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Abstract:

Large observations and simulations in scientific research give rise to high-dimensional data sets that

present many challenges and opportunities in data analysis and visualization. Researchers in the

application domains such as engineering, computational biology, climate study, imaging and motion

capture are faced with the problem of how to discover compact representations of high-dimensional

data while preserving their intrinsic structure. In many applications, the original data is projected

onto low-dimensional space via dimensionality reduction techniques prior to modeling. One problem

with this approach is that the projection step in the process can fail to preserve structure in the

data that is only apparent in high dimensions. Conversely, such techniques may create structural

illusions in the projection, implying structure not present in the original high-dimensional data.

Our solution is to utilize topological techniques to recover important structures in high-dimensional

data that contains non-trivial topology. Specifically, we are interested in two types of features in

high dimensions: local branching structures and global circular structures. We construct local

and global circle-valued coordinate functions to represent such features. Subsequently, we perform

dimensionality reduction on the data while ensuring such structures are visually preserved. Our

results reveal never-before-seen structures on real-world data sets from a variety of applications.
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Fig. 1. Given point cloud data in high-dimensional space, we detect and visualize branching structures in a neighborhood surrounding
a given point of interest. Here we give two simple examples with point clouds sampled from surfaces embedded in 3-dimensional
space. In (a), given a genus-3 surface, we analyze the branching structure around one of its corners, x. We apply color-mapping
transfer functions to local circle-valued coordinate functions to visualize the structure. Specifically, the color scale indicates the
“direction” of the branches. As illustrated in (b), there is a local two-way branching around x, where the coordinate function of each
branch is visualized in (e) and (f), respectively. In (c), given a genus-4 surface, we detect a seven-way branching around x (d), where
three of the coordinate functions are shown in (g), (h) and (i), respectively.

Abstract— Large observations and simulations in scientific research give rise to high-dimensional data sets that present many
challenges and opportunities in data analysis and visualization. Researchers in the application domains such as engineering, com-
putational biology, climate study, imaging and motion capture are faced with the problem of how to discover compact representations
of high-dimensional data while preserving their intrinsic structure. In many applications, the original data is projected onto low-
dimensional space via dimensionality reduction techniques prior to modeling. One problem with this approach is that the projection
step in the process can fail to preserve structure in the data that is only apparent in high dimensions. Conversely, such techniques
may create structural illusions in the projection, implying structure not present in the original high-dimensional data. Our solution is to
utilize topological techniques to recover important structures in high-dimensional data that contains non-trivial topology. Specifically,
we are interested in two types of features in high dimensions: local branching structures and global circular structures. We construct
local and global circle-valued coordinate functions to represent such features. Subsequently, we perform dimensionality reduction on
the data while ensuring such structures are visually preserved. Our results reveal never-before-seen structures on real-world data
sets from a variety of applications.

Index Terms— Dimensionality reduction, circular coordinates, visualization, topological analysis.

1 INTRODUCTION

Many scientific investigations depend on exploratory data analysis
and visualization of high-dimensional data sets that represent complex
phenomena. Given a collection of high-dimensional data points, di-
mensionality reduction techniques are typically applied prior to mod-
eling and feature detection. These techniques find a low-dimensional
representation of the data with simple guarantees, by assuming that
real-valued low-dimensional coordinates are sufficient to capture its
underlying intrinsic structure.

• Bei Wang, Brian Summa, and Valerio Pascucci are with SCI Institute,
University of Utah, E-mails: beiwang@sci.utah.edu,
bsumma@sci.utah.edu, pascucci@sci.utah.edu.

• Mikael Vejdemo-Johansson is with Stanford University, E-mail:
mik@math.stanford.edu.

In mathematical terms, given a collection of high-dimensional data
points X ∈ Rd , dimensionality reduction techniques obtain an em-
bedding that maps a point x = (x1,x2, ...,xd) ∈ X to a point y =
(y1,y2, ...,ym), where m << d, through a set of real-valued coordi-
nate functions φ = (φ1,φ2, ...φm) : X → R, where yi = φi(x), with the
assumption that the data typically has the topological structure of a
convex domain [13]. However, if the underlying space in high dimen-
sions contains nontrivial topology, either globally or locally, dimen-
sionality reduction alone is no longer sufficient to preserve the topol-
ogy. In particular, we consider two types of topological features in
high dimension: local branching and global circular structures. We
use topological techniques to construct local and global circle-valued
coordinate functions that represent such features. We then ensure they
are visually preserved in the low dimensional projection.

The authors in [13] challenge the convex domain assumption in
dimensionality reduction through topological analysis. They con-
sider data sets whose underlying spaces contain circular structures,
such as circle, annulus and torus. They describe a topological proce-



dure that enlarges the class of coordinate functions to include global
circle-valued functions, that map the point cloud to a closed circle,
θ : X → S1. We adapt and build upon this work to construct local
circle-valued coordinate functions on a subset of points U ⊆ X , that
encode branching structures in data. Formally, we compute functions
that map subsets of points onto a closed circle, θ ′ : U → S1. We visu-
alize these local circular coordinate functions by applying a color map
transfer function.

The advantage with local and global circle-valued coordinate func-
tions is two-fold. First, they enrich data representations by revealing
branching and circular features in the data. Second, they differentiate
intrinsic structures of the data from structural illusions.

For example, for a point cloud sampled from a torus embedded in
2D as shown in Figure 2 top, dimensionality techniques alone can al-
ways visualize one of its essential loops represented by θ1, while fail
to showcase the other essential loop revealed by θ2 without tearing or
cutting. In Figure 2 bottom, global circular-valued coordinate func-
tions differentiate a trefoil knot from two closed circles based upon
seemly similar projections.

