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Abstract:

The Uintah Computational Framework was developed to provide an environment for solving
fluid-structure interaction problems on structured adaptive grids on large-scale, long-running,
data-intensive problems. Uintah uses a combination of fluid-flow solvers and particle-based
methods for solids, together with a novel asynchronous task-based approach with fully automated
load balancing. Uintah demonstrates excellent weak and strong scalability at full machine
capacity on XSEDE resources such as Ranger and Kraken, and through the use of a hybrid
memory approach based on a combination of MPI and Pthreads, Uintah now runs on up to 262k
cores on the DOE Jaguar system. In order to extend Uintah to heterogeneous systems, with
ever-increasing CPU core counts and additional onnode GPUs, a new dynamic CPU-GPU task
scheduler is designed and evaluated in this study. This new scheduler enables Uintah to fully
exploit these architectures with support for asynchronous, outof- order scheduling of both CPU
and GPU computational tasks. A new runtime system has also been implemented with an added
multi-stage queuing architecture for efficient scheduling of CPU and GPU tasks. This new runtime
system automatically handles the details of asynchronous memory copies to and from the GPU
and introduces a novel method of pre-fetching and preparing GPU memory prior to GPU task
execution. In this study this new design is examined in the context of a developing, hierarchical
GPUbased ray tracing radiation transport model that provides Uintah with additional capabilities
for heat transfer and electromagnetic wave propagation. The capabilities of this new scheduler
design are tested by running at large scale on the modern heterogeneous systems, Keeneland
and TitanDev, with up to 360 and 960 GPUs respectively. On these systems, we demonstrate
significant speedups per GPU against a standard CPU core for our radiation problem.
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ABSTRACT
The Uintah Computational Framework was developed to provide
an environment for solving fluid-structure interaction problems on
structured adaptive grids on large-scale, long-running, data-intensive
problems. Uintah uses a combination of fluid-flow solvers and
particle-based methods for solids, together with a novel asynchronous
task-based approach with fully automated load balancing. Uintah
demonstrates excellent weak and strong scalability at full machine
capacity on XSEDE resources such as Ranger and Kraken, and
through the use of a hybrid memory approach based on a combina-
tion of MPI and Pthreads, Uintah now runs on up to 262k cores on
the DOE Jaguar system. In order to extend Uintah to heterogeneous
systems, with ever-increasing CPU core counts and additional on-
node GPUs, a new dynamic CPU-GPU task scheduler is designed
and evaluated in this study. This new scheduler enables Uintah to
fully exploit these architectures with support for asynchronous, out-
of-order scheduling of both CPU and GPU computational tasks.
A new runtime system has also been implemented with an added
multi-stage queuing architecture for efficient scheduling of CPU
and GPU tasks. This new runtime system automatically handles
the details of asynchronous memory copies to and from the GPU
and introduces a novel method of pre-fetching and preparing GPU
memory prior to GPU task execution. In this study this new de-
sign is examined in the context of a developing, hierarchical GPU-
based ray tracing radiation transport model that provides Uintah
with additional capabilities for heat transfer and electromagnetic
wave propagation. The capabilities of this new scheduler design
are tested by running at large scale on the modern heterogeneous
systems, Keeneland and TitanDev, with up to 360 and 960 GPUs re-
spectively. On these systems, we demonstrate significant speedups
per GPU against a standard CPU core for our radiation problem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programing; G.1.8 [Mathematics
of Computing]: Partial Differential Equations; G.4 [Mathematics
of Computing]: Mathematical Software; J.2 [Computer Applica-
tions]: Physical Sciences and Engineering

Keywords
Uintah, hybrid parallelism, scalability, parallel, adaptive, GPU, het-
erogeneous systems, Keeneland, TitanDev

1. INTRODUCTION
An important trend in high performance computing is the plan-

ning and design of software framework architectures for emerging
and future systems with multi-petaflop and eventually exaflop per-
formance. With ever imposed demands on system architects for
increased density and power efficiency, traditional systems are now
being augmented with an increasing number of graphics processing
units (GPUs) [30]. This design is most notable in systems such as
the Keeneland Initial Delivery System (KIDS)1 [32]. This archi-
tectural trend is also evidenced in the current upgrade path of the
DOE Jaguar2 system to Titan [24].

