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Abstract:

The importance of good estimates of the defect in the numerical solution of initial value problem
ordinary differential equations is considered in the context of global error estimation by using
adjoint-equation based methods. In the case of solvers based on the fixed leading coefficient
backward differentiation formulae, the quality of defect estimates is shown to play a major role
in the reliability of the global error estimator of Cao and Petzold. New defect estimates obtained
by sampling the defect are derived to improve the quality and efficiency of adjoint-based global
error estimation. The inclusion of only one estimate of the defect per timestep is shown to
provide a good compromise between accuracy and efficiency for global error estimation of odes
and method-of-lines pdes.
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1. Introduction. The importance of obtaining reliable error estimation for solu-
tions to time-dependent ordinary differential equations (odes) and partial differential
equations (pdes) is well understood, see [4, 5, 13, 15, 16, 17, 18]. As mentioned in Cao
and Petzold [4], many methods of global error estimation have been proposed, stud-
ied carefully and implemented in several ode solvers. These error estimators either
use residual errors for the error indicators or use error recovery techniques. Resid-
ual errors are the errors that result when the numerical solutions fail to satisfy the
differential equations exactly everywhere. The global error estimates that use error
recovery techniques often solve the problem a second time with a reduced step size or
tolerance and assume the second integration is more accurate, the error in the first
integration is then recovered by the differences between the two numerical solutions.
These estimates may sometimes be inaccurate since the second integration may not
yield a more accurate solution [4], [22]. As a consequence, there have been many error
estimates that use residual errors and a multiplier based on the solution of an adjoint
equation as a means of estimating the global error, [4].

The term ”residual error” is used in Cao and Petzold [4] to mean ”defect” as
proposed and used by many authors; see, for example, [7, 9, 12, 21, 24, 25]. Calculated
estimates of the defect are also sometimes used to gain confidence in a numerical
solution. In order to control global error in numerical solutions of odes, many control
strategies either control the local error or the defect, see [7, 8, 9, 13, 15, 21, 22, 23].
In some sense, defect control is more powerful than local error control when defect
indicates the error throughout the interval of integration and local error indicates
the error only in advancing a step [22]. As a consequence, controlling of defect is
mentioned as being an appropriate method for calculating a more reliable numerical
solution. More generally two important classes of global error estimates for initial
value ordinary differential equations are the classical approach (based on forward
integration of an error equation) and the adjoint approach that uses defect as an error
indicator [4, 14] and muliplies it by the solution to an adjoint problem to estimate the
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error. These approaches are compared by [14] for their reliability and efficiency. One
disadvantage of adjoint-based methods is the need to store the forward solution that is
required during the backwards time integration. Lang and Verwer [14] suggested that
the adjoint method may not be competitive against the classical approach due to its
huge storage demand for large problems, even though both approaches work well in
terms of reliability. On the other hand, Cao and Petzold [4] suggest that the adjoint
method is an attractive choice for estimating the error, and also suggested a novel
approach based on the small sample method for reducing the number of backward
time integrations used by the adjoint method. Furthermore the adjoint systems are
linear and can be computed in parallel. Even though solving for the adjoint system
requires extra work and storage, the adjoint solutions are useful to adaptively control
global error as they are the appropriate weighting coefficients of local errors in forming
the estimate of the global error.

In this paper, we will show how to improve the adjoint-based global error esti-
mate proposed by Cao and Petzold [4] by sampling the defect and by removing an
assumption used by those authors. The starting point for this work is a description of
the Cao and Petzold method and some numerical results illustrating its performance.
While defect estimates are available for many time integration methods; see, for ex-
ample, [12, 14], the lack of a reliable defect estimate for variable order and variable
step BDF methods is a challenge for global error estimation using the adjoint method.
As BDF methods are widely used for obtaining solutions for stiff differential equations
and differential algebraic equations, we shall propose a new defect estimate based on
defect sampling. Defect estimates for Adams PECE codes are described in detail by
Higham [12] and provide a useful starting point for the estimate of the BDF defect
described here in Section 3. One approach to the estimation of the complex form of
the defect estimate for variable step/variable order BDF methods seems to require
sampling at several internal points, depending on the order of the method, Although
this approach is successful, it is not cost-effective, as is shown in Section 4. In Sec-
tion 5 of this paper we will show that it is possible to derive defect error estimates
for variable order and variable step BDF methods that are both sufficiently reliable
and less expensive in terms of the number of sample points needed. The use of only
one sample point per timestep provides a good compromise between accuracy and
efficiency, as shown by the results computed using the IDA solver based on DASSL.

In the method of lines context this paper extends the forward integration ap-
proach of [1] by using the adjoint-based method to estimate the combined spatial
and temporal error. The main advantage of this method is that the adjoint systems
for both spatial and temporal error are identical. This makes it possible to estimate
the combined spatial and temporal error, and, opens the possibility for spatial and
temporal error control.

2. Adjoint error estimation for odes. The starting point for this work is the
adjoint-based global error estimate of Cao and Petzold [4] which will be described
here in a slightly modified form from that given in their paper. The class of odes
considered here is given by:

(2.1)

{
ẋ(t) = f(x, t), 0 ≤ t ≤ T,
x(0) = x0
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where x ∈ Rn. The numerical solution x̃ ∈ Rn satisfies the following perturbed
system, [4]:

(2.2)

{
˙̃x(t) = f(x̃, t) + r(t), 0 ≤ t ≤ T,
x(0) = x0 + r0

where r(t) is the pertubation of the numerical solution at time t and the initial
pertubation r0 is at time t = 0. Hereafter, the term ”defect” will be used to refer to
r(t).

Define e(t) = x̃(t) − x(t) as the error in the numerical solution at time t. The
system for the evolution of this error, [4] is then:

(2.3)

{
ė(t) = J(x̃, t)e(t) + r1(x, x̃, t) + r(t)
e(0) = r0

where J(x̃, t) is the Jacobian of f at x̃. The residual r1(x, x̃, t) is an approximation
to the quadratic and subsequent Taylor series terms given by r1(x, x̃, t) = f(x̃, t) −
f(x, t) − J(x̃, t)(x̃ − x) with ‖r1(x, x̃, t)‖∞ is assumed to be small when x̃(t) is close
to x(t), as, if the original ode is not solved to sufficient accuracy, then the adjoint
solution procedure and the global error estimate cannot be trusted, [4]. With the
assumption that ‖r1(x, x̃, t)‖∞ is small enough to be neglected,[4], we have:

(2.4)

{
ė(t) ≈ J(x̃, t)e(t) + r(t)
e(0) = r0.

Let λ(t) be some vector in Rn that is the solution to the following system:

(2.5)

{
λ̇(t) = −JT (x̃, t)λ(t), 0 ≤ t ≤ T
λ(T ) = l

for some vector l in Rn. It is now possible to derive a simplified form of the error
estimate procedure, [17]. Multiplying both sides of first equation in (2.4) by λT (t)
gives:

λT (t)ė(t) ≈ λT (t)J(x̃, t)e(t) + λT (t)r(t)
= (JT (x̃, t)λ(t))T e(t) + λT (t)r(t)
= (−λ̇(t))T e(t) + λT (t)r(t).

Rearranging this yields:

(2.6) λT (t)
d

dt
e(t) +

d

dt
(λT (t))e(t) ≈ λT (t)r(t),

and, in turn, gives:

(2.7)
d

dt
(λT (t)e(t)) ≈ λT (t)r(t).

Integrating both sides of the above equation gives:∫ T

0

d

dt
(λT (t)e(t))dt ≈

∫ T

0

λT (t)r(t)dt,

λT (T )e(T )− λT (0)e(0) ≈
∫ T

0

λT (t)r(t)dt,

lT e(T )− λT (0)r0 ≈
∫ T

0

λT (t)r(t)dt.
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Or:

(2.8) lT e(T ) ≈
∫ T

0

λT (t)r(t)dt+ λT (0)r0.

