
1

DEFOG: A System for Data-Backed Visual

Composition

Lauro Lins, David Koop, Juliana Freire and Claudio Silva

UUSCI-2011-003

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

March 2, 2011

Abstract:

As users analyze data, visualization is important for both generating insight during exploration
and displaying information for presentation purposes. While visualization systems have been very
successful at the latter, their full potential as an aid for data exploration has yet to be realized.
Existing systems have often focused on techniques for displaying information, requiring data to
conform to specific file formats or allowing very limited manipulation of the data. In addition,
most systems that provide a stronger link between data and visualization sacrifice the freedom
of arbitrary composition. In this paper, we present DEFOG, a system that aims to more tightly
integrate data exploration and visualization. DEFOG was designed to manipulate objects and as
such, it is able to handle a wide range of data types. In addition, it allows flexible data manipu-
lation through both visual and programmatic operations, all integrated in the same environment.
By allowing both objects and their relationships to be displayed and combined, DEFOG provides
great freedom for visual composition. To that end, it combines information visualization with
infrastructure to support a variety of data including in-memory objects and operations found in
vector-based graphics editors like select, move, scale, group, and copy-and-paste. We show that
this system provides a natural way to use and combine data visualization techniques to explore a
variety of data types, and present case studies that demonstrate its use in analyzing collections of
workflow specifications and biochemical pathways.

DEFOG: A System for Data-Backed Visual Composition

Lauro Lins David Koop Juliana Freire Cláudio Silva

Abstract— As users analyze data, visualization is important for both generating insight during exploration and displaying information
for presentation purposes. While visualization systems have been very successful at the latter, their full potential as an aid for data
exploration has yet to be realized. Existing systems have often focused on techniques for displaying information, requiring data to
conform to specific file formats or allowing very limited manipulation of the data. In addition, most systems that provide a stronger link
between data and visualization sacrifice the freedom of arbitrary composition. In this paper, we present DEFOG, a system that aims to
more tightly integrate data exploration and visualization. DEFOG was designed to manipulate objects and as such, it is able to handle
a wide range of data types. In addition, it allows flexible data manipulation through both visual and programmatic operations, all
integrated in the same environment. By allowing both objects and their relationships to be displayed and combined, DEFOG provides
great freedom for visual composition. To that end, it combines information visualization with infrastructure to support a variety of
data including in-memory objects and operations found in vector-based graphics editors like select, move, scale, group, and copy-
and-paste. We show that this system provides a natural way to use and combine data visualization techniques to explore a variety
of data types, and present case studies that demonstrate its use in analyzing collections of workflow specifications and biochemical
pathways.

1 INTRODUCTION

Our ability to acquire and generate large volumes of digital data is
growing at a startling pace. However, the same cannot be said of our
ability to analyze and present data. There has been substantial work, in
different fields, on techniques to help users to more effectively manip-
ulate and explore data: programming languages have been designed
with simpler syntax and large libraries of routines so as to increase
productivity; graphics tools are available that allow users to quickly
compose and present a large amount of information; and information
visualization systems have helped users obtain insight into compli-
cated datasets. While there have been substantial advances toward the
goal of streamlining data exploration, different solutions have focused
on different aspects of the problems.

A user often needs to interact with several tools when exploring
a dataset. For example, a user may select a subset of data using a
command in a programming language, then display that data using a
visualization system, and finally touch-up the image using an illustra-
tion application. More concretely, journalists and media visualization
experts note that while they may use visualization tools to initially ex-
plore data, they often turn to illustration applications or custom tools
to create the final presentation [12, 14]. Because data exploration is
an inherently iterative process, having to use several tools and man-
age the data which flows through them is both time consuming and
error prone. With DEFOG, we suggest an integrated framework that
combines the capabilities of traditional vector-based graphics editors
with higher-level information visualization techniques and program-
matic data manipulation. Our goal is to support the data analysis and
visualization process from exploration to publication.

At the root of DEFOG is a simple, yet powerful model that couples
graphical displays or faces with data objects. Thus, an element of a
scene contains standard information about graphical display like posi-
tion and size, but it also can be linked to a data object. This link can
inform the properties of the graphical element; instead of specifying a
static color, we might color a node based on a categorical attribute of
the linked object. These data objects can contain a variety of attributes
and serve to group other data objects, and they can also represent con-
nections between other elements. In addition, faces are not limited
to simple glyphs or textures. When a data object contains other data
objects, the associated face might be configured to display, for exam-
ple, a scatterplot of the child nodes. Thus, the DEFOG model provides

Lauro Lins, David Koop, Juliana Freire and Cláudio Silva are with the
Scientific Computing and Imaging (SCI) Institute at the University of
Utah. email: {lauro, dakoop, juliana, csilva}@sci.utah.edu.

a framework to quickly create complex visualizations but also tweak
each property on an individual element.