Significant challenges face those trying to program for such ar-
chitectures. The first of these challenges is the prospect of signif-
icantly less memory per core as the numbers of cores per socket
continues to grow. In order to address this challenge, as recognized
by a number of authors [1,25], Uintah [4], an open-source software
framework has moved from a model that only uses MPI to one that
employs MPI to communicate between nodes and a shared mem-

1KIDS is an experimental HP-Nvidia GPU cluster located at
the National Institute for Computational Sciences with 120 com-
pute nodes each with two Intel Xeon X5660 (Westmere 6-core
@2.8GHz) processors, 24GB memory, InfiniBand QDR (single
rail) interconnect and 3 Nvidia Tesla M2090 GPUs
2Jaguar is a DOE supercomputer located at the Oak Ridge Na-
tional Laboratory with 18,688 compute nodes each of which con-
tains a single 16-core AMD Opteron 6200 Series (Interlagos cores
@2.6GHz) processor on one of its two sockets, 32GB memory, and
a Gemini interconnect, giving 299,008 processing cores. Currently
on 960 nodes, the second socket contains a single Nvidia Tesla 20-
series GPU. This 960 node partition is known as TitanDev.



ory model using Pthreads to map the work onto available cores in
a node [21]. The Uintah task-based model lends itself better to the
use of Pthreads rather than OpenMP. This approach has led to the
development of a multi-threaded MPI runtime system, including a
threaded task scheduler that has enabled Uintah to show excellent
strong and weak scaling up to 196K cores on the DOE Jaguar XT5
system and good initial scaling to 262k cores on the upgraded DOE
Jaguar XK6 system [28]. Using this approach has reduced Uintah’s
on-node memory usage by up to 80% [21].

A second challenge posed by such architectures is the design of
runtime systems that maximize system utilization by fully exploit-
ing all available processing resources on-node. Central to this goal
is overcoming the inherent bandwidth bottleneck of PCI-express
(PCIe) transfers to-and-from the GPU, as discrete GPUs are typi-
cally hosted in PCIe slots. Data copies across the PCIe bus, which
has a maximum theoretical bandwidth of 8.0GB/s (PCI Express
Gen2 x16 for the Nvidia Tesla C20 series cards). In practice, this
rate is closer to 3.3GB/s when using paged memory, and 5.3GB/s
using pinned (page-locked) memory. For memory bandwidth bound
tasks, this bottleneck requires more advanced techniques to har-
ness the computational power offered by GPUs. Many current ap-
proaches to this problem leave CPU cores idle during GPU-based
computation, and others simply do not extend focus beyond a single
GPU. These approaches waste substantial available computational
power.

Uintah is novel in its use of a asynchronous, task-based paradigm,
with complete isolation of the application developer from paral-
lelism. The individual tasks are viewed as part of a directed acyclic
graph (DAG) and are executed adaptively, asynchronously and of-
ten out of order [22]. Uintah uses a novel adaptive meshing ap-
proach [18] as well as a variety of fixed mesh and particle solution
methods.

In this paper we look at how to extend Uintah’s hybrid multi-
threaded MPI runtime system [21] to support, schedule and execute
both GPU and CPU tasks simultaneously. We examine the design
of a CPU-GPU scheduler in the context of a developing scalable
hierarchical ray-tracing radiation transport model to provide Uin-
tah with additional capabilities for heat transfer, and electromag-
netic wave propagation. This work directly addresses the second
major challenge introduced by heterogeneous systems, specifically
utilizing all processing resources available on-node. In what fol-
lows Section 2 provides an overview of the Uintah software, while
Section 3 describes ARCHES, the Uintah component designed for
simulation of turbulent reacting flows with participating media ra-
diation, and its ray-tracing radiation transport model for which we
are developing GPU-based capabilities. Section 4 briefly describes
Uintah’s multi-threaded MPI runtime system design [21], which
this work extends. The new CPU-GPU task scheduler design and
the multitude of techniques used to overlap PCIe transfers and MPI
communication with GPU and CPU computation are also described
in Section 4. Finally, in Section 5, we describe computational ex-
periments that illustrate the effectiveness of our new hybrid CPU-
GPU task scheduler over a range in scales of processor core num-
bers and GPUs, comparing results with and without GPUs on KIDS
and TitanDev, the 960 node parition of the Jaguar system outfitted
with GPUs. The paper concludes by describing future work in this
area.

2. OVERVIEW OF UINTAH SOFTWARE
The Uintah Software was originally written as part of the Uni-

versity of Utah Center for the Simulation of Accidental Fires and
Explosions (C-SAFE) [8]. C-SAFE, a Department of Energy ASC
center, focused on providing science-based tools for the numerical

simulation of accidental fires and explosions. The aim of Uintah
was to be able to solve complex multi-scale multi-physics prob-
lems. Uintah is regularly released as open source software [10].