It is perhaps worth remarking that if we replace r(t) by r(t) + r1(x, x̃, t) then this
equation is exact. To estimate the ith-component of error vector e(T), we solve
system (2.5) with initial condition l = [0, 0, ..., 0, 1, 0, ...0]T with a value of 1 at the
ith-component and 0 elsewhere. So in order to estimate the global error vector e(T),
we have to solve the system (2.5) n times, where n is the number of equations in ode
system, with n different values of vector l: l = e1, e2, ..., en, where e1, e2, ..., en are the
unit vectors of Rn. Cao and Petzold [4] use the small sample statistical method to
greatly reduce the number of these integrations. As the value of λ(t) is only obtained
numerically, the estimation of global error is valid only if the adjoint system in (2.5)
is solved with sufficient accuracy.

An important part of the estimation of global error, as outlined above, is to
estimate the defect r(t), where r(t) is defined by:

(2.9) r(t) = ˙̃x(t)− f(x̃, t).

Besides obtaining the numerical solutions at the end of integration steps, the ode
solver often provides an interpolation method to obtain the numerical solution at any
point in between the steps. The defect r(t) is then available at any point in time.

2.1. Defect and global error estimation using the approach of Cao and
Petzold. The estimates of the ode defect r(t) and global error e(t) of [4] are based
upon the fixed leading coefficient backward differentiation formula used in the DASSL
DAE Solver. DASSL uses divided formulae to represent the numerial solution to
DAEs. Consider the case in which we have a k-th degree interpolating polynomial
based on a set of nodal values x(tn),x(tn−1),...,x(tn−k) is defined using divided differ-
ences as defined by:

(2.10) x[tn, tn−1, ..., tn−k] =
x[tn, tn−1, ..., tn−k+1]− x[tn−1, tn−2..., tn−k]

tn − tn−k
,

where x[tn] = x(tn) and x[tn, tn−1] = x[tn]−x[tn−1]
tn−tn−1

.
Suppose that a set of time levels are given by tn, tn−1, tn−2, ... with associated nu-

merical solution values x̃n, x̃n−1, x̃n−2, ... then the standard Newton divided difference
form of the interpolating polynomial used by DASSL is given by

xpn+1(t) = b0,n(t) x̃[tn] + b1,n(t) x̃[tn, tn−1] + b2,n(t) x̃[tn, tn−1, tn−2] + ...

+bk,n(t) x̃[tn, tn−1, tn−2, ..., tn−k],(2.11)

where

b0,n(t) = 1, b1,n(t) = (t− tn), b2,n(t) = (t− tn)(t− tn−1), ... .(2.12)

Equation (2.11) is used to predict the numerical solution at any point in the interval
[tn−k, tn+1]. The predicted derivative may be similarly written as

x
′p
n+1(t) =

db1,n(t)
dt

x̃[tn, tn−1] +
db2,n(t)
dt

x̃[tn, tn−1, tn−2] + ...

+
dbk,n(t)
dt

x̃[tn, tn−1, tn−2, ..., tn−k].(2.13)
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BDF codes such as DASSL also make use of these polynomials to predict the numerical
solution at the next time step. The system of equations solved for the new solution
at time tn+1 is given by

(2.14) x
′p
n+1(tn+1)− αs

hn+1

(
x̃n+1 − xpn+1(tn+1)

)
= f(tn+1, x̃n+1),

where hn+1 = tn+1 − tn and for a method of order k, αs = −
∑k
i=1

1
i . Substituting

from equations (2.11-2.13) and multiplying by hn+1
αs

enables this to be written in a
more recognizable BDF form as

(2.15) (x̃n+1 − x̃n)−
k∑
j=1

[
bj,n +

hn+1

αs

dbj,n
dt

]
x̃[tn−j , ..., tn] =

hn+1

(−αs)
f(tn+1, x̃n+1).

This equation is used to solve for the numerical solution at tn+1. The numerical
solution at any point t that lies between tn and tn+1 is obtained using the inter-
polating polynomial defined as in (2.11) but with a different set of nodal values
x̃n+1, x̃n, ..., x̃n+1−k. This polynomial may be rewritten in Lagrange form as:

(2.16) x̃(t) =
k∑
i=0

k∏
j=0,j 6=i

(t− tn+1−j)
(tn+1−i − tn+1−j)

x̃n+1−i.

We use a shorthand notation qa..bi (t) for
∏b
j=a,j 6=i

(t−tn+1−j)
(tn+1−i−tn+1−j)

for convenience of
exposition. Using this shorthand notation in the Lagrange form of x̃(t) gives:

(2.17) x̃(t) =
k∑
i=0

q0..k
i (t)x̃n+1−i.

A local solution on the interval [tn, tn+1] as defined in [4] satisfies

(2.18)

{
u̇n+1(t) = f(un+1(t), t) t ∈ [tn+1−k, tn+1],
un+1(tn+1−k) = x̃n+1−k.

Let sn+1(t) be the polynomial that interpolates k+1 points (tn+1, s
0
n+1),(tn, s1n+1), ...

(tn−k+1, s
k
n+1) where sin+1 is the notation for sn+1(tn+1−i) and sin+1 = un+1(tn+1−i)

for i = 0..k. The polynomial sn+1(t) is then written in Lagrange form as:

(2.19) sn+1(t) =
k∑
i=0

q0..k
i (t)sin+1.

Then for any t in [tn, tn+1], we have:

(2.20) un+1(t) = sn+1(t) + IE(t)

where IE(t) is interpolation error at t, and is defined as:

(2.21) IE(t) = (t− tn+1)(t− tn)...(t− tn−k+1)
u

(k+1)
n+1 (τ)
(k + 1)!

,
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for some value τ that lies in the interval [tn−k+1, tn+1]. Differentiating equation (2.17)
gives:

(2.22) ˙̃x(t) =
k∑
i=0

q̇0..k

i (t)x̃n+1−i

for any t in [tn, tn+1] and where q̇a..bi is the time derivative of qa..bi :

(2.23) q̇a..bi =
b∑

j=a,j 6=i

1
(tn+1−i − tn+1−j)

b∏
l=a,l 6=i,j

(t− tn+1−l)
(tn+1−i − tn+1−l)

.

Differentiating equation (2.20) gives:

(2.24) u̇n+1(t) =
k∑
i=0

q̇0..k

i (t)sin+1 + ˙IE(t).

We now rewrite the defect, r(t), for the perturbed system (2.2) on the interval [tn, tn+1]
using the definition of local solution in (2.18) as:

(2.25) r(t) = ˙̃x(t)− f(x̃, t) = ˙̃x(t)− u̇n+1(t) + f(un+1(t), t)− f(x̃(t), t).

Cao and Petzold [4] assume that the function f(x, t) is sufficiently smooth and satisfies
the Lipschitz condition, ‖f(un+1(t), t) − f(x̃(t), t)‖ ≤ L‖un+1(t) − x̃(t)‖ for some
constant L. It is pointed out in [4] that if |hL| ≤ 1 then un+1(t) − x̃(t) = O(hk+1

n+1)
while u̇n+1(t)− ˙̃x(t) = O(hkn+1). Consequently the term f(un+1(t), t)−f(x̃(t), t) may
be disregarded as not making a significant contribution to the overall defect. This
idea is also used by [6]. The defect is thus given by:

r(t) ≈ ˙̃x(t)− u̇n+1(t),

≈
k∑
i=0

q̇0..k

i (t)(x̃n+1−i − sin+1)− ˙IE(t).(2.26)

This equation may be rewritten as:

(2.27) r(t) ≈
k∑
i=0

q̇0..k

i (t)din+1 − ˙IE(t),

where din+1 = x̃n+1−i − sin+1 for i = 0..k. From [4], din+1 = O(hk+1
n+1) and so:

(2.28) r(t) ≈
k∑
i=0

hk+1
n+1q̇

0..k

i C0 − ˙IE(t),

where C0 = Ck+1x
(k+1) and

(2.29) ˙IE(t) ≈ x(k+1)(τ)
(k + 1)!

k∑
i=0

k∏
j=0,j 6=i

(t− tn+1−i) ≈
k∑
i=0

1
i+ 1

x(k+1)(t)hkn+1.
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The calculation of the above terms requires the estimation of x(k+1)(t) from the
divided difference representation of the solution. The defect may then be written
as:

(2.30) r(t) ≈ C(hn+1)hkn+1

where C(hn+1) at step size hn+1 is calculated as in equations (24) and (26) of [4] as:

(2.31) C(hn+1) ≈ Ck+1x
(k+1)

k∑
i=0

q̇0..k

i hn+1 +
k∑
i=0

1
(i+ 1)

x(k+1).