On the other hand, local circle-valued coordinate functions reveal
topological features within a sub-region of the point cloud, as shown
in Figure 3. It is able to capture the three-way branching structure
surrounding the crossing point in figure eight (Figure 3 bottom), while
detecting structural illusion of a figure eight created by projecting a
circle in a certain direction (Figure 3 top).

Our main contributions are as follows.

• We introduce local circle-valued coordinate functions that facil-
itate local structural analysis, especially the detection of branch-
ing features in data. We construct these functions in a local
neighborhood through topological analysis of 1-dimensional co-
homology. That is, we choose a subset of points U that are with
close proximity of a given point, and construct coordinate func-
tions θ : U → S1.

• On the technical level, we develop a local version of the per-
sistent cohomology machinery through local cohomology com-
puted on point cloud data. Persistence enables the detection of
significant local features and separates features from noise within
the data. That is, we obtain parameterization of U through co-
ordinate functions θ1,θ2, ...,θn : U → S1, where n indicates the
number of significant local features.

• We present the first technique that approximates topological cir-
cular and branching structures in high-dimensional space to aid
visualization in the low-dimensional projection.

• We present empirical evidence demonstrating that both the local
and global circle-valued coordinate functions, for the first time,
permit more precise analysis on a large collection of real-world
data sets.

2 RELATED WORK

Various algorithms have been proposed to compute loops on sur-
faces, or homology generators that satisfy certain geometric optimality
[27, 9, 38, 23]. [27] computes shortest set of homology generators for
2-manifolds. [16] uses topological persistence [22] to computes topo-
logically correct loops on surfaces, that wrap around their “handles”
and ”tunnels”. Given a weighted simplicial complex and a nontrivial
cycle, [15] computes its homologous cycle with minimal weight. [11]
approximates a shortest basis of the one dimensional homology group
of a manifold in Rd from its point sample. Algorithms have also been
developed to compute shortest cycles, minimum cuts, or maximum
flow related to graphs embedded on surfaces [26, 28, 25, 24].

In terms of revealing circular structures or essential loops within
data, several approaches have been taken to find alternative represen-
tations. [17] studies cylindrical manifolds - data whose generative
model includes a cyclic and a linear parameter, and tries to find em-
bedding functions that map them onto a cylinder S1×R. [33] projects

Fig. 2. Visualized global circular coordinate functions. Top: two global
circle-valued coordinate functions for a point cloud sampled from a
torus. Top left: θ1 : X → S1. Top right: θ2 : X → S1. Bottom left, pro-
jection of a trefoil knot; bottom middle and right, projection of two closed
circles. Figures are reproductions from [13].

Fig. 3. Visualized local circle-valued coordinate function. Top left: local
circle-valued coordinate function for a point cloud sampled from a torus.
Top right: projection of a circle on 2D that gives an illusion of a figure
eight, local circle-valued coordinate function indicates there is no local
branching structure. Bottom: projection of a figure eight on 2D, three
circle-valued coordinate functions are visualized to describe the local
branching structures.

data with non-trivial topology by destroying essential loops via tear-
ing and cutting. [36] maps data to a pre-chosen non-flat target space,
such as a cylinder or a sphere, using multidimensional scaling. The
work in [13] represents the original topology with significant circular
structures without tearing or cutting, and gives a number of circle-
valued coordinate functions determined experimentally through per-
sistence. Recent work in [5] defines a modified version of topologi-
cal persistence (level persistence) for 1-cocycles, and shows that such
1-cocycles can be interpreted as a circle valued map. We notice sim-
ilarities between [13] and [5], however they use different notions of
persistence.

Algorithms that focus on cohomology computation, especially per-
sistent cohomology, has been proposed in recent years [13, 5]. [19, 18]
designs efficient algorithm to compute cohomology basis, with appli-
cations in computational electromagnetic. [14] addresses duality in
persistent homology and cohomology computation, while [10] com-
pares efficiencies of these algorithms. Local persistent homology has
been used in stratification learning [2, 3].

Our work is the first that constructs local circle-valued coordinates
on high-dimensional data to detect branching structures. We discover
and visualize topological structures such as circles and branches on
some data sets that have never been realized before.



3 TECHNICAL BACKGROUND

We now introduce several key ingredients (algebraic and algorithmic)
behind our algorithm. Our work deals with homology and cohomol-
ogy groups, the art of counting “cycles” and “pseudo-cycles” in a topo-
logical space. Cohomology groups are algebraically “dual” to the ho-
mology groups, while less geometrical, they are important in theory
and practice. According to Bott and Tu [4], “one of the hallmarks of
a topologist is a sound intuition for the coboundary operator. ” We re-
view necessary background on these concepts for non-specialists, with
intuitive examples. We then describe local cohomology that is impor-
tant in our branching structural analysis. For a readable mathematical
introduction, see [35, 31] for algebraic topology and [21] for persistent
homology.

3.1 Homology and cohomology
Homology. Homology deals with topological features such as “holes”
or “cycles” ; 0-, 1- and 2- dimensional homology groups correspond
to components, tunnels and voids in a topological space. Here, we dis-
cuss its simplest and most concrete definition, at the level of simplicial
homology.

Consider the simplicial complex K pictured in Figure 4, which is a
triangulation of an annulus. The 0-, 1- and 2-simplexes in K are the
vertices, edges and triangles, denoted by the sets K0 = {vi}, K1 = {ei}
and K2 = {∆i} respectively. We assume all simplices are arbitrarily
oriented. Let G = Z be the group of integers. We define the 0-chains,
1-chains and 2-chains as formal sums of 0-, 1- and 2-simplexes with
integer coefficients, respectively,

C0 = C0(K;Z) = {b = ∑givi | gi ∈ Z},
C1 = C1(K;Z) = {a = ∑giei | gi ∈ Z},
C2 = C1(K;Z) = {c = ∑gi∆i | gi ∈ Z}.

