those derived
from sublevel set of robustness value. Therefore, even though the two
approaches generate topologically equivalent results, the robustness-
based method requires smaller change to the original vector field.

OceanA dataset (Figure 13) shows a more complex scenario where
the local region encloses more than two critical points, i.e. a clus-
ter of critical points. The two vector fields in this example are from
slices #21217 and #21311. Each of these two clusters (highlighted by
the black dashed boxes in Figure 13 top row) consists of four critical
points that are close in distance and have small identical robustness
values. The robustness metric groups them as one cluster automati-
cally and computes a region based on their sublevel set. The bottom
row of Figure 13 provides the simplification results using the algo-
rithm introduced in Section 4. Although the distance-based method
cannot group these four critical points in one simplification, for com-
parison purpose we compute an isolating neighborhood that enclose
them. Laplace smoothing is then performed in this local region (Fig-
ure 13 middle row). From the comparison, we see that both meth-
ods return similar results. Nevertheless, the robustness-based method
can apparently handle regions with more complex boundary configu-
rations.

5.2 Inconsistent Hierarchical Scenarios
We also identified a number of scenarios where the distance-based and
robustness-based approaches do not agree. OceanC dataset (Figure 12
(b)) provides such an example. In this dataset, two pairs of critical
points are studied (highlighted in the top row of Figure 12 (b)). Even
though these four critical points are paired consistently using both met-
rics, their actual simplification orderings are different. The distance-
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(b)(a)

Fig. 12: (a) The OceanB dataset. (b) The OceanC dataset. For each subfigure: Top Row: Left – shows robustness values with the region of interest highlighted, robustness values are
colored from red to white, where red means low and white means high robustness; Right – shows the vector field marked by critical point types along with separatrices. Middle Row:
the two-step hierarchical simplification based on distance. Bottom Row: the two-step hierarchical simplification based on robustness.

(a) (b)

Fig. 13: The OceanA dataset: (a) #20311; (b) #21217. For each subfigure, Top Row: Left – shows robustness values with region of interest highlighted; Right – shows the vector field
marked by critical point types. Middle Row: before (left) and after (right) distance-based simplification. Bottom Row: before (left) and after (right) robustness-based simplification.
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21710(b) 21715(c)

21710(a) 21711 21714 21715

Fig. 14: The OceanD dataset. (a) A sampled time serie with pairs of critical points highlighted. (b) #21710. (c) #21715. For each subfigure (b)-(c), Top Row: The original vector field
(left) and with (right) the separatrices. Middle Row: The simplification ordering for the distance-based strategy. Bottom Row: The simplification ordering for the robustness-based
strategy. Orderings for distance and robustness-based methods are consistent in (b) and different in (c).

Fig. 15: The Combustion dataset. Top: The bottom-up hierarchical simplifications from the distance-based strategy. Bottom: The bottom-up hierarchical simplifications from the
robustness-based strategy.
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based method cancels the pair in the middle-right of the domain first,
while the robustness-based method cancels the lower-middle pair first.
Figure 14 provides another example that shows the discrepancy of the
two approaches in determining the simplification ordering of critical
point pairs in the time-varying setting. In this example, we look at
a number of consecutive time steps from the OceanD dataset. The
top row of Figure 14 highlights the pairs of the critical points that we
are interested in. The pairing of these four critical points again agree
with each other using both topological-skeleton and robustness metric.
We perform a per-slice simplification using the two approaches. The
results are shown in the third (distance-based) and fourth (robustness-
based) rows, respectively. From the results, we see that the cancella-
tion orderings are changing over time using the distance-based met-
ric. This is because the distance between the two critical points near
the upper-right corner is getting larger, while the other pair is getting
closer over time, resulting in the change of the simplification order-
ing. On the other hand, the robustness values for these two pairs are
stable during the time evolution. Therefore, the robustness-based sim-
plification returns consistent outcome. This examples shows that the
robustness-metric can capture physical properties of the flow dynam-
ics (i.e. flow magnitude) and provide a more consistent simplification
over time.

5.3 Challenging Scenarios

There are a number of cases where the topological-skeleton based met-
ric combined with the Laplace smoothing technique is incapable of
simplifying the given vector field. SyntheticB dataset shown in Fig-
ure 8 is such an example. In this case, it is impossible to find an
isolating neighborhood with trivial Conley index that encloses all the
critical points due to the boundary condition. Therefore, even though
the obtained local region is guaranteed to be zero-degree, the Laplace
smoothing fails to solve for a critical point free field. On the other
hand, the simplification algorithm introduced in Section 4 success-
fully simplifies the field. A similar situation occurs in the example
shown in Figure 16 (OceanA slice #21217). In this example, we try
to apply Laplace smoothing in the local region computed based on
the sublevel set of the robustness value of a cluster of critical points
(left). The boundary configuration of this region is rather complex and
does not satisfy trivial Conley index. The Laplace smoothing based
on this boundary configuration fails, while the proposed simplifica-
tion method succeeds. These two examples showcase the utility of
the proposed simplification algorithm in solving a critical point free
field within any given regions with zero degree. This relieves the re-
quirement of the trivial Conley index whose corresponding isolating
neighborhood is sometimes difficult to obtain.