Taking λ(tn + τ) ≈ λ̄(tn) for 0 ≤ τ ≤ hn+1, and letting t1 = 0, t2, t3, t4, ..., tm+1 = T
be the times at which the numerical solution is calculated, then the equation (2.8) is
rewritten as:

(2.32) lT e(T ) ≈
m∑
j=1

λ̄T (tj)
∫ tj+1

tj

r(t)dt+ λT (0)r0.

Cao and Petzold [4] choose λ̄(tj) = λ(tj) and replace the defect r(t) in (2.32) with
(2.30), to arrive at:

(2.33) lT e(T ) ≈
m∑
j=1

λT (tj)C(hj+1)hk+1
j+1 + λT (0)r0.

This equation with an appropriate chosen value of l is used by Cao and Petzold [4] to
estimate the global error.

2.2. Numerical examples. We have been using e(T ) to denote the global errror
at time T. Let ẽ(T ) be the estimation of this quantity, we define the error index,
eindex, of the L2-Norm of these quantities as:

(2.34) eindex =
‖ẽ(T )‖
‖e(T )‖

.

In several sections of this paper, we will repeatedly use the following examples for
testing purposes. Examples 1 to 4 are taken from [4] and Examples 5 and 6 are taken
from [15]. Example 7 is used by Butcher to illustrate stiffness.
Example 1.

(2.35)

{
ẋ = λx, 0 < t ≤ T,
x(0) = x0.

This problem is solved with three different cases:

λ = 1, x0 = 10−4, T = 10.0,
λ = −1, x0 = 1.0, T = 1.0,
λ = −20, x0 = 1.0, T = 1.0.

Example 2.

(2.36)

{
ẋ = −(0.25 + sinπt)x2, 0 < t ≤ 1.0,
x(0) = 1.0.
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The analytical solution is x(t) = π/(π + 1 + 0.25πt− cosπt).
Example 3.

(2.37)


ẋ1 = 1

2(1+t)x1 − 2tx2, 0 < t ≤ 10.0,

ẋ2 = 1
2(1+t)x2 + 2tx1, 0 < t ≤ 10.0,

x(0) = (1.0, 0.0).

The analytical solution is: x(t) = (x1(t), x2(t)) = ((1 + t)
1
2 cos(t2), (1 + t)

1
2 sin(t2)).

Example 4.

(2.38)


ẋ1 = −x2,

ẋ2 = −x1, 0 < t ≤ 10.0,
x(0) = (2× 10−4, 0.0).

The analytical solution is: x(t) = (x1(t), x2(t)) = (10−4(et + e−t), 10−4(e−t − et)).
Example 5.

(2.39)


ẋ1 = x2,

ẋ2 = −x1, 0 < t ≤ 50.0,
x(0) = (0.0, 1.0).

The analytical solution is: x(t) = (x1(t), x2(t)) = (sin(t), cos(t)).
Example 6.

(2.40)



ẋ1 = x1,

ẋ2 = x2 + x1x1,

ẋ3 = x3 + x1x2,

ẋ4 = x4 + x1x3 + x2x2,

ẋ5 = x5 + x1x4 + x2x3, 0 < t ≤ 1.0,
x(0) = (1.0, 1.0, 0.5, 0.5, 0.25).

The analytical solution is: x(t) = (x1, x2, x3, x4, x5) = (et, e2t, 1
2e

3t, 1
2e

4t, 1
2e

5t).
Example 7.

(2.41)

{
ẋ = −L(x− sinπt)) + πcos(πt), 0 < t ≤ 1.0,
x(0) = 0.0.

The analytical solution is x(t) = sin(πt) and L is positive and may be large.
Applying the error estimator of (2.33) and comparing the estimate global errors

against the exact global errors of the numerical solutions at the end of integration
gives the error indices shown in Table 2.1. Cao and Petzold show in [4] that the global
error may be controlled using their estimate of global error. Although their global
error estimate gives a wide range of error indices as seen in Table 2.1, the global error
is often overestimated. The assumptions in [4] that din+1 are the same for i = 0..k,
that the value of τ in interpolation error is identical to tn, and that the step sizes
for last k steps are constant are likely the cause of this. The fact that the error is
sometimes overestimated helps ensure the good global error control results of [4], but
also raises the issue of whether better global error estimates are possible. The first
step in achieving this is to improve the defect estimates by the use of sampling.



Defect Sampling in Global Error Estimation for ODEs using Adjoint Methods 9

Table 2.1
Error indices(eindex) of global error estimate using (2.33)

TOL
Example 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

1(λ = 1) 7.13 7.23 7.09 9.12 8.95 8.54 16.72 9.18
1(λ = −1) 13.41 3.22 2.96 129.2 6.74 2.45 8.67 5.73
1(λ = −20) 0.61 1.59 0.46 0.45 2.08 7.63 10.12 10.36

2 5.63 9.27 106.9 19.36 72.67 13.98 16.38 0.31
3 13.58 13.02 13.66 13.00 11.59 10.92 10.77 11.35
4 7.13 7.25 7.08 6.45 8.68 12.10 15.70 12.45
5 4.13 8.89 15.04 7.98 1.45 7.63 8.64 4.16
6 6.14 10.54 14.31 8.09 12.94 4.62 8.35 13.86
7 0.003 0.04 0.002 0.008 0.0001 0.0002 0.00007 0.00001

3. New Approach of global error estimation. We start with the global error
estimation equation in (2.8):

(3.1) lT e(T ) ≈
∫ T

0

λT (t)r(t)dt+ λT (0)r0.

(3.2) lT e(T ) ≈
m∑
j=1

∫ tj+1

tj

λT (t)r(t)dt+ λT (0)r0.

Let rewrite the defect r(t) as defined in (2.25):

(3.3) r(t) = ˙̃x(t)− u̇n+1(t)− J(x̃(t), t)(x̃(t)− un+1(t))

Then:

λT (t)r(t)dt = λT (t)( ˙̃x(t)− u̇n+1(t)− J(x̃(t), t)(x̃(t)− un+1(t)))
= λT (t)( ˙̃x(t)− u̇n+1(t))− λT (t)J(x̃(t), t)(x̃(t)− un+1(t)))
= λT (t)( ˙̃x(t)− u̇n+1(t))− (JT (x̃(t), t)λ(t))T (x̃(t)− un+1(t)))
= λT (t)( ˙̃x(t)− u̇n+1(t)) + λ̇T (t)(x̃(t)− un+1(t)))

=
d

dt
(λT (t)(x̃(t)− un+1(t))

Therefore:

lT e(T ) ≈
m∑
j=1

∫ tj+1

tj

d

dt
(λT (t)(x̃(t)− un+1(t))dt+ λT (0)r0

≈
m∑
j=1

λT (tj+1)(x̃(tj+1)− un+1(tj+1))− λT (tj)(x̃(tj)− un+1(tj)) + λT (0)r0

≈
m∑
j=1

(λT (tj+1)d0
j+1 − λT (tj)d1

j+1) + λT (0)r0
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4. Defect estimate using sampling. The idea of defect estimation and control
is considered by many authors; see, for example, [4, 7, 9, 12, 14, 22]. These estimates
and controls are for Runge-Kutta, Adams PECE codes, and variable order/variable
step BDF. The idea of evaluating the defect at several points to form the defect over
the span of a step is called defect sampling, [12], and will be used here to estimate
the defect for BDF methods. In doing so we take into account the different values of
din+1 for different values of i, the value of τ in x(k+1)(τ) not neccessarily being at the
end of the integration step and non-uniform step sizes. Rewriting the formula for the
defect as in (2.27) as:

r(t) ≈
k∑
i=0

q̇0..k

i (t)din+1 − ˙IE(t)

where din+1 is defined following equation (2.27) and defining

(4.1) π(t) =
k∏
j=0

(t− tn+1−j),

allows the defect estimate to be written as:

(4.2) r(t) ≈
k∑
i=0

q̇0..k

i (t)din+1 − π̇(t)
u

(k+1)
n+1 (τ)
(k + 1)!