By abuse of notation, each 0-, 1- and 2-simplex in K corresponds to
an elementary chain of the same dimension. Then 0-, 1- and 2-chains
can be considered as sums of elementary chains. Here, 0-chain b1 =
v3 +v4 +v5 (green). 1-chain a1 = e1 +e2 +e3 +e4 +e5 +e6 +e7 +e8
(red). 2-chain c1 = ∆1 + ∆2 (pink). We now define boundary maps,
∂2 : C2 → C1 and ∂1 : C1 → C0. Representing an oriented p-simplex
by its vertices [v0, ...,vp], we have,

∂2([v0,v1,v2]) = [v1,v2]− [v0,v2]+ [v0,v1].
∂1([v0,v1]) = v1− v0.

It is easy to verify that ∂ ◦ ∂ = 0. For example, ∂ (∆1) =
∂ ([v4,v5,v6]) = [v5,v6]− [v4,v6] + [v4,v5], ∂ ([v4,v5]) = v5 − v4, ∂ ◦
∂ (∆1) = 0. Let a ∈ C1. a is a 1-cycle if ∂a = 0. It is a 1-boundary
if it is the boundary of some 2-chain c, that is, ∂ (c) = a. Since the
1-boundaries are always 1-cycles, im∂2 ⊆ ker∂1. The 1-homology of
K is the quotient group, H1 = H1(K;Z) = ker∂1/im∂2. For exam-
ple, a1 (red) is a 1-cycle since ∂ (a1) = 0. a2 (cyan) is a 1-boundary
since it is the boundary of the 2-chain c1. a1 is a 1-cycle, but not a
1-boundary, therefore a1 ∈ H1. It can be used as a representative of
the homology class that generates the first homology group of K. Two
elements a,a′ ∈ H1 are homologous iff a−a′ = ∂c, for some 2-chain
c, denoted as a∼ a′. Here a1(red)∼ a3(orange).

Consider the torus, in a triangulation K in Figure 6 top left, its 1-
homology group is generated by the 1-chains a1 (red) and a2 (blue),
that is, a1 = [a,b]+[b,c]+[c,a] and a2 = [a,d]+[d,e]+[e,a]. We can
verify that both a1 and a2 are 1-cycles, as ∂ (a1) = ∂ (a2) = 0. They are
not 1-boundaries since neither ∂b = a1 nor ∂b = a2 admit a solution
b ∈C2. In addition, a1 and a2 are not homologous.
Cohomology. Now we associate K with another sequence of groups
called cohomology groups, whose origins lie in algebra rather than ge-
ometry [35]. In many ways, they are considered “dual” to homology
groups, and are important in practice. Following our previous intro-
duction to homology groups, we bring intuitions to cohomology via
simple examples.

Consider our example in Figure 4, cohomology deals with functions
(more precisely, homomorphisms) on 0-, 1- and 2-chain groups. By
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Fig. 4. The triangulation of an annulus. 1-chain a1 = e1 + e2 + ... + e8
(red) is a generator of H1.
abuse of notation, each 0-, 1- and 2-dimensional simplex in K corre-
sponds to an elementary cochain of the same dimension. For example,
1-simplex e has a corresponding elementary 1-cochain e∗, which is a
function on 1-chain whose value is 1 on e and 0 on all other edges.
In other words, e∗ : C1 → Z, where e∗(e) = 1 and e∗(e′) = 0 for all
e′ ∈ K1,e′ *= e. Similarly, we have elementary 0-cochains, v∗ associ-
ated with 0-simplex v; and elementary 2-cochains ∆∗ associated with
2-simplex ∆. Then 0-, 1- and 2-cochains can be considered as sums of
elementary cochains, that is,

C0 = C0(K;Z) = {β : C0 → Z,β = ∑giv∗i | gi ∈ Z},
C1 = C1(K;Z) = {α : C1 → Z,α = ∑gie∗i | gi ∈ Z},
C2 = C1(K;Z) = {γ : C2 → Z,γ = ∑gi∆∗i | gi ∈ Z}.

We then define the coboundary maps, δ0 : C0 →C1 and δ1 : C1 →C2,

(δ0β )([v0,v1]) = β (v1)−β (v0),
(δ1α)([v0,v1,v2]) = α([v1,v2])−α([v0,v2])+α([v0,v1]).

These notations are convenient in computing coboundaries. For exam-
ple, If α = ∑gie∗i , then δ (α) = ∑gi(δe∗i ). To compute δe∗ for each
oriented simplex e, we have δe∗ = ∑ε j∆∗j , where the summation ex-
tends over all ∆ j having e as a face, and ε j =±1 is the sign with which
e appears in the expression for ∂∆ j. Similar rule applies to computing
δv∗.

Let α ∈ C1, it is a 1-cocycle if δ1(α) = 0. It is a 1-coboundary
if there exists a β ∈ C0 such that δ0(β ) = 0. It is easy to ver-
ify that δ ◦ δ = 0. 1-coboundaries are always 1-cocycles, we have
im(δ0) ⊆ ker(δ1). We define the 1-cohomology of K to be the quo-
tient group, H1 = H1(K;Z) = ker(δ1)/im(δ0). Two 1-cocycles α and
α ′ are cohomologous if α−α ′ is a coboundary.