Figure 9 illustrates a non-typical case that involve the cancellation
of a pair of critical points not directly connected by separatrix. It is
impossible for the topological-skeleton based method to compute an
isolating neighborhood that encloses two critical points not connected
by separatrix [5]. Nonetheless, the robustness metric is able to derive
a local region that encloses only these two critical points with total
degree equal to zero under certain configuration of the flow magnitude.
Hence, these two critical points can be cancelled using the proposed
algorithm. While this may not occur often in the real-world data, it
illustrates the flexibility and generality of the proposed method. In
practice, a simpler but similar situation may occur.

Figure 15 shows one slice from the combustion data. The corre-
sponding vector field is an incompressible flow. Therefore, the con-
ventional topological-skeleton based method cannot be directly ap-
plied as the separatrices either do not exist or are difficult to integrate
correctly. Additional step will be required, for example, rotating the
field by 90 degree and computing the topological-skeleton for the ob-
tained dual vector field in order to pair the critical points. In addition,
this dataset is much larger than the synthetic and ocean data sets, com-
puting topological-skeleton for the dual vector field and deriving the
subsequent isolating neighborhood for a given pair is computationally
expensive. In contrast, the robustness-based method does not require
the computation of the topology, and its sublevel set computation is
fast and can be augmented using parallel computation. Therefore, it

could be more suitable for the processing of large-scale datasets. Fig-
ure 15 compares the simplification results of the different ordering de-
termined by the distance-based metric (first row) and the robustness-
based metric (second row), where their corresponding bottom-up hier-
archies do not agree.

Fig. 16: OceanA slice #21217. A region (enclosed by yellow boundary) with non-trivial
Conley index and uncovered boundary, where direct smoothing operation does not remove
its critical points.

6 DISCUSSIONS

We have presented a new and complementary simplification frame-
work based on the robustness metric. It does not depend on the topo-
logical skeleton. It does, however, incorporate topological informa-
tion through robustness – a generalization of topological persistence.
Rather than considering the distance proximity between critical points,
the intuition behind robustness-based simplification is to consider the
maximum amount of perturbation we must apply to any one vector to
remove critical points.

The simplification algorithm comes with theoretical guarantees on
the bounds on the amount of perturbation we introduce, whenever cut-
ting and/or unwrapping is used. The main motivation for introducing
Laplacian smoothing is to produce more visually appealing results.
However, to the best of our knowledge, no bounds exist on the amount
of perturbation based on Laplacian smoothing, other than the obvious
maximum distance between points on the boundary. In the context of
robustness, this is twice the amount of perturbation our simplification
method alone uses. In practice, the addition of Laplacian smoothing
does increase the amount of perturbation but not significantly.

Our procedure provides us a natural simplification hierarchy and
works in a wide variety of settings.
Scalability: Our method is very efficient and should scale to very
large datasets. The computation of the robustness hierarchy is based
on a merge tree computation that runs in near linear time. This encodes
all the information we require for computing the simplification – there
is no need for a separate integration of separatrices. Determination
of the cut or unwrap point is done by only considering the boundary
of the region to be simplified. In case the region of interest has non-
zero degree, the algorithm first detects such a condition (specifically,
during the phase-unwrapping) and then simplifies the region as much
as possible.
Generality: The simplification procedure only requires that the de-
gree of the boundary be zero and so applies to a wide range of cases.
It can deal with highly rotational data (e.g. centers) as well as cases
where critical points are not connected by separatrices. Indeed, we
have shown that some unusual, non-intuitive simplifications may not
only exist but can be efficiently computed. We believe these meth-
ods allow us to handle much more general cases and have much less
restrictive conditions on the vector field data to be analyzed.
Extensions: While our simplification hierarchy is built on robustness
and sublevel sets of magnitude function, we note that the actual sim-
plification only requires degree-zero component. Therefore, we could
consider other metrics for constructing hierarchies such as incorporat-
ing both the magnitude of the vectors and the area, to capture a quan-
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tity closer to the energy of a perturbation. The algorithm would require
some modification, but the use of the phase plot to determine the cut or
unwrap point is agnostic to the metric being used. Of course it remains
an open question what other methods exist to generate degree-zero re-
gions for simplification.
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