.

The quantities that constitute this estimate are din+1 for i = 0..k and u(k+1)(τ)
(k+1)! . The

definition of local solution in (2.18) implies that dkn+1 = 0. So at any step [tn, tn+1]
where the numerical solution at tn+1 is obtained via a BDF method of order k, we
have to determine k + 1 unknown quantities din+1 for i = 0..k − 1 and u(k+1)(τ)

(k+1)! in
order to estimate the defect on this step. This can be done by sampling the defect at
k + 1 points t∗j for j = 0..k in each step. When we substitute this analytical value of
defect into the left hand-side of equation (4.2), we can construct one equation for the
unknowns. So, for a scalar equation, when we sample the defect at k + 1 points, we
can construct a (k + 1)× (k + 1) linear system Ax = b where:

A(i, j) =

{
π̇(t∗i ) if j = k + 1

q̇0..k

j (t∗i ) otherwise

and:

(4.3) bi = r(t∗i )

and the unknown vector xT = (d0
n+1, d

1
n+1, ..., d

k−1
n+1,

u(k+1)(τ)
(k+1)! ). For simplicity, the

values of t∗j are evenly spaced in the interval [tn, tn+1]. Solving the linear system
Ax = b for the unknown x provides a way of estimating the defect over the step.
Once the values of x is determined, the estimate defect at any point in the interval
[tn, tn+1] is also known from (4.2). The estimation of the defect on this interval is the
function obtained from (4.2) where d0

n+1, d
1
n+1, ..., d

k−1
n+1 and u(k+1)(τ)

(k+1)! ) are determined
using sampling. In order to evaluate the performance of defect estimate, we compare
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the analytical value of defect r(t) against the estimate defect r̃(t). Define the index
of defect estimation, rindex, as follows:

(4.4) rindex(t) =
‖r̃(t)‖
‖r(t)‖

.

For each step, we evaluate the defect at 100 equidistant points and calculate the mean
and the standard deviation (STD) for these values in the whole integration interval.
Let t1 = 0, t2, t3, ..., tm+1 = T be the steps for time integration, the definitions for
mean and STD are:

(4.5) Mean =

∑m
i=1

∑100
j=1 rindex(ti + j ∗ hi/100)

100 ∗m
,

(4.6) STD =

√∑m
i=1

∑100
j=1(rindex(ti + j ∗ hi/100)−Mean)2

100 ∗m
.

For a good defect estimate, the mean value is around 1.0 and the standard deviation

Table 4.1
Mean and STD(standard deviation) of defect indices calculated from equations (4.5) and (4.6)

TOL
Example 10−3 10−4 10−5 10−6

Mean STD Mean STD Mean STD Mean STD
1(λ = 1) 1.0000 9.6e-11 1.0000 2.6e-10 1.0000 1.3e-8 1.0000 3.9e-8

1(λ = −1) 1.0000 2.04e-8 1.0000 6.8e-7 1.0000 0.0002 1.0000 0.0100
1(λ = −20) 1.0035 6.75e-9 1.0000 2.2e-6 1.0000 4.6e-5 1.0035 0.3704

2 1.0036 0.0709 1.0024 0.0839 1.0045 0.2469 1.0001 0.0025
3 1.0002 0.0026 1.0000 0.0012 0.9999 0.0008 1.0000 0.0005
4 1.0000 1.7e-10 1.0000 8.1e-10 1.0000 6.4e-9 1.0000 4.7e-8
5 1.0000 6.4e-10 1.0000 4.5e-8 1.0000 1.7e-5 1.0000 0.0012
6 1.0001 0.0019 1.0001 0.0019 1.0000 0.0006 1.0000 0.0015

7 (L = 50) 1.0268 0.3114 1.0184 0.2608 1.0138 0.2275 1.0100 0.1906

is small. Looking at the results in Table 3.1, we see that the defect estimate using
sampling is good for every example except the last.

5. Adjoint-based global error estimation and local error. We use a dif-
ferent local problem from the one defined in (2.18) to derive an alternative method for
calculating the defect. The modified local solution on the interval [tn, tn+1] is denoted
by vn+1(t) and is defined as the solution of

(5.1)

{
v̇n+1(t) = f(vn+1(t), t), t ∈ [tn, tn+1],
vn+1(tn) = x̃n.

The local error le(tn+1) per step for the current step [tn, tn+1] is then defined by

(5.2) le(tn+1) = vn+1(tn+1)− x̃n+1.
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Define, g(t), a polynomial of degree k on [tn+1−k, tn+1], that satisfies:

(5.3)

{
g(tn+1−j) = x̃n+1−j j = 1, ..., k
g(tn+1) = vn+1(tn+1)

where vn+1(tn+1) is the solution to the system (5.1). It follows that g(t) is an inter-
polation polynomial of degree k that interpolates k + 1 known points on the interval
[tn+1−k, tn+1] and approximates vn+1(t) on the interval [tn, tn+1]. The interpolation
polynomial g(t) may also be written in Lagrange form:

(5.4) g(t) =
k∑
i=1

q0..k
i (t)x̃n+1−i +q0..k

0 (t)vn+1(tn+1).

Since g(t) approximates the local solution on the interval [tn, tn+1], we have:

(5.5) vn+1(t) ≈ g(t) + gt(t)

where the additional term gt may be written as a divided difference term:

(5.6) gt(t) ≈ π(t)[vn+1(tn+1), x̃n, x̃n−1, ..., x̃n−k].

and π(t) = (t− tn+1)(t− tn)...(t− tn+1−k). The defect, r(t), may be then estimated
as:

r(t) = ˙̃x(t)− f(x̃(t), t) = ˙̃x(t)− v̇n+1(t) + f(vn+1(t), t)− f(x̃(t), t)
= ˙̃x(t)− v̇n+1(t)− J(x̃(t), t)(x̃(t)− vn+1(t))).

Using a similar derivation in section (3), we arrive at:

(5.7) λT (t)r(t)dt =
d

dt
(λT (t)(x̃(t)− vn+1(t)),

and then:

(5.8) lT e(T ) ≈
m∑
j=1

−λT (tj+1)le(tj+1) + λT (0)r0.