In order to solve complex multi-scale multi-physics problems,
Uintah makes use of a component design that enforces separation
between large entities of software that can be swapped in and out,
allowing them to be independently developed and tested within the
entire framework. This has led to a very flexible simulation pack-
age that has been able to simulate a wide variety of problems [3].
The Uintah component approach allows the application developer
to only be concerned with solving the partial differential equations
on a local set of block-structured adaptive meshes, without worry-
ing about explicit message passing calls or notions of paralleliza-
tion or load balancing. This approach also allows the developers
of the underlying parallel infrastructure to focus on scalability con-
cerns including load balancing, task (component) scheduling and
communications. This component based approach to solving com-
plex problems allows improvements in scalability to be immedi-
ately applied to applications without any additional work by the
application developer.

Uintah currently contains four main simulation algorithms, or
components: the ICE compressible multi-material Computational
Fluid Dynamics (CFD) formulation, the particle-based Material Point
Method (MPM) for structural mechanics, the combined fluid-structure
interaction algorithm MPMICE [12], and the ARCHES combustion
simulation component that is considered here.

3. THE ARCHES COMBUSTION
SIMULATION COMPONENT

The ARCHES component was designed for the simulation of
turbulent reacting flows with participating media radiation. It is a
three-dimensional, Large Eddy Simulation (LES) code described
in [29]. ARCHES uses a low-Mach number (Ma< 0.3), variable
density formulation to simulate heat, mass, and momentum trans-
port in reacting flows.

The LES algorithm solves the filtered, density-weighted, time-
dependent coupled conservation equations for mass, momentum,
energy, and particle moment equations in a Cartesian coordinate
system [15]. This set of filtered equations is discretized in space
and time and solved on a staggered, finite volume mesh. The stag-
gering scheme consists of four offset grids, one for storing scalar
quantities and three for each component of the velocity vector.
Stability preserving, second and third order explicit time-stepping
schemes are used to advance the simulation in time. For the spatial
discretization of the LES scalar equations, flux limiting schemes
for the convection operator are used to ensure that scalar values re-
main bounded. For the momentum equation, a central differencing
scheme for the convection operator is used for energy conserva-
tion. All diffusion terms are computed with a second-order ap-
proximation of the gradient. Overall, ARCHES is second-order
accurate in space and time. The ARCHES code is massively paral-
lel and highly scalable through its integration in the Uintah frame-
work [27], and also through use of parallel solvers like Hypre [9]
and PETSc [2]. As part of the ARCHES development, substantial
research has been done on radiative heat transfer using the parallel
Discrete Ordinates Method and the P1 approximation to the radia-
tive transport equation [17].

In reacting flow simulations, the main computational cost is the
solution of the large number of systems of linear equations re-
quired by the Discrete Ordinates Method. While the solution of
these systems can be made to scale [28], it is important to reduce
this cost. With this cost reduction in mind, more recent work has



Figure 1: Outline of Reverse Monte Carlo Ray Tracing

been based upon the use of more efficient Reverse Monte Carlo
Ray Tracing (RMCRT) methods, e.g. [13, 23, 31]. RMCRT lends
itself to scalable parallelism because the intensities of each ray are
mutually exclusive. Therefore, multiple rays can be traced simul-
taneously at any given cell and time step. Creating an efficient,
GPU-accelerated software component based on RMCRT methods
is the focus of the Computational Experiments section (5).

3.1 Developing a Uintah Radiation Model
In this study, we propose to extend the Uintah framework so that

problems involving radiation can also be directly supported within
Uintah. Some kinds of radiation transport problems already use
CFD codes and AMR techniques [14,26]; However, other problems
require the concept of tracing rays or particles, such as the simula-
tion of light transport, heat, radiation, or electromagnetic waves.