In Figure 5 (left), assuming all triangles are oriented counterclock-
wise, we compute δe∗5. e∗5 : C1 → Z has value 1 on e5 and 0 on
other edges. δe∗5 has value −1 on ∆1 and 1 on ∆2, because e5 ap-
pears in ∂∆2 and ∂∆1 with signs +1 and −1, respectively. There-
fore, δe∗5 = ∆∗2−∆∗1. A similar remark shows that δv∗1 = e∗2− e∗1 and
δv∗3 = e∗3−e∗2−e∗5. The 1-cochain α = e∗1 +e∗5−e∗3 is a 1-cocycle since
δ (α) = δ (e∗1)+δ (e∗5)−δ (e∗3) = (∆∗1)+(∆∗2−∆∗1)− (∆∗2) = 0. Mean-
while, α is also a 1-coboundary since α1 = δ (−v∗1 − v∗3). In terms
of generators, in 5 (right), the 1-chain α1 = e∗6 + e∗7 + e∗8 + e∗9 + e∗10
is a 1-cocycle, since δ (α1) = δ (e∗6)+ ..+δ (e∗10) = ∆∗3 +(∆∗4−∆∗3)+
(∆∗5−∆∗4)+ (∆∗6−∆∗5)−∆∗6 = 0. It is not a 1-coboundary. Therefore,
α1 ∈ H1, and it can be used as the representative of the 1-st cohomol-
ogy class. α1 (red) is cohomologous to α2 (orange), as we can check
α1−α2 = δ (v∗4 + v∗5 + v∗6).

Consider the torus example in Figure 6 bottom, its 1-cohomology
group is generated by the 1-cochains α1 (red) and α2 (blue). We can
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Fig. 5. Left: simple examples of cochains. Right: the triangulation of an
annulus, 1-cochain α1 = e∗6 + e∗7 + e∗8 + e∗9 + e∗10 is a generator of H1.

check that both α1 and α2 are 1-cocycles, not 1-coboundaries, and are
not cohomologous. It is important to note the duality between coho-
mology and homology generators, which is slightly counter-intuitive.
Here, α1 ∈ H1 (red) is dual to a1 ∈ H1 (red), while α2 ∈ H1 (blue) is
dual to a2 ∈ H1 (blue).

a b c

d

e

a

a b c a

d

e

a b c

d

e

a

a b c a

d

e

a b c

d

e

a

a b c a

d

e

Fig. 6. The triangulation of a torus. Top: a1 = [a,b] + [b,c] + [c,a] (red)
and a2 = [a,d] + [d,e] + [e,a] (blue) are the generators of H1. Bottom:
1-cochains α1 (red) and α2 (blue) are generators of H1.

3.2 Local cohomology
The notation H1(X,Y) is commonly referred to as relative cohomol-
ogy, which is the computation of the cohomology groups of quotient
space X/Y. Intuitively, imaging gluing all points in Y to a dummy
vertex w at infinity, any non-trivial topology within Y is destroyed,
therefore H1(X,Y) only cares about topological features that are in X
and not in Y.

Suppose we have a topological space X embedded in RN , the
1-dimensional local homology group of X at a point x ∈ X is de-
fined as H1(X,X− x) [35]. We define the 1-dimensional local co-
homology groups as the (vector-space) dual of the local homology,
that is, H1(X,X− x). Taking a small enough radius r and using
excision, the above local homology groups in question are in fact
H1(X∩Br(x),X∩ ∂Br(x)), where Br(x) and ∂Br(x) denote a ball of
radius r centered at x and its boundary. We therefore obtain our lo-
cal cohomology as H1(X∩Br(x),X∩ ∂Br(x)). (Note that we use the
term local cohomology differently from the traditional concept intro-
duced by Alexander Grothendieck [30].) H1(X∩Br(x),X∩ ∂Br(x))

computes topological features of X within a local neighborhood Br(x),
hence the term “local cohomology”.

To put the above formal definition into context, see Figure 7 (left).
The space X is an annulus. Given a point x ∈ X and a radius r, we
draw a ball of radius r around x. The space that is inside the ball is
X∩Br(x) (pink shaded region), and the space that is on the boundary is
X∩∂Br(x) (black). We therefore compute H1(X∩Br(x),X∩∂Br(x)).

w x
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Fig. 7. Local homology and cohomology simple example. Left: comput-
ing local (co)homology through coning operation. Right: illustration of
the coning operation.
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Fig. 8. Top: local cohomology computation under simplicial setting for
annulus indicating 0-way branching. Bottom: local cohomology compu-
tation under simplicial setting for figure eight indicating 3-way branching.
3.3 Homotopy theory
We rely on the following principle from homotopy theory, which re-
lates circular coordinates with cohomology. Let [X ,S1] be the set
of equivalence classes of continuous maps from space X to S1. Let
H1(X ;Z) be the group of 1-dimensional cohomology classes with in-
teger coefficients. For topological spaces with the homotopy type
of a cell complex, there is an isomorphism H1(X ;Z) ∼= [X ,S1] [31].
This implies that if X has non-trivial 1-dimensional cohomology class
α ∈H1(X ;Z), we can construct a continous function θ : X → S1 from
α (see [13] for a formal proof).

Suppose we represent our point cloud data X with a simplicial com-
plex K that contains vertices, edges and triangles. In a nutshell, 1-
dimensional cohomology classes are functions that map a collection
of edges in K to integers. In an algebraic way, global 1-dimensional
cohomology represents circular structures while local 1-dimensional
cohomology captures branching structures in data.

4 OVERVIEW

With the technical tools described early, we now give an overview
of our algorithm. We detect branching structures by computing local



circular coordinates. Given a point cloud X and a point of interest
x ∈ X , we choose a subset U ⊆ X ⊂ Rd in the neighborhood of x, and
output local circular coordinate functions θ : U → S1, that give the
values for points in the neighborhood of x. Our overall pipeline is as
follows:

1. Turn the point cloud data X in the local neighborhood of x into a
simplicial complex K, where the vertices in K, K0 = U ⊆ X .

2. Use the local version of persistent cohomology to detect signifi-
cant cohomology class in data, αp ∈ H1(K,Fp), where Fp is the
field of integers modulo a fixed prime p.