6. Estimate error using defect sampling. We have the defect as seen above:

(6.1) r(t) ≈ ˙̃x(t)− v̇n+1(t)− J(x̃(t), t)(x̃(t)− vn+1(t))

Assume that the jacobian J(x̃(t), t) is close to J(x̃(tn+1), tn+1), multiply both sides
of the above equation with λT (tn+1) to get:

λT (tn+1)r(t) = λT (tn+1)( ˙̃x(t)− v̇n+1(t)) + λ̇T (tn+1)(x̃(t)− vn+1(t))

= λT (tn+1)(−q̇0..k

0 (t)le(tn+1)− π̇(t)ge(tn+1))
+λ̇T (tn+1)(−q0..k

0 (t)le(tn+1)− π(t)ge(tn+1))

= q̇0..k

0 (t)(−λT (tn+1)le(tn+1)) + π̇(t)(−λT (tn+1)ge(tn+1))
+q0..k

0 (t)(−λ̇T (tn+1)le(tn+1)) + π(t)(−λ̇T (tn+1)ge(tn+1))
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So with 4 samples of the defect at t1, t2, t3, t4 we form the system:
q̇0..k

0 (t1) π̇(t1) q0..k
0 (t1) π(t1)

q̇0..k

0 (t2) π̇(t2) q0..k
0 (t2) π(t2)

q̇0..k

0 (t3) π̇(t3) q0..k
0 (t3) π(t3)

q̇0..k

0 (t4) π̇(t4) q0..k
0 (t4) π(t4)



−λT (tn+1)le(tn+1)
−λT (tn+1)ge(tn+1)
−λ̇T (tn+1)le(tn+1)
−λ̇T (tn+1)ge(tn+1)



λT (tn+1)r(t1)
λT (tn+1)r(t2)
λT (tn+1)r(t3)
λT (tn+1)r(t4)


By solving this system, we may determine the value of −λT (tn+1)le(tn+1) and use for
error estimation in (5.8), thus giving an approximation to the defect:

(6.2) r̃(t) = −q̇0..k

0 le(tn+1)− ġt(t).

There are two quantities that determine the form of the estimated defect over a step:
le(tn+1) and [vn+1(tn+1), x̃n, x̃n−1, ..., x̃n−k]. Using the same method as in Section 3,
we may obtain the values of these quantities on each step by sampling the defect at
2 points in the interval [tn, tn+1]. In order to obtain the global error estimate in this
case, we evaluate the term

∫ tn+1

tn
r̃(t)dt as follows:∫ tn+1

tn

r̃(t)dt =
∫ tn+1

tn

( ˙̃x(t)− v̇n+1(t)),

= (x̃(tn+1)− vn+1(tn+1))− (x̃(tn)− vn+1(tn)),
= −le(tn+1),

and arrive at the global error estimate:

(6.3) lT e(T ) ≈
m∑
j=1

−λ̄T (tj)le(tj) + λT (0)r0.

where the local error at any step, le(tj), is determined by sampling the defect at 2
points and constructing a 2×2 linear system using (6.2) to solve for the two unknown
quantities in this equation. As we can see in Table 5.1 that the global error is estimated

Table 6.1
Error indices(eindex) for global error estimate using (6.3) with two defect samples per step

TOL
Example 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

1(λ = 1) 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.95
1(λ = −1) 1.00 0.96 0.97 0.99 0.96 0.96 0.96 0.98
1(λ = −20) 3.81 2.71 2.63 1.80 1.07 1.05 0.96 1.03

2 0.97 0.97 0.98 0.98 1.07 1.00 0.99 0.99
3 0.96 0.96 0.95 0.97 0.98 0.98 0.97 0.97
4 0.95 0.95 0.95 0.95 0.95 0.97 0.96 0.98
5 0.96 0.96 0.97 0.97 0.97 0.97 0.96 0.98
6 0.94 0.96 0.97 0.97 0.97 0.97 0.98 0.98

7 (L = 50) 2.69 2.19 1.87 1.80 1.46 1.03 1.04 1.05

wth good accuracy using two defect samples per step.
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7. Global error estimation with one defect sample per step. In order
to reduce the cost still further, will make use of information from the BDF time
integration to reduce the number of defect samples to one per time step. Let xpn+1(t)
be the predictor polynomial of equation (2.11) that interpolates the solution values
at k + 1 points tn, ..., tn−k given by x̃n+1−i for i = 1..k + 1. This polynomial xpn+1(t)
is written in Lagrange form as:

(7.1) xpn+1(t) =
k+1∑
i=1

q1..k+1
i (t)x̃n+1−i.

The local solution on the interval [tn, tn+1] may be approximated by:

(7.2) vn+1(t) ≈ xpn+1(t) + (t− tn)(t− tn−1)...(t− tn−k)[vn+1(tn+1), x̃n, ..., x̃n−k].

Let gtt(t) = (t− tn)(t− tn−1)...(t− tn−k)[vn+1(tn+1), x̃n, ..., x̃n−k], then:

(7.3) vn+1(t) ≈ xpn+1(t) + gtt(t).

The residual on the interval [tn, tn+1] may be approximated by:

(7.4) r(t) ≈ ˙̃x(t)− v̇n+1(t)− J(x̃(t), t)(x̃(t)− vn+1(t)).

Using a similar derivation to previous section, we have:

(7.5) λT (t)r(t) ≈ d

dt
(λT (t)[x̃(t)− vn+1(t)])

The equation for the global error estimate is then given by:

lT e(T ) ≈
m∑
j=1

∫ tj+1

tj

λT (t)r(t)dt

≈
m∑
j=1

λT (tj+1)[x̃(tj+1)− vn+1(tj+1)]− λT (tj)[x̃(tj)− vn+1(tj)]

≈ λT (tj+1)[x̃(tj+1)− xPn+1(tj+1)− gtt(tj+1)].

Therefore:

(7.6) lT e(T ) ≈ λT (tj+1)[x̃(tj+1)− xPn+1(tj+1)− gtt(tj+1)].

As the values of x̃n+1 and xpn+1 are available at each step, we need only to estimate
gtt(tn+1) in order to use the above equation for global estimation. As the unknown
quantity that we have to estimate is [vn+1(tn+1), x̃n, ..., x̃n−k]. Using the method of
sampling, we could use the equation (7.4) to estimate this quantity. However, to
simplify the calculation we drop the Jacobian term in that equation and arrive at:

r(t) ≈ ˙̃x(t)− vn+1(t)
≈ ˙̃x(t)− ẋpn+1(t)− gtt(t)

≈ q̇0..k

0 (t)(x̃(tn+1)− xpn+1(tn+1))− π(t)[vn+1(tn+1), x̃n, ..., x̃n−k].

With only one sample of the defect, we are able to estimate [vn+1(tn+1), x̃n, ..., x̃n−k].
The error indices for global error estimation using (7.6) are shown in Table 5.2.
Although the global error estimate using one defect sample is not as good as the
methods with two or more samples, it a considerable improvement on Table 2.1 and
a good compromise between accuracy and efficiency.
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Table 7.1
Error indices of global error estimate using (7.6) with one defect sample per step

TOL
Example 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

1(λ = 1) 0.47 0.59 0.85 0.93 1.02 1.06 1.08 1.13
1(λ = −1) 1.28 1.12 1.13 1.08 1.22 0.95 1.12 1.19
1(λ = −20) 1.16 1.06 1.06 1.46 1.35 1.35 0.96 1.32

2 1.23 1.12 1.38 1.24 0.61 1.22 1.17 1.18
3 1.26 1.19 1.16 1.18 1.17 1.17 1.17 1.16
4 0.47 0.61 0.85 0.95 1.01 1.09 1.11 1.14
5 1.21 1.18 1.19 1.17 1.17 1.18 1.15 1.17
6 1.01 1.09 1.12 1.15 1.15 1.18 1.17 1.18

7 (L = 50) 0.85 1.03 0.96 0.80 2.91 1.45 1.41 1.45

8. Method of lines pde solution. In order to consider the application of the
above techniques to the method of lines solution of pde problems consider the class
of equations given by:

(8.1) ut = F (t, u, ux, uxx)

where (x, t) ∈ Ω = [a, b] × (0, te]. The boundary conditions are taken to be of the
form:

(8.2) ux|x=a(x, t) = ga(x, t), ∀t ∈ (0, te]

(8.3) ux|x=b(x, t) = gb(x, t), ∀t ∈ (0, te].

The initial condition has the form:

(8.4) u(x, 0) = k(x), ∀x ∈ [a, b].