The approach adopted in Uintah is on using the RMCRT meth-
ods, as described by [23]. This approach has the important advan-
tage that by using the principle of reciprocity in radiative transfer,
rays are traced backwards from the computational cell thus elimi-
nating the need to track ray bundles that never reach that cell [23].
In RMCRT, rather than following a ray forward and calculating the
energy it has lost, the amount of incoming intensity from its path
absorbed by the origin where the ray was emitted is calculated.
As Sun [31] points out, RMCRT is more amenable to domain de-
composition and thus parallel implementation due to the backward
nature of the process. Figure 1 shows the back path of a ray from
S to the emitter E, on a nine cell structured mesh patch. Each ith

cell has its own temperature Ti, absorption coefficient κi, scatter-
ing coefficient σi and appropriate pathlengths li,j . In each case
the incoming intensity is calculated, say in cell 4, and then traced
back through the other cells. The intensity is integrated along the
ray path to compute a divergence of the heat flux or a surface flux.
When a ray hits a boundary (as on surface 17 in the figure), it can
be either reflected or absorbed depending on the surface properties.
Rays are terminated when their intensity is sufficiently small.

Despite the improved efficiency over forward MCRT, there are
considerable challenges in the efficient implementation of RMCRT
as it is an all-to-all method, where all of the geometry information
and property model information for the entire computational do-
main must be present on each processor [31]. This nature severely
limits the size of the problem that can be computed due to mem-

ory constraints, especially with large highly resolved physical do-
mains. This challenge is being addressed by using the multi-level
mechanisms within Uintah to represent a portion of the domain at
a coarser resolution, thus lowering the memory usage [13]. The
hybrid memory approach of Uintah also helps as only one copy of
geometry is needed per multi-core node. In general, the data re-
quired by the RMCRT algorithm is projected to all of the coarser
levels, with each level spanning the entire domain. For each fine
level patch, data from the coarser levels is retrieved from the Uintah
data warehouse so it encompasses the patch in a stair step fashion.

CPU-only scalability studies of the RMCRT for the benchmark
problem as described by Burns and Christon [5], were run on on a
single level [13] with 2563 cells, using 25 & 100 rays per cell. Each
scaling run was run for 10 timesteps, 1 patch per processor, and the
mean time per timestep was computed. These preliminary results
show reasonable scaling up to 768 cores, above this the loss of
scalability is perhaps due to increased communication costs and/or
a load imbalance. Nevertheless these results provide a good proof
of concept and an excellent starting point for this work.

4. SCHEDULER ARCHITECTURE
As noted in the introduction and in [21], Uintah is a sophisti-

cated computational framework that can integrate multiple simu-
lation components, analyze the dependencies and communication
patterns between them, and execute the resulting multi-physics sim-
ulation. This is done by utilizing an abstract task-graph represen-
tation of parallel computation and communication to express data
dependencies between components. The task-graph is a directed
acyclic graph of tasks. Each task consumes some input and pro-
duces some output (which is in turn the input of some future task).
These inputs and outputs are specified for each patch in a structured
grid.

Associated with each task is a C++ method which is used to
perform the actual computation. In the context of the new hy-
brid CPU-GPU scheduler, a GPU task is represented by an addi-
tional C++ method that is used for GPU kernel setup and invoca-
tion. Each component specifies a list of tasks to be performed and
the data dependencies between them. The task-graph approach of
Uintah shares many features with the migratable object philosophy
of Charm++ [16]. In order to increase efficiency, the task graph is
created and stored locally [4]. Uintah’s CPU-GPU task scheduler is
responsible for computing the dependencies of tasks, determining
the order of execution and ensuring that the correct inter-process
communication is performed [4]. It also ensures that no input or
output variable conflicts will exist in any two simultaneously run-
ning tasks.

In the migration of the Uintah Computational Framework to hy-
brid CPU-GPU architectures, we elected to use Nvidia CUDA C/C++
for numerous reasons. Looking at the upgrade path of the DOE
Jaguar XK6 system to Titan [24] and also the Keeneland Initial
Delivery System (KIDS) [32], we see a trend in the use or planned
use of Nvidia GPUs. These are the target machines on which we
are already running both CPU and mixed CPU-GPU simulations.
Initial runs using ported portions of the CFD component ICE, have
demonstrated the ability of our CPU-GPU scheduler to run capabil-
ity jobs on both KIDS and TitanDev, utilizing all CPU cores and all
GPUs simultaneously on each machine. KIDS currently has 1440
CPU cores and 360 Nvidia Tesla 20-series GPUs and TitanDev,
15360 CPU cores and 960 Nvidia Tesla 20-series GPUs.

The principal additions made by our new CPU-GPU scheduler
are: significant leveraging of the Nvidia CUDA Asynchronous API
[6] to best overlap PCIe transfers and MPI communication with
GPU and CPU computation; insulating the component developer



from the complexities and details involved with device memory
management and asynchronous operations, by automatically man-
aging these operations; using knowledge of the task-graph and task
dependencies to pre-fetch data needed for simulation variables prior
to task execution. Hence, when a GPU task is ready to run, data
needed for the task is already resident in GPU main memory. The
GPU task need merely query the scheduler for device pointers and
invoke the kernel.