3. Lift αp to α ∈ H1(K,Z), smooth α to ᾱ ∈ C1(K,R), and inte-
grate ā to a circle-valued function θ : U → S1.

4. Approximate topological circular and branching structures rep-
resented in ᾱ ∈C1(K,R) in high dimension to aid visualization
in the projection.

5. Encode each local circular coordinates with a color map trans-
fer function to highlight true structures and rule out structural
illusions.

Here, step 1 and 2 adapts and build upon previous work, while step 3
uses well-established procedures in [13]. Step 4 introduces approxi-
mations of circular and branching structures to help visualization. We
find it extreme useful in practice.

5 ALGORITHM DETAILS

5.1 Data points to simplicial complexes
We now describe the algorithm step 1 in detail.
Coning operation. To compute local cohomology at x ∈ X un-
der the simplicial setting, we represent H1(X∩Br(x),X∩ ∂Br(x)) as
H1(K′,L′), with a pair of simplicial complexes K′ and L′, where K′
represents the space X∩Br(x), and L′ represents its boundary.

To construct K′ and L′, we use the following approximations. Let
K0 be the simplicial complex constructed over the entire point cloud
X . Fix a point x ∈ X and a neighborhood parameter r. A simplex
σ ∈ K0 is in K′ if some (or all) of its vertices are in Br(x), or it is the
boundary of some simplex in K′. A simplex σ ∈ K0 is in L′ if all its
vertices are outside Br(x), and it is the boundary of some simplex in
K′. By construction, L′ ⊆ K′.

Let K be a simplicial complex in Rd and let w ∈ RN be a dummy
point at infinity (a vector not affinely dependent on the vertices of K).
The cone on K with vertex w, denoted CK, is the simplicial complex
whose simplexes are of the form: [w] or [w,v0, ...,vp] or [v0, ...,vp] for
[v0, ...,vp] ∈ K [29]. K is the base of the cone.

Relative cohomology groups can be interpreted as the absolute co-
homology groups of an associated simplicial complex [29]. That is, we
can prove by excision theorem, H1(K′,L′) ∼= H1(K′ ∪CL′). In other
words, we can construct a new simplicial complex K = K′ ∪CL′ that
represents the local structure around x, and consequently compute its
dimension one cohomology.

Consider the annulus, in a slightly simplified version of the triangu-
lation considered earlier, as shown in Figure 8 top right. Suppose K0 is
the entire triangulation. The approximated L′ contains all the blue ver-
tices and edges. K′ contains all the light shaded triangles, edges and
vertices. The local structure around x can be represented by simplicial
complex K = K′ ∪CL′. Similarly, a slightly more involved example is
shown in Figure 8 bottom, with a triangulation of a figure eight.
Sequence of simplicial complexes. Given a collection of data points
X ∈ Rd with a distance metric, a point of interest x ∈ X , and a radius
r, we convert the local neighborhood of x into a simplicial complex
K, where U = K0−w. The default distance metric is the L2 distance,
while Hamming distance and Edit distance are also used in a few ex-
amples in Section 6.

Point cloud data can be represented as a single simplicial complex,
or more usefully as a nested family of simplicial complexes [12]. We
use Vietoris-Rips complex Rips(X ,ε), where there is a p-simplex for

Fig. 9. Circular structure on the left has high persistence while circular
structure on the right is considered topological noise [13].

every finite set of p+1 points in X that has a diameter at most ε . Since
we are only interested in computing H1, we only use its 2-skeleton. For
ε1 ⊆ ε2... ⊆ εn, we obtain a nested family of simplicial complexes,
K0 : K0(ε1) ⊆ ... ⊆ K0(εn), where K0(εi) = Rips(X ,εi). For larger
data sets, we can also use Witness complex [12], which is constructed
from a subset of points in X .

Naively, we first construct a nested family of simplicial complexes
on X , K0. We then filter simplexes in K0 by their proximity to x in cer-
tain precise sense (as described in Section 3.2). For a fixed εi, K0(εi)
is the simplicial complex constructed from the entire point cloud. We
construct the corresponding K(εi) = K′(εi)∪CL′(ε). This leads to a
nested family of simplicial complexes that represents local structure
around x, that is, K : K(ε1)⊆ ...⊆ K(εn), where K(εn)0−w = U .

5.2 Persistence cohomology in its local version
At step 2 of the algorithm, we are now given a nested family of simpli-
cial complexes that represent the local structure at different parameter
values ε . We introduce the notion of scale for learning this local struc-
ture through the concept of persistence. Persistence studies the evolu-
tion of vectors in a sequence of vector spaces [8]. One main example
of such a sequence comes from the cohomology groups of a nested
sequence of simplicial complexes constructed at different scale. Per-
sistence provides a way of ranking the significance of the cohomolog-
ical classes and is essential to achieve the robustness of the proposed
methods.

Formally, let Ki = K(εi), we are given a nested family of simplicial
complexes connected by inclusions,

K : K1 → K2 → ...→ Kn.

For εi ≤ ε j, the inclusion of spaces Ki ⊆ Kj induces a map between
cohomology groups, f : H1(Kj) → H1(Ki), and we consider the se-
quence,

H1(K1)← H1(K2)← . . .← H1(Kn).

A class α ∈ H1(Ka) is born at the time a if it appears for the first
time as a cohomology class, and such a class dies entering H1(Kb)
when it disappears as a cohomology class. We call b− a the persis-
tence of α . We consider classes with high persistence as represent-
ing significant topological structure. It is important to note here that
H1(K1) = H1(K1;Fp) is computed using Fp coefficient for technical
reasons detailed in [13].

Intuitively, persistence separates features from noise by measuring
the significance of circular or branching structures. An illustrative ex-
amples is shown in Figure 9 where global circle-valued coordinate
function on the left corresponds to high persistent, or significant cir-
cle structures, while the circle-valued coordinate function on the right
might be considered as topological noise.