Consider a space discretization grid ΩH with H is the length of discretization resulting
in the space discrete points: x0, x1, x2, ..., xN . The solution uH(t) computed at these
discrete points using time integration is given by:

(8.5) UH(t) = [UH(x0, t), UH(x1, t1), UH(x2, t1), ..., UH(xN , t1)]T ,

where UH(xi, t) is the solution to the p.d.e at mesh point xi at time t. With the
space discretization grid ΩH , using finite differences for approximations of partial
derivatives and treating the boundary conditions for the pde (see [1]), we arrive at
the system of differential equations in time:

(8.6)

{
U̇H(t) = FH(t, UH(t))
UH(0) = U0H ,

where the initial condition U0H is determined by the initial condition of the pde. The
approximation of UH(t) is ŨH(t) and is computed via time integration method.
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9. Pde spatial and temporal error estimation. Define the temporal error
for the given pde system by etH(t) where

(9.1) etH(t) = UH(t)− ŨH(t)

and where ŨH(t) is the perturbed solution due to numerical error from time integra-
tion. From Section 2, etH(t) satisfies the system:

(9.2)

{
ėtH = JH(ŨH , t)etH + rH(t)
etH(0) = r0H

where JH(ŨH , t) is Jacobian of FH at ŨH and rH(t) = ˙̃U(t) − FH(t, ŨH(t)). While
performing the space discretization, we also introduce error at the mesh points called
space discretization error: esH(t) = uH(t)−UH(t). Where uH(t) is the restriction of
the pde exact solution to the mesh. From [1], the equation for space discretization
error is:

(9.3)

{
ėsH = JH(ŨH , t)esH + TEH(t)
esH(0) = 0

where TEH(t) = u̇H(t)−FH(uH(t), t). So the overall error at spatial mesh points for
space discretization grid ΩH at any time t is EH(t) = esH(t) + etH(t) and EH(t) =
uH(t)− ŨH(t). From equations (7.1) and (7.3), we have:

(9.4)

{
ĖH = JH(ŨH , t)EH + rH(t) + TEH(t)
EH(0) = r0H

.

We perform a similar derivation as in Section 2 by considering the adjoint ode system:

(9.5)

{
λ̇(t) = −JTH(ŨH , t)λ(t), 0 ≤ t ≤ T
λ(T ) = l

for some vector l in Rn. Given the similar form of equations (7.2) and (7.3), we arrive
at the spatial error estimate for time-dependent pdes from using the adjoint method:

(9.6) lT esH(T ) =
∫ T

0

λT (s)TEH(s)ds+O(δ2).

The combination of spatial and temporal error for time-dependent pdes is:

(9.7) lTEH(T ) =
∫ T

0

λT (s)(rH(s) + TEH(s))ds+ λT (0)r0H
+O(δ2).

Exactly as in Section 2, once the vector l is chosen, the value in each component of
error vector EH at end time T is estimated using solution to the adjoint system (7.5)
with ode defect and pde truncation error. With the assumption that λ(tn+τ) ≈ λ(tn)
for 0 ≤ τ ≤ hn+1. The pde spatial and the combinated spatial and temporal errors
are then estimated by:

(9.8) lT esH(T ) =
m∑
j=1

λT (tj)
∫ tj+1

tj

TEH(t)dt,
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(9.9) lTEH(T ) =
m∑
j=1

λT (tj)
∫ tj+1

tj

(rH(t) + TEH(t))dt+ λT (0)r0H
+O(δ2).

With le(tj) defined as in (5.2) and estimated using 2 defect samples, we have:

(9.10) lTEH(T ) ≈
m∑
j=1

λT (tj)(le(tj) + (tj+1 − tj)TEH(tj)) + λT (0)r0H

9.1. Pde truncation error estimation using Richardson extrapolation
and mesh refinement. Consider a fine-grid Ωh where h = H

2 . Let Ωh be the actual
mesh used to compute the numerical solution to the PDE and also be the ”fine” mesh
in the Richardson extrapolation. Then let ΩH be the ”coarse” mesh. The following
results are from [1]. Let

(9.11) TEh(t) = u̇h(t)− Fh(uh(t), t).

Then

(9.12) TEH(t) =
4
3

[U̇hH(t)− FH(t, UhH(t))] +
4
3

[ėtH −
∂FH
∂uH(t)

etH ]

(9.13) [TEh(t)]2i−1 =
1
4

[TEH(t)]i +©(h3)

(9.14) [TEh(t)]2i =
1
8

([TEH(t]i + [TEH(t)]i+1)

Where U̇hH(t) and UhH(t) are the restriction of solutions from the fine mesh to the
coarse mesh.

10. Numerical results. For following problems, we solve the pdes on the spatial
domain [A,B] with time interval (0, T ]. Let NPTS be the number of points that we
use to perform spatial discretization. The mesh size is then H = (B−A)

(NPTS−1) . So for

mesh ΩH and calculated solution ˙̃UH and ŨH on this mesh, we construct a ”coarse”
mesh with mesh size K = 2H, and then calculate truncation error on this ”coarse”
mesh by:

(10.1) TEK(t) =
4
3

[ ˙̃UH(t)− FK(t, ŨH(t))]

The truncation errors on original mesh are then recovered using [1]:

(10.2) [TEH(t)]2i−1 =
1
4

[TEK(t)]i

(10.3) [TEH(t)]2i =
1
8

([TEK(t]i + [TEK(t)]i+1)

The residual error rH(t) is approximated by following the method described in Section
5. By solving the ode systems of pdes using different local tolerances(TOL), we may
estimate spatial and overall errors to the numerical solutions to pdes using equation
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(7.8) and (7.9). With EH(T ) be the vector of total discrete error for the pde at time
T and ẼH(T ) be the approximation of total error at time T. We define the overall
error ’index’ as follows:

(10.4) index =
‖ẼH(T )‖
‖EH(T )‖

.

The following test examples will be used to investigate the performance of the error
estimator defined by equation (7.10).

10.1. Problem 1. Problem 1 is the heat equation with Neumann boundary
conditions:

(10.5)
δu

δt
=
δ2u

δx2

where (x, t) ∈ [0, 1]× (0, 0.2]. With the boundary conditions:

(10.6)
δu

δx
(x, t) = πe−π

2t cos(πx)

at x=0 and x=1. The initial condition is consistent with the analytic solution:

(10.7) u(x, t) = sin(πx)e−π
2t.

Table 10.1
Error indices index for Example 1 using (7.10)

TOL
NPTS 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

11 1.01 1.01 0.98 0.97 0.97 0.97 0.97 0.97
21 1.01 1.01 1.00 0.99 1.00 1.00 1.00 0.99
41 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.01
81 0.99 0.99 1.01 1.01 1.01 1.01 1.01 1.01
161 0.97 0.98 0.99 0.99 1.02 1.03 1.02 1.02
321 0.97 0.97 0.98 0.98 1.02 1.04 1.03 1.02

10.2. Problem 2. Problem 2 is an example of a problem with a non-linear
source term and a travelling wave solution:

(10.8)
δu

δt
=
δ2x

δx2
+ u2(1− u) (x, t) ∈ (0, 10)× (0, 1.0]

with Dirichlet boundary conditions and initial conditions consistent with the analytic
solution of

(10.9) u(x, t) =
1

1 + ep∗(x−pt)

where p = 0.5
√

2.
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Table 10.2
Error indices index for Example 2 using (7.10)

TOL
NPTS 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

11 0.92 0.90 0.89 0.88 0.88 0.87 0.87 0.87
21 0.98 0.98 0.97 0.95 0.97 0.97 0.97 0.97
41 1.01 1.01 1.01 0.96 0.99 0.99 0.99 0.99
81 1.02 0.99 1.00 0.89 1.00 1.00 1.01 1.01
161 1.67 0.98 0.99 0.92 1.01 1.01 1.01 1.01
321 2.03 0.97 0.98 0.98 1.02 1.01 1.01 1.01

10.3. Problem 3. This problem has a nonlinear source term and with nonlinear
boundary conditions:

(10.10)
δu

δt
=
δ2u

δx2
− 2

δu

δx

2 1
u
− (2 + 4t3x)u2

where (x, t) ∈ [0, 1]× (0, 1] and boundary conditions:

(10.11)
δu

δx
(0, t) = −u2

and

(10.12)
δu

δx
(1, t) = −u2(−2 + t4)

The initial conditions are consistent with analytic solution:

(10.13) u(x, t) =
1

2− x2 + xt4
.