The existing Uintah code base is nearly 700K lines of code, a
significant challenge to port in terms of infrastructure and existing
simulation components. Although OpenCL [11] has the potential
to support more than just GPUs and will be a consideration for use
in the future, Nvidia CUDA currently offers far greater support in
terms of performance and analysis tools as well as an API allowing
for easier performance gains and portability for existing codes. Be-
low we describe the design of our CPU-GPU scheduler and its use
of the Nvidia CUDA Asynchronous API [6] in detail.

4.1 Multi-Threaded Runtime System
The overall design of the multi-threaded MPI runtime system is

explained in great detail in [21], but to provide context, we review
its design briefly here. We then describe in detail how this architec-
ture has been extended by our recent work, adapting Uintah to run
on current and emerging heterogeneous systems.

As mentioned in [21], the core scheduler component that stores
simulation variables is the data warehouse. The data warehouse
is a hashed-map-based dictionary which maps a variable name and
patch ID to a memory address. In the Uintah framework, after the
regridder changes the simulation grid and the load balancer gener-
ates the patch distribution, the scheduler will create new sets of
detailed tasks, compile a new task graph and initialize the data
warehouses. Uintah’s innovative load balancer utilizes space-filling
curves in order to cluster patches together [19]. Originally, Uin-
tah used both dynamic and static schedulers, based solely on MPI,
in which data structures were created on each MPI process. Al-
though most of Uintah’s infrastructure components were carefully
designed to be stored in a distributed manner, it was necessary
for some data to be stored multiple times, e.g. neighboring patch
sets, neighboring tasks and ghost variables. A limitation of pure
MPI scheduling was that tasks which were created and executed on
the same node could not share data. Uintah’s multi-threaded MPI
scheduler [21] solves this problem by dynamically assigning tasks
to worker threads during execution and shares the same infrastruc-
ture components between threads. This design uses one control
thread and several worker threads per MPI process. The control
thread holds all infrastructure components such as the regridder,
the load balancer, the task graph and the data warehouse and has
read and write access to them.

Central to the design of the dynamic CPU-GPU scheduler (Fig-
ure 2) is the multi-stage queuing architecture for efficient schedul-
ing of CPU and GPU tasks. The CPU-GPU scheduler utilizes four
task queues: an internal ready queue and an external ready queue
for CPU tasks and two queues for the GPU; one for initially ready
GPU tasks; those that have requisite simulation variable data copies
from host-to-device pending, and a second for the corresponding
device-to-host data copies pending completion. First, if a task’s in-
ternal dependencies are satisfied, then that task will be put in the
CPU internal ready queue where it will wait until all required MPI
communication has finished. In this same step, if the task is GPU-
enabled, the task is then put into the host-to-device copy queue for
advancement toward execution. Ultimately, the task goes to the
pending device-to-host copies queue. As long as the CPU external
queue is not empty, there are always tasks to run. Execution of a

task takes place on the first available CPU core or GPU and the
scheduler resides on a single, dedicated core per node. CPU tasks
are dispatched by the control thread to available CPU cores when
they signal the need for work. GPU tasks are assigned in a round-
robin fashion to available GPUs on-node once their asynchronous
host-to-device data copies have completed. This design helps to
overlap MPI communication and asynchronous GPU data transfers
with CPU and GPU task execution, significantly reducing MPI wait
times.

Algorithm 1 GPU Task Controller Algorithm
while doneTasks < totalTasks do

if numExternalReadyTasks () > 0 then
if highest priority task isGPUEnabled () then
initiateH2DCopies (task, iteration)
task− > markInitiated ()
addInitiallyReadyGPUTask (task)

end if
end if
if numInitiallyReadyGPUTasks () > 0 then

if task− > checkH2DCopyDependencies () then
runGPUTask (task, iteration)
addCompletionPendingGPUTask (task)

end if
end if
if numCompletionPendingGPUTasks() > 0 then

if task− > checkD2HCopyDependencies () then
postMPISends (task, iteration)
reclaimStreams (task);
reclaimEvents (task);
task− > completed ()