The algorithm that computes persistent cohomology of a sequence
of simplicial complexes, is a modified version of the persistent homol-
ogy algorithm [22, 7], which in turn is a variation of the classic Smith
normal form algorithm [35]. In a nutshell, it involves a specific order-
ing in conducting matrix reduction on the coboundary matrices of the
nested simplicial complexes. After the matrix reduction, we obtain a



collection of cocyles, each is represented as a set of edges with coeffi-
cients. For a detailed treatment and discussion of persistent cohomol-
ogy algorithm, see [14]. For the story behind persistent homology, see
[20, 21].

5.3 Lifting, smoothing and integration
For step 3 of our algorithm, we are given a collection of cocyles ob-
tained from step 2. Each cocyle is represented as a collection of edges
with coefficients in Fp. We then modify their coefficients to be in-
tegers (Z), and later to be reals (R). Once we have a collection of
edges with real coefficient, we perform integration that “concentrate”
the values onto the vertices, therefore constructing our circle-valued
coordinate function. Formally, once we obtained a cohomology class
αp ∈H1(K;Fp), we need to lift it to α ∈H1(K;Z), we then smooth α
to ᾱ ∈C1(K;R), and further integrate ᾱ to a circle-valued coordinate
function θ : U → S1. The lifting, smoothing and integration proce-
dures are detailed in [13]. Here we review some of their key ideas. It
is important to note that due to the coning operation in the previous
step, we ignore the circle-valued coordinates at the dummy vertex w.
Lifting. Given αp, we lift αp to α , from Fp coefficient to integer
coefficient. That is, αp = ∑nie∗i , where ni ∈Fp, and α = ∑gie∗i , where
gi ∈ Z. We use a heuristic lifting scheme as follows: gi = ni if |ni| ≤
p/2, otherwise, gi = ni − p. This enables choosing gi within range
[−(p− 1)/2, ...,−1,0,1, ...,(p− 1)/2]. We expect that p-torsion is
rare in practice (see [13] for technical details), therefore in almost all
cases tested, the lifted α is still a valid cocycle by satisfying δ1α = 0.
Smoothing. Given α , we find the “smoothest” cocycle ᾱ ∈C1(K;R)
that is cohomologous to α . By smoothness we mean that ᾱ has a
small total variation defined as ||ᾱ||2 = ∑e∈K1 |ᾱ(e)|2. α and ᾱ are
cohomologous if there exists a f ∈C0(K;R) such that ᾱ −α = δ0 f .
Therefore, we obtain ᾱ by solving the following minimization prob-
lem: ᾱ = argminᾱ{||ᾱ||2 | ᾱ−α = δ0 f ,∃ f ∈C0(K;R)}.
Integration. Given ᾱ , we integrate ᾱ to obtain the local circle-valued
coordinate function θ : U → S1. Given f : K0 →R from the smoothing
step, θ can be obtained as the side-effect of smoothing by allowing
θ = f mod Z. On the other hand, θ can be constructed via bruce force
searching on K. Starting from an arbitrary x0 ∈ K0, set θ(x0) = 0, for
all other vertices x ∈ K0, finding its shortest path from x0. Assign
θ(b) = θ(a)+ ᾱ([a,b]) if a vertex b enters the structure through edge
[a,b].

5.4 Generator approximations
To aid visualization, we provide two methods to give a fast approxima-
tion to ᾱ , the cocycle generator cohomologous to α . Due to the high-
dimensionality and complexity of the data, often many data points may
map to the same value on S1, or close in parameterization by a small
ε . Therefore tracing out all edges with non-zero coefficient in ᾱ can
lead to a messy visualization when projected onto a lower dimensional
space.

One fast and simple approximation of ᾱ computes a minimum
weight cycle which spans bins of values. Here we assume a binning
of parametrized values, where points lie in a common bin if their dis-
tance (difference in value) is less than a predetermined ε . Bins are
ordered according to their values with respect to S1. Between two
neighboring bins, we assumes a complete graph where all pair-wise
edges across bins are possible, with edge weights reflecting value dif-
ferences at their end nodes. Our problem reduces to computing a min-
imum weight cycle across all bins. We demonstrate in Section 6 that
even this simple approximation reveals much information on the struc-
ture of the parametrization.

On the other hand, we know that ᾱ must operate on edges of the
underlying Rips complex. Therefore we can augment the minimum
weight cycle approximation to enforce this constraint. Given a collec-
tion of bins constructed before, we build a graph between two neigh-
boring bins by only allowing edges in the Rips complex. Meanwhile,
for a bin with n points v1, ...,vn, we build an internal n by n bipartite
graph, where edge weight w(vi,w j) equals the shortest path between
vi and v j following edges within the Rips complex, and w(vi,vi) = 0.

To reduce this complexity, using the Rips edges as guides, we prepro-
cess each bin and mark at which points the cycle is allowed to enter or
exit a bin of points. In this way, only the pairs of enter and exit points
need to be computed for the intra-bin shortest paths. These edges are
combined with the the inter-bin edges to form the constrained graph
from which we compute the minimum weight cycle.

5.5 Algorithm summary
The algorithm described above detects local 1-cocyles with the fol-
lowing highlights. First, computing local cohomology groups can be
approximated by coning operations on Rips complexes. Second, per-
sistent cohomology detects significant features from noise. Third, the
above procedure leads to a local circular parameterization that em-
phasizes branching structure. Last but not least, generator approxima-
tions correspond to approximating circular and branching structures in
high dimensions to aid visualization. It is important to note that these
branching and circular structures are detected in the high dimensional
space via cohomology computation. We only use dimensionality re-
duction techniques overlaying color-mapped coordinate functions to
visualize them in their low dimensional projections. Furthermore, we
can construct circle-valued coordinate functions locally even if topol-
ogy is trivial globally.