Table 10.3
Error indices index for Example 3 using (7.10)

TOL
NPTS 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

11 0.83 0.83 0.83 0.83 0.83 0.83 0.84 0.83
21 0.83 0.83 0.83 0.83 0.85 0.84 0.84 0.84
41 0.90 0.90 0.91 0.93 0.91 0.90 0.90 0.89
81 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96
161 1.05 1.02 1.02 1.02 1.01 1.01 1.01 1.00
321 2.50 1.28 1.08 1.08 1.04 1.03 1.02 1.02

11. Small sample statistical method. It has shown above that using an ad-
joint method is a good method for estimating error for discretized pdes. It is however
insufficient since we have to solve adjoint system n times with n is the number of equa-
tions in the system. As mentioned in [4], if we allow the estimate to have a moderate
relative error, the small sample statistical method might be used. The small sample
statistical method was originally proposed and discussed in detail in [19], and was also
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described in [4]. The method generates two independent vectors l1 and l2 uniformly
and randomly from the unit sphere Sn−1 in n dimensions where n is the number of
equations in the odes system and uses these vectors for l in equation (7.5). With these
vectors, we obtain the values for lT1 e(T ) and lT2 e(T ) using (5.8). The expected values
of lT1 e(T ) and lT2 e(T ) are given by:

(11.1) E(|lTi e(T )|) = ‖e(T )‖En, i = 1, 2

where E1 = 1, E2 = 2/π, and En can be estimated by 2√
π(n−1/2)

for n > 2.

Following [4], we use ξ1 = |lT1 e(T )|
En

and ξ2 = |lT2 e(T )|
En

to estimate ‖e(T )‖. For
orthogonal random vectors l1 and l2, we have an estimate of ‖e(T )‖ given by ξ(2)
where:

(11.2) ξ(2) = E2

√
ξ21 + ξ22 .

Let c > 1 be a given factor:

(11.3) P (
‖e(T )‖
c

≤ ξ(2) ≤ c‖e(T )‖) ≈ 1− π

4c2

As is shown in [4], with two orthogonal random vectors yield an estimate of ‖e(T )‖
which is correct to within a factor of 3 with 91% probability.

The results obtained by applying this approach to the examples in Section 8 gives
the results recorded in Tables 9.1-9.3. With each example, we run the estimation of
‖e(T )‖ with 2 orthogonal random vectors in Sn−1 for 500 times and calculate the
probability of ‖e(T )‖ estimate that falls into the range ‖e(T )‖

3 and 3‖e(T )‖) where
‖e(T )‖ obtained in Section 8. The results in Table 9.1-9.3 show the consistency with
the theory for the small sample statistical method.

Table 11.1
Probability of ξ(2) that falls into

‖e(T )‖
3

and 3‖e(T )‖) for Example 1

TOL
NPTS 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

11 90.4% 90.2% 92.8% 91.2% 90.6% 91.4% 90.0% 91.2%
21 91.6% 93.8% 91.2% 90.0% 93.0% 91.2% 92.0% 93.2%
41 91.0% 91.6% 90.0% 94.8% 92.0% 91.8% 91.2% 90.6%
81 93.4% 92.8% 91.2% 92.2% 93.2% 93.6% 93.8% 92.4%
161 90.8% 93.0% 94.6% 93.4% 91.6% 91.4% 92.4% 92.2%
321 94.2% 92.4% 93.4% 91.2% 92.4% 91.2% 92.0% 93.6%

12. Control the error in a quantity of interest. It is often possible to
formulate problems so that the quantity of interest for the user is posed as a coupled
ode to the pde. This idea was goes back to the POST software of Schryer [20] and
was used in the SPRINT1D software of Berzins et al. [2]. Given the above discussion
of error estimation in odes and pdes, it is also straightforward to estimate global error
of coupled system of pdes and odes. We will translate the pdes part into system of
N equations of odes using the space discretization of Section 6 to obtain a system
of odes with N+M equations where M is the number of equations for coupled odes.
The residual errors for new system are derived as in Section 5, and truncation errors
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Table 11.2
Probability of ξ(2) that falls into

‖e(T )‖
3

and 3‖e(T )‖) for Example 2

TOL
NPTS 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

11 89.2% 91.4% 94.2% 90.8% 91.8% 93.2% 92.2% 93.2%
21 91.4% 90.6% 91.6% 92.2% 93.8% 92.6% 91.2% 94.0%
41 93.2% 91.8% 92.0% 91.6% 92.2% 90.8% 91.4% 91.8%
81 92.8% 90.6% 90.6% 91.2% 90.4% 92.4% 91.6% 90.6%
161 93.4% 92.2% 91.8% 94.8% 90.6% 91.8% 90.0% 90.0%
321 92.0% 91.2% 90.8% 92.4% 90.6% 92.8% 93.2% 94.2%

Table 11.3
Probability of ξ(2) that falls into

‖e(T )‖
3

and 3‖e(T )‖) for Example 3

TOL
NPTS 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

11 92.0% 94.0% 92.4% 92.2% 93.4% 91.6% 92.2% 93.2%
21 90.2% 93.2% 91.4% 91.2% 92.2% 90.6% 93.0% 93.4%
41 91.6% 90.2% 93.6% 93.4% 91.2% 92.6% 94.2% 90.2%
81 93.4% 91.0% 91.8% 91.8% 91.6% 92.4% 91.4% 92.2%
161 92.8% 92.4% 92.0% 92.6% 92.0% 93.4% 91.2% 91.4%
321 91.2% 90.4% 92.4% 91.6% 89.8% 91.2% 92.0% 93.4%

are derived as in Section 6 where truncation errors are zero for that part of the
equations corresponding to coupled odes. The global error is then estimated using
adjoint method as described as above.

12.1. Estimate the error in approximating the quantity of interest. In
some cases, we are not interested in global error in every solution component, but
rather in the error of a quantity of interest that involves a part of the solution of the
pde system. If we could formulate the quantity of interest in the form of one or more
extra odes, we are then able to solve for this pde/ode coupled system and obtain
the quantity of interest. The adjoint method then may be used to estimate the error
in approximating this quantity of interest. This idea may be demonstrated by the
following examples:

12.1.1. Example 1. Consider pde system:

(12.1)


ut = uxx + e−2u + e−u, (x, t) ∈ [0, 1]× (0, 1.0]
u(x, 0) = log(x+ P )
u(0, t) = log(t+ P )
ux(1, t) = 1

x+t+P

The analytical solution to this system is u(x, t) = log(x + t + P ). Suppose that
we are interested in the total of u(1, t) over time. The quantity of interest may be
written as

∫ T
0
u(1, t)dt. If we let v̇1 = u(1, t), then:

∫ T
0
u(1, t)dt = v1(T )− v1(0).

Combining the pde system with the ode for the quantity of interest, we have the
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coupled pde/ode system:

(12.2)



ut = uxx + e−2u + e−u, (x, t) ∈ [0, 1]× (0, 1.0]
v̇1 = u(1, t)
u(x, 0) = log(x+ P )
u(0, t) = log(t+ P )
ux(1, t) = 1

x+t+P .

In order to estimate the error in the quantity of interest in this problem, we need
to solve the adjoint system with condition λ(T ) = [0, 0, 0, ...0, 1]T . The result for
approximating the error in estimating the quantity of interest is shown in Table 10.1.
TOL is the local error tolerance used in time integration.

Table 12.1
Approximating error in estimation of quantity of interest described in 10.1 where Index is the

fraction of approximate error over true error in estimated quantity of interest.