end if
end if

end while

4.2 Asynchronous GPU Techniques
Significant difficulties arise when mixing concurrency APIs, most

notably race conditions, deadlock and general synchronization com-
plexities. Within Uintah’s CPU-GPU scheduler is a combination of
MPI, Pthreads and Nvidia CUDA, a combination that must be man-
aged with care to avoid such difficulties. Multiple GPUs per node
further complicate this situation in the presence of asynchronous
memory copies and multiple device contexts (one CUDA calling
context per device per process). In the same fashion that Uintah
insulates the application developer from the parallelism its infras-
tructure provides, it also hides and carefully manages details related
to GPU memory allocation and transfer. The Fermi-based GPUs
found on the target machines mentioned at the beginning of this
section offer additional ways to achieve asynchronous concurrent
execution of kernels. These GPUs have two copy engines and sup-
port multiple kernels running concurrently. Using these features,
GPU tasks can be copying data to-and-from the device as well as
running multiple kernels simultaneously. In order to exploit these
features, the CPU-GPU scheduler creates and manages queues of
CUDA Streams [6], one for each device on-node. Streams provide
a means to perform multiple operations simultaneously in that op-
erations from different streams can be interleaved and also run con-
currently. Our implementation also uses CUDA Events [6] which
are used for timing and in checking completion of operations such
as asynchronous memory copies to-and-from the GPU.

4.3 Extending the Uintah Task Class



Figure 2: Uintah CPU-GPU Task Scheduler Architecture

Previously, the portion of the Uintah Task class responsible for
actual execution of the C++ method representing the computation
to perform, was comprised of a single instance of an Action class,
which contains a single function pointer to the C++ method to
run. With the addition of GPU tasks, we have modified the Uintah
Task class to include an additional Action instance with associated
pointer to the function containing the GPU kernel setup and invo-
cation. This has been accomplished without altering any existing
interface or simulation component.

The design decision to support registration of multiple function
pointers was to ultimately add the ability for the scheduler to chose
between execution of the CPU or GPU version of the task at run-
time. It may be the case that if all on-node GPUs are currently busy
or unavailable and there exists an idle CPU core, then it is best to
execute a particular task on that CPU core. Currently, if a GPU task
has a GPU implementation, it is executed on the GPU. This overall
infrastructure design remains broad enough to use other accelerator
designs, such as the Intel MIC [7] chip.

4.4 Pre-fetching GPU Task Data
When the CPU-GPU scheduler begins dispatching ready tasks

from the CPU external ready queue, it diverts GPU-enabled tasks
to the initially-ready GPU task queue. Just prior to this step the
CPU-GPU scheduler initiates the device memory allocations and
asynchronous host-to-device data copies for the requisite simula-
tion variables. This is accomplished by querying the data ware-
house for the location and size of the data required for computa-
tion and also requesting that the data warehouse allocate space for
the result of the computation. We have exposed a flat representa-
tion of the underlying 3D data structure representing each simula-
tion variable on a patch. This linear array maps relatively easily
onto the GPU. To fully exploit the aforementioned levels of con-
currency, the host memory to be copied to device must be page-
locked. This guarantees the memory will not be paged to disk. The

CPU-GPU scheduler then registers for DMA the host memory to
be copied to the GPU using a call to cudaHostRegister()
with the cudaHostRegisterPortable flag. This call and
flag pair create page-locked (often referred to as pinned) mem-
ory from pre-allocated host memory that is considered page-locked
by all CUDA contexts. This step avoids a bounce buffer and ac-
celerates PCIe transfers and also eliminates resetting of CUDA
contexts when referencing the registered host memory. A call to
cudaHostRegister() can be cleanly performed from the host
without setting a context.

The new scheduler infrastructure maintains a set of queues for
stream and event handles (one per device representing separate con-
texts for each), and assigns them to each simulation variable per
time step to overlap with other host-to-device memory copies as
well as kernel execution. These stream and event handles are stored
by the associated Task itself and effectively provide a mechanism to
detect completion of asynchronous memory copies without a busy
wait, using cudaEventQuery(event). This allows querying
the status of all device work preceding the most recent CUDA 4.0
API call to cudaEventRecord() [6].

On systems with multiple on-node GPUs such as KIDS, the CPU-
GPU scheduler must also manage a CUDA calling context for each
device. This is set per device prior to subsequent CUDA API calls
on that device. In general, the CPU-GPU scheduler assigns a de-
vice to the task itself (round-robin), allocates space on the device,
marks the task as initiated and then starts the asynchronous host-to-
device memory copies. The entire GPU task processing algorithm
is shown in Algorithm 1, where it should be noted that CPU task
processing as shown in [21], is interleaved with the GPU task pro-
cessing.