6 RESULTS

6.1 Software and data sets
The present results are obtained by our implementation of local co-
homology computation on top of the C++ library Dionysus [34]. For
classic dimension reduction techniques such as Isomap and Laplacian
eigenmaps, we use a toolbox from [37].

We construct local and global circle-valued coordinate functions for
a variety of synthetic data and real-world examples. Through these
experiments, we demonstrate that both the global and local circular
coordinates provide a detailed analysis on the intrinsic structure and
are extremely beneficial for many applications.

The expensive part of the computation is generating Rips complexes
and computing persistent cohomology by reducing coboundary ma-
trixes. The complexity of computing persistent cohomology is worst
case O(n3), where n is the number of simplexes in the simplicial com-
plex [10].

6.2 Genus-3 surface and genus-4 surface
We test our methods on several synthetic data sets with known branch-
ing structures. The first data set is a point cloud X sampled from a
genus-3 surface as shown in Figure 1 (a). We focus on a point x ∈ X
from one of its four corners and construct local circle-valued coordi-
nates in its neighborhood. Its two-way branching structure is illus-
trated in 1 (b). We construct their corresponding circle-valued coordi-
nate functions from the point cloud, both of which are shown in Figure
1 (e) and (f).

The second data set is sampled from a genus-4 surface in Figure
1 (c), where seven-way branching exists in the neighborhood of x as
indicated in Figure 1 (d). We construct seven corresponding circle-
valued coordinate functions, three of which are shown in Figure 1, the
rest are shown in Figure 10.

6.3 Virus Outbreak
For a small exercise, we use the VAST 2010 mini challenge data set in-
volving Drafa virus genetic sequences. 58 mutated genetic sequences
form a collection of outbreak sequences rooted at the ancestor se-
quence named “Nigeria B ”. Each genetic sequence contains 1045
nucleotides, and corresponds to a point in 1045 dimensional space.
We focus on studying the local structure surrounding x =”Nigeria B”,
using circle-valued coordinates and Hamming distance metric. We
then embed all 58 sequences into 3D space, with Multidimensional
Scaling. As shown in Figure 11, local circle-valued coordinates reveal
the branching structures surrounding x. To interpret the color-coded
circle-valued coordinate function better, we overlaying the points with
the phylogenetic tree among these sequences.



Fig. 10. Genus-4 surface data set, where four of its seven local circle-
valued coordinate functions are shown.

x

Fig. 11. Local structures among virus genetic sequences. Points are
overlaid with a phylogenetic tree. The red arrow points to the ancestor
sequence.

6.4 Motion Capture Data
For this example, we construct both global and local circular coordi-
nates on a couple of motion capture data sets freely distributed online.
Motion capture data is the recorded movement of a live actor over
time. In the following we will show that that there are interesting fea-
tures captured by our methods that are worth further investigation. For
our testing, we have analyzed motion capture data saved in the Bio-
vision BVH format. BVH is a hierarchical set of relative joint angles
rooted at a node that is traditionally centered at hips of the live actor.
All translational motion of the actor in world space is also encoded at
this node, to give a complete representation of the motion. Since the
space for translational motion is small, finding circular structure due
to this motion should not be difficult. A much more interesting prob-
lem is finding structure and correlation in the joint angles, therefore
the translational motion is ignored in our testing.

6.4.1 Local illusions: walk, hop and walk.
The first data set from OSU Motion Capture Lab data repository [32]
involves a female actor walking, hopping over an obstacle and then
walking again. It contains 189 frames with 66 joint angles per frame.
For our tests, each frame is considered a point in 66 dimensional space
with a L2 distance metric. Figure 12 shows this point set embedded
onto 3D Euclidean space using Laplacian eigenmaps. This 3D embed-
ding appears to reveal some branching structure, denoted in the top
image of this figure. Contrary to this, the local circle-valued coordi-

nate functions computed in high dimension indicate that it’s a visual
illusion, shown in the rest of images. This example emphasizes the
fact that traditional dimensionality reduction can introduce structure
where none is present. Local circle-valued coordinates cannot suffer
from this flaw and therefore can help in uncouple illusions from actual
structure in visualizations.

Fig. 12. Motion capture sequences from a female actor walking, hopping
over an obstacle and then walking again. First image on top: Laplacian
eigenmaps appears to reveal a branching structure in the local neigh-
borhood of a point. Second image: when we visualize local-circle valued
coordinate functions in the same neighborhood, we obtain two indepen-
dent parametrizations. This indicate that no branching structures exist
in that local neighborhood. Third and fourth image: we approximate the
generators associated with the local cohomology classes to aid visual-
ization of the branching structure. The approximated generator travels
along a given branch where the color indicates its direction. Notice that
there are extra edges pointed by arrows that are artifacts from the ap-
proximation.



Fig. 13. Motion capture sequences from a Ballet dancer where global circle-valued coordinates reveal moments of hesitation or pauses before a
point of inflection in the arm movement.

Fig. 14. 1995 democrat house representatives voting data. Top: visu-
alizing through transfer function two of the top five global circle-valued
coordinate function (ranked by persistence). Middle: the circle struc-
ture with highest persistence, red-arrows point to representatives who
switched parties or resigned. We use approximated cocycle to aid the
visualization of the circular structure. Bottom: the fifth significant circle
that may represent some interesting intra-party structure, again cocyle
is approximated to guide the visualization.