NPTS True Error Approximate Error Index TOL
20 -0.00252215 -0.00242941 0.96 1e-4
40 -0.00132927 -0.00123281 0.93 1e-4
80 -0.000668284 -0.000617518 0.92 1e-5
160 -0.000338754 -0.000313061 0.92 1e-5

12.1.2. Example 2. This pde comes from modeling the dual-sorption of percu-
taneous drug absorption and is defined as:

(12.3)


ut = [1 + α

(1+βu)2
]−1

uxx, (x, t) ∈ (0, 1)× (0, T ]

u(0, t) = 1
u(1, t) = 0
u(x, 0) = 0.

The cumulative amount of drug eliminated into receptor cell per unit area at time T ∗

is Ae∗(T ∗) defined as:

(12.4) Ae∗(T ∗) = −δ
∫ T∗

0

ux(1, t)dt.

Differentiating this equation gives:

(12.5) ˙Ae∗ = −δux(1, t).

The equation for Äe∗ is then derived as:
(12.6)

Äe∗ = −δuxt(1, t) = −δutx(1, t) = −δ d
dx
ut(1, t) = −δ d

dx
[1 +

α

(1 + βu)2
]
−1
uxx(1, t).

After asigning α1 = 1
1+α and α2 = 2αβ

(1+α)2
we have:

(12.7) Äe∗ = −δ(α1uxxx(1, t) + α2ux(1, t)uxx(1, t)).
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We then arrive at the coupled system:

(12.8)



ut = [1 + α
(1+βu)2

]−1
uxx, (x, t) ∈ (0, 1)× (0, T ]

u(0, t) = 1
u(1, t) = 0
u(x, 0) = 0

˙Ae∗ = −δux(1, t)
Äe∗ = −δ(α1uxxx(1, t) + α2ux(1, t)uxx(1, t))

Using the method of lines and approximating ux(1, t), uxx(1, t) and uxxx(1, t) with
finite differences leads to a system of first-order ODEs. Using the DASSL time inte-
gration method for solving this system, we obtain the numerical solution of u(x,t) at
grid points, and the values of Ae∗, and ˙Ae∗ at end time T. By choosing appropriate
initial values for adjoint system, we can estimate the errors in approximating of Ae∗

and ˙Ae∗. The lag-time at time T ∗ after vehicle removal is the value of t-intercept of
the asymptote of the Ae∗ at T ∗ versus time curve. So we have:

(12.9) tlag = T ∗ − Ae∗(T ∗)
˙Ae∗(T ∗)

and so the error in estimating tlag may be approximated as:

(12.10) Error(tlag) =
Error( ˙Ae∗(T ∗))Ae∗(T ∗)− ˙Ae∗(T ∗)Error(Ae∗(T ∗))

˙Ae∗
2
(T ∗)

Using the same parameters as in [10],α = 2.7995 and β = 2.709916, δ = 19.36, for
donor concentration C = 4.4mg/ml, we can compare the computed error and truth
error in approximating tlag. The analytical value of tlag is obtained by determining
asymptotic steady-state solutions to Fick’s second law for permeation. The following
lag-times at t=12h after vehicle removal for different donor concentrations are ob-
tained by using 19 inner points for space discretization and local tolerance for time
integration is 1e − 3. The ’Error Index’ is the quotient of ’Approximate Error’ over
’True Error’ as used above.

Table 12.2
Result for problem described in 10.2

C Exact Computed True Approximate Error
(mg/ml) Lag-time Lag-time Error Error Index

4.4 3.29 3.337 0.047 0.040 0.85
19.5 2.19 2.150 0.040 0.052 1.30
43.1 1.86 1.821 0.039 0.036 0.92
51.4 1.81 1.769 0.041 0.033 0.80
64.0 1.75 1.718 0.032 0.026 0.81

12.1.3. Example 3. A different example of an important quantity of interest
arises from the modeling of the conditions under which a rod of explosive ignites. The
governing differential equation here in [3]:

(12.11) ut = 0.25uxx + 0.46exp(33− 1/u)
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subject to the initial condition:

(12.12) u(x, 0) = u1

and boundary conditions:

u(0, t) = u0,

u(1, t) = u1,

u0 > u1.

The critical temperature of a rod solid explosive uCRIT is the value at which u0 >
uCRIT leads to ignition whereas u0 < uCRIT does not, where ignition is defined as
u(x, t) > u(0, t) at some position x that 0 < x < 1 and at some time t that t <= 10.

In order to find the critical temperature, we follow the numerical technique used
in [3]. For different spatial meshes, we obtain a different value of critical temperature,
the initial temperature u(0, t) such that the explosion occurs at T = 10, and different
position ui where ui(T ) > u0(T ). However, there is an uncertainty in time of explosion
due to the error in numerical value ũi(t) where ũi(t) is computed solution of ui(t).

Assume that we have determined the critical temperature uCRIT and the com-
puted value ũi(T ) with some global error ei(T ), then we know the time of explosion
must be T + ∆T and defined ∆T as uncertainty in time of explosion. To determine
the time uncertainty ∆T , we use a rough calculation of ui at T + ∆T as:

(12.13) ui(T + ∆T ) = ui(T ) + (ui)t(T )∆T.

The correct value ui(T ) is approximated as: ui(T ) = ũi(T ) + ei(T ). Assume that
(ui)t is constant, we obtain the relationship:

∆T =
ui(T + ∆T )− ui(T )

(ui)t(T )

=
ui(T + ∆T )− (ũi(T ) + ei(T ))

(ui)t(T )

≈ − ei(T )
(ui)t(T )

Table 12.3
Time uncertainty at T=10.0 with corresponding spatial mesh and critical temperature

H 0.015625 0.0078125 0.0039625
Critical Temperature 0.028379 0.028375 0.028372

ũi 0.0283797 0.0283751 0.0283721
Global Error of ũi 4.31e-05 1.01e-05 1.23e-06

(ui)t 1.91e-06 1.84e-07 3.93e-08
Time uncertainty(∆T ) 22.18 21.33 31.00

The calculation of time uncertainty for different spatial meshes is recorded in
Table 10.3. Since the global error of ũi(T ) is significantly larger than that in (ui)t(T ),
this results in a large value of time uncertainty. Table 10.3 also shows that a small
change in u0 might lead to a large change in the time of explosion. For example:
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changing the value of u0 from 0.028379 to 0.0283778 for the case h = 0.015625 causes
the time of explosion to change from 10.0 to 32.0 and a change in value of u0 from
0.028375 to 0.0283744 for the case h = 0.0078125 causes the time of explosion to
change from 10.0 to 48.0. These results show that we have to take great care when
calculating the resuts of the critical temperature problem.

13. Conclusions. The adjoit-based global error estimate introduced at the start
of this paper has been improved by the use of defect sampling. Defect sampling is
applied in each time interval to estimate the ode defect. The defect and thus the
global error is best estimated with k + 1 defect samples per time step where k is the
order of BDF method. However, the use of two samples per time step also yields a
good estimation of global error. In order to reduce the cost, the number of defect
samples is reduced to one by making use of information from IDA/DASSL. This is
less accurate thabn the two sample approach but still useful for estimation of the
global error in ode systems.

Spatial and temporal errors are the error sources associated with the discretization
of time-dependent pdes when using the method of lines. The temporal error that
correspond to the ode global error that may be estimated using adjoint-based method
with defect sampling. Making use of the similarity between the systems of spatial and
temporal error evolution, we can extend the adjoint method to spatial error estimation
in which case the ode defect is replaced by pde truncation error. This pde truncation
error may be estimated via Richardson extrapolation. Numerical results have shown
that this approach works well for pde error estimation. Even though the adjoint
method is somewhat inefficient in estimating the pde combined space and time error,
the small sample statistical method has been shown to be able to estimate this error
with a high probability.

The adjoint method for pde error estimation is also efficient when used with
quantity of interest. Estimation of the error in the quantity of interest involves the
estimation of some error component in solution vector of coupled pdes/odes. Finally
this type of error estimation may also help in quantifying uncertainty in computed
solution.
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