A call to cudaEventRecord() is then made after a call to
cudaMemcpyAsync() and these event pointers are stored with
the task itself, and the task is placed into the initially-ready GPU
task queue. Priority of GPU tasks is based on the same prioriti-



zation algorithm used in the CPU external ready queue, thus the
overall task priority is preserved. This is all accomplished asyn-
chronously with respect to the CPU, which is continually respond-
ing to requests from idle CPU cores for work. This series of steps
essentially prepares the GPU memory needed by the task and is all
completed prior to task execution. All data related to each task’s
host and device pointers are kept in a set of maps maintained by the
CPU-GPU scheduler. These maps will ultimately become a sepa-
rate GPU data warehouse in future work.

4.5 GPU Task Execution
During successive iterations of the CPU-GPU scheduler’s task

controller algorithm, the scheduler checks for existing tasks in the
initially-ready GPU task queue and determines if its host-to-device
memory copies have completed. This is accomplished by perform-
ing cudaEventQuery(event) on each of its recorded events.
The scan is essentially linear in the size of the list of events to
query, but this size is never greater than say 10 elements, and is
essentially constant time, O(1). If all event queries return with
cudaSuccess, the GPU task is ready to run. The C++ method
associated with the kernel setup and invocation can then be exe-
cuted. The component queries the scheduler for device pointers,
and a stream to associate with the kernel launch. The component
then passes these to the kernel routine that performs the computa-
tion on the device. To transfer the results of the computation back to
the host, the component code requests a device-to-host copy via the
infrastructure API. The scheduler in turn initiates the asynchronous
memory copy from device to host destination and records the events
associated with the task. Afterward, the task is placed in the com-
pletion pending GPU task queue.

4.6 GPU Task Completion and MPI Sends
Within the CPU-GPU scheduler’s task processing loop (Algo-

rithm 1), the events in the stream associated with the device-to-host
memory copy (and kernel used to compute results) of the highest
priority GPU task can be queried for completion. Success returned
on each of a task’s events indicates the task has completed execu-
tion. The results are then guaranteed to be in the host-side data
warehouse. At this point, the task can be marked as completed and
the CPU-GPU scheduler then reclaims all of the events and streams
used by the task. MPI sends from the GPU task can then be posted.
The GPU task is finally removed from the completion pending task
queue, allowing other dependent tasks to proceed.

5. COMPUTATIONAL EXPERIMENTS
In this section we examine the performance of Uintah’s new hy-

brid CPU-GPU scheduler and runtime system by running the RM-
CRT benchmark problem described by Burns and Christon in [5].
This problem is run on a single level using both 413 and 1283 cells.
In both cases, the CPU-only version of the RayTrace() method
consumes more than 90% of the total compute time. Significant
speedups in this portion of the code yield significant speedups in
time to solution.

We choose to use 413 initially so the computed divergence of
the heat flux can be compared to the data published in [5]. For
these runs we used 25, 50 and 100 rays per cell. The testbed RM-
CRT component was run for 10 timesteps with one patch per core
for the CPU implementation and one patch per GPU for the GPU
implementation, with the mean time per timestep computed and
compared. In what follows, we describe the approach taken in the
GPU implementation of the ray tracer, observing the raw speedups
obtained, and compare a single Nvidia M2090 GPU against first
a single core and then all cores on a node. These cores were In-

tel Xeon X5660 (Westmere) @2.8GHz and AMD Opteron 6200
Series (Interlagos) @2.6GHz for KIDS and TitanDev respectively.
We also examined the scaling behavior of the CPU and GPU im-
plementations.

As mentioned in Section 3, RMCRT lends itself to scalable par-
allelism because the intensities of each ray are mutually exclusive.
Therefore, multiple rays can be traced simultaneously at any given
time step in each cell in every Uintah patch. This leads us to the
approach we have taken with the GPU implementation. Our GPU
RayTrace kernel uses a patch traversal method similar to that used
in the existing GPU port of portions of Uintah’s CFD code (ICE
algorithm). Here we tile 2D slices of the 3D patch with 2D thread-
blocks. These slices are in the two fastest moving dimensions (as
the patch cells are traversed), X and Y. We assign a single CUDA
thread to each computational cell. Each thread (within a thread-
block) is then responsible for tracing the set of rays associated with
its respective cell for each slice. Each thread calculates the sum of
the intensities from its set of rays, and the divergence of the heat
flux for the cell, completely independent of other threads. This
avoids potentially costly atomic operations and synchronization.
This approach also allows for a single kernel launch per timestep,
avoiding the overhead associated with multiple kernel launches.