6.4.2 Ballet dancer

The Ballet dancer data set, obtained from [1], involves a ballet dancer
performing a traditional stretch. The dataset contains 471 frames of
54 joint angles. A subsampled (every 2nd frame) compilation of the

Fig. 15. Data from a combustion simulation. Top: 3D Isomap embedding
of circular structure with highest persistence. We aid the visualization
using approximated cocycle generator. Bottom: 3D rotated view with
approximated generator to guide visualization. This circular structure
can be used to discover correlations between parameters.

frames is shown in Figure 13 top. In this figure, time flows in row-
major order first from left to right then top to bottom by rows. We
construct global circle-valued coordinate functions on the data. The
parameterized value bins for the second largest 1-cocycle in terms of
is drawn over the frames of Figure 13 top. As this shows, the cycles
coincide with the points of the motion data where there is hesitation or
pauses before a point of inflection in the arm movement, see Figure 13
bottom right. Additionally, the global-circular coordinates give a bin-
ning of similar motions in this parameterization. In bins highlighted in
blue in this figure share a common parameterization and, as the frames
show, have very similar movement in the arms. Finally, Figure 13 bot-
tom left shows the Laplacian eigenmaps and isomap projection of the



Fig. 16. Climate data: the second most significant circle-valued coor-
dinate function (top) overlaid with approximated cocycle generator (bot-
tom).

joint angles on 3D Euclidean space, left and right respectively. This
example emphasizes the fact that without the circular-coordinate pa-
rameterization, it would be impossible to infer this cycle from the em-
bedded points alone.

6.5 Voting
For this example, we are interested in detecting intra-party structures
in political data. In particular we look at house voting records obtained
from house.gov. Figure 14 shows voting data of democrat house
representatives in 1995, when 205 representatives voted on 885 issues
over the entire year. Using hamming distance metric, we construct
global circle-valued coordinate functions with respect to significant
1-cohomology classes. We then embed all 205 points onto 3D using
Multidimensional Scaling. In Figure 14 top, the most significant circu-
lar structure is actually formed representatives Deal (D-GA), Laughlin
(D-TX), and Reynolds (D-IL) who switched political affiliation or re-
signed during the year and therefore had an incomplete voting record
for the end of the year. These data points are marked by red-arrows in
the figure. We believe some of the other circular structures as shown
in Figure 14 bottom, reflect intra-party structures that are interesting
for further investigation.

6.6 Combustion
We use a subset of points from a combustion simulation and analyze
its output parameter space. Points are located on a 16 by 16 grid with
4 simulation time steps. Each point is considered 16 dimensional, in-
cluding parameters such as mixture fraction, dissipation rate, heat re-
lease rate and temperature. We embed the points into 3D using Isomap
and visualize the significant circular features in the data. We also use
our circular structural approximations to guide the visualization. This
is shown in Figure 15.

6.7 Climate simulation
We are interested in finding features in the output parameter space of
a climate simulation. This data set comprises 1612 simulation points,

each with 8 output parameters, including total cloud percentage, pre-
cipitation rate, sea-level pressure, surface stress and temperature . We
construct global circle-valued coordinate functions and visualize them
in Landmark Isomap 3D projection. This is shown in Figure 16, where
the significant circular structure is concentrated at the basin of the pro-
jection. We believe the circular structure in parameter space indicates
correlations among parameters. We will work with domain scientists
to confirm such findings.

7 DISCUSSIONS

We consider our work as a first step towards a more ambitious goal of
combining dimensionality reduction with local or regionalized topo-
logical analysis of intrinsic structure. Our local circle-valued coor-
dinates functions are similar to local dimensionality estimation in a
way that they reflect detailed structural information which might have
global effects. We ask the following questions: how do the local and
global structures of data interact with one another? How can local
analysis infer global structure? There are various open questions, and
we address a few here.
Shortest local cocycle. Many algorithms exist to compute 1-cycles
with geometric constraints, such as shortest by length or minimum by
weight. Are these algorithm extendable to compute the shortest (local)
1-cocycles? The smoothing step described earlier obtains a 1-cocycle
with minimum total variance. While persistent homology computes
representative homology-generating cycles, these cycles can fluctuate
drastically due to changes in the filtration or in the simplicial complex.
Work in [6] tracks these cycles so that the changes are local with tem-
poral coherence. We believe this line of work can be extendable to
(local) persistence cohomology computations.
Extending local parameterization. Using our algorithm, a point set
U ⊆ X in the r-neighborhood of x ∈ X is parameterized by circle-
valued coordinates function θ : U → S1. We can extend such a pa-
rameterization by gradually increasing r until non-trivial topological
changes take place. That is, we can extend θ : U → S1 to θ ′ : U ′ → S1

where U ⊆ U ′. We can also obtain a total partial ordering of points
in X by concatenating multiple local parameterizations. That is, given
two circle-valued functions θ1 : U1 → S1 and θ2 : U2 → S1, where
U1 ∩U2 *= /0. It might be possible to construct θ : U1 ∪U2 → S1 in a
coherent manner. The notion of 1-cocycle is not only important in our
context of circular coordinates, but also shows up in data ranking and
discrete vector fields [5]. Does a total partial ordering obtained from
“gluing” local 1-cocycles play a role in data ranking?
Computing local cohomology. To guarantee theoretical correctness
in computing local (co)homology, we need to use the Delaunay com-
plex as detailed in [2, 3]. However it is unpractical to compute De-
launay complexes in high dimensions. We believe that using Rips or
Witness complexes to compute local cohomology in high dimensions
is the best available option. Its correctness guarantee remains as an
open theoretical question.
Visualizing branching and circular structures in high dimensions.
As shown in Figure 15 and Figure 16, the default projection and view-
ing angles can not visualize the circular structures clearly. We ob-
tain better visualization on these structures by approximating cocycles
in high dimensional space and choose proper viewing angles, using
algorithm presented in Section 5.4. We believe it is an interesting
open question to develop visualization techniques that preserve and
emphasize topological structures recovered in high-dimensions, such
as branching and circular features discussed in the paper.
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