Single CPU Core vs. Single GPU
Machine Rays CPU (s) GPU (s) Speedup
Keeneland 25 28.32 1.16 24.41
1 Core 50 56.22 1.86 30.23
Intel 100 112.73 3.16 35.67
TitanDev 25 57.82 1.00 57.82
1 core 50 116.71 1.66 70.31
AMD 100 230.63 3.00 76.88

All CPU Cores vs. Single GPU
Machine Rays CPU (s) GPU (s) Speedup
Keeneland 25 4.89 1.16 4.22
12 Cores 50 9.08 1.86 4.88
Intel 100 18.56 3.16 5.87
TitanDev 25 6.67 1.00 6.67
16 Cores 50 13.98 1.66 8.42
AMD 100 25.63 3.00 8.54

Table 1: GPU Speedups Relative to CPU Implementation on
Single Node of Keeneland and TitanDev

Table 1 shows the relative time to solution for both CPU and
GPU implementations, and the speedups obtained on the single
level RMCRT testbed component using a grid size of 413. These
timings were a direct comparison on a single node of KIDS and
TitanDev for 25, 50 and 100 rays per cell. The first set of timings
compare a single CPU core against a single Nvidia M2090 GPU
on-node. The second set compare all CPU cores (12 on KIDS and
16 on TitanDev) with the same single GPU. These results show
significant speedups on both machines.

As would be expected, the times to solution using the GPU im-
plementation for each run are roughly equal for both machines,
however the CPU version of the ray tracer runs considerably faster
on Keeneland than TitanDev. An interesting additional result not
shown in Table 1, is that when using all three on-node GPUs on
Keeneland and comparing against the CPU implementation, the
speedups were not as significant. We attribute the slowdown to the
NUMA and contention effects within the multi-GPU HP SL390
nodes described in [30]. Currently, our CPU-GPU scheduler has
no notion of GPU affinity. Addressing this issue to maximize uti-



Figure 3: Strong Scaling Comparison on TitanDev

lization of the additional on-node computational resources in multi-
GPU systems will be a focal point in future work.

Using the CPU-GPU scheduler, we were able to run capability
jobs on both machines, using all CPU cores and GPUs on-node, but
saw diminishing returns at larger scale. The all-to-all nature of this
problem severely limits the size of the problem that can be com-
puted, and hence does not yet scale well due to memory constraints
with large highly resolved physical domains. Figure 3 shows strong
scaling results for both CPU and GPU implementation on TitanDev.
Similar CPU-only scalability studies of the same single level RM-
CRT benchmark problem are described in [5]. It is apparent from
the figure that the same scalability breakdown shown in [5] on the
XSEDE resource Kraken, also occurs on TitanDev (the same result
was also evident on Keeneland). Figure 3 additionally illustrates
that the GPU implementation quickly runs out of work and strong
scaling begins breaking down around eight GPUs. Although the
mean time per timestep for the GPU implementation is still consid-
erably lower than the CPU implementation at this point (up to 64
GPUs), ultimately there is insufficient work, and both implementa-
tions suffer from the same exorbitant communication costs that are
the central difficulty in this problem. Addressing this scalability
issue will be a primary focus in future work.

6. FUTURE WORK
We have shown that our present CPU-GPU scheduler design is

capable of running Uintah simulations on current and emerging
heterogeneous systems, fully utilizing all on-node computational
resources. However, we face significant scalability challenges in-
herent in the RMCRT problem, as shown in our results. Addressing
this difficulty will be actively pursued in future work. Other aspects
of the CPU-GPU scheduler will be improved upon as well. Most
notably, the centralized control thread design will need to be re-
vised by moving to a decentralized design [20]. The central control
thread design will become a severe performance bottleneck as CPU
core counts on-node continue to grow. An approach that is already
being taken on our multi-threaded CPU task scheduler [20], is be-
ing considered for the CPU-GPU scheduler. This will allow any
thread to execute both CPU and GPU tasks and also to send and re-
ceive its own MPI messages. Creation and isolation of a GPU data
warehouse is another consideration as is implementing a mecha-
nism for the CPU-GPU scheduler to decide at runtime whether to
run a particular task on a CPU core or on a GPU. We are also ac-

tively pursuing early access to the Intel MIC [7] chip, with plans to
extend Uintah’s scheduler to support such accelerator designs.
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