DEFOG provides a variety of tools to support the entire data ex-
ploration, visualization, and publication process. There are tools to
ingest data and display the available attributes of the objects. For
quick data manipulation, DEFOG provides a Python console that also
interacts with the objects displayed on the canvas. It provides high-
level programs to generate visualizations and plots, while also allow-
ing changes to the display of individual scene elements. Most impor-
tantly, almost all parameters can be set using expressions that refer-
ence attributes of the data. Selection can be accomplished manually or
using the powerful expressions, and there is a suite of alignment and
layout commands to polish presentation graphics.

While DEFOG can implement standard visualizations, those results
need not be the end of the story. A visualization in DEFOG is not static
and can be modified by moving or changing the representation of indi-
vidual objects. For example, as illustrated in Figure 1, a user may find
that a node-link diagram doesn’t offer the quantitative comparisons
needed. In order to better understand the local trends in each, one
might select each subset and plot the variables individually. Note that
this resembles of some of the focus+context [8] ideas, but here, there
are no constraints. At the same time, if the initial layout obscured
some important labels, one can modify the visualization by moving
entities, or scale text.

DEFOG also allows users to interact with data programmatically.
By including a native Python environment with extensions that allow
interaction with the canvas elements, users can easily manipulate and
transform data while analyzing data. Instead of performing prepro-
cessing offline to generate values to be examined, users can apply
functions or scripts to compute values during data exploration, and
interleave them with visualization operations. DEFOG also supports
intuitive expressions for combining different properties of the data.

By integrating visualization techniques with the ability to manip-
ulate both data and graphical representations, DEFOG allows more
freedom to investigate and explore data. While users can construct
complex visualizations using simple faces, the set of faces to represent
data visually is extensible. In addition, with DEFOG it is possible to
use specialized ways to visualize data that are not available in standard
visualization tools. We show that such representations lead to unique
views of data that can potentially lead to better insight.

The remainder of the paper is organized as follows. In Section 2, we
review work that has addressed different aspects of the DEFOG model
and system. The DEFOG model, its components and manipulation
language are described in Section 3. The implementation details and
unique features of our system are presented in Section 4. In Section 5,

1

Fig. 1. Node and link representation for biopathways combined with a plot of the concentration fold change (relative to time zero) for three
metabolites.

Fig. 2. Faces play a major role in defining how data is visualized. The visual representation of the canvas using different visualization techniques as
faces for the various groups is shown on the left. The corresponding faceless representation used by the DEFOG model to represent this information
is shown on the right.

we discuss scenarios and give specific examples where DEFOG has
helped in obtaining insights. In Section 6, we conclude and discuss
directions for future work.

2 RELATED WORK

There has been much significant work in the individual areas of data
analysis and manipulation, visualization systems, and frameworks and
applications for creating and editing graphical scenes. However, there
has been less work on the integration between these areas. Yet building
a visualization of data in graphical design programs like Inkscape or
Adobe Illustrator requires much tedious conversion from data values
to graphical primitives. Customizing the display of visualizations pro-
duced using visualization tools like Tableau or DEVise is often impos-
sible without using another program. Complicated analyses and data
manipulation can often be easily accomplished in statistical or pro-
gramming languages like R or python, but mapping the transformed
data to visualizations often requires many extra libraries or exporting
the data to another tool. With DEFOG, we desire to provide high-
level visualization capabilities while maintaining the low-level ability
to manipulate and explore data as well as customize the graphical dis-
play. Figure 3 illustrates the space we believe DEFOG fills; note that
ease of use is with respect to data visualization.

Data Access & Visualization. One key issue with early visual-
ization systems was access to data, especially when it lived in rela-
tional storage. In addition, while databases supported powerful query
and filter capabilities, visualization systems were often not built to take
advantage of these features. These problems have been addressed by
work on visual interfaces for relational data [22,25,36]. DEVise coor-
dinates multiple views of large datasets [22], and Improvise adds live
properties and coordinated queries [36]. Snap-Together Visualization
coordinates views via primary key actions [25] while Polaris automat-
ically generates multiscale visualizations through data cubes [32]. Un-
like these systems, DEFOG adopts a more general, object-oriented data
model and it also provides greater flexibility in manipulating the visual
representations.

Illustration & Visualization Interfaces. Other systems have
sought to integrate of data-centric visualization interfaces with con-
cepts from illustration and design [30, 37]. Visage introduced the
information-centric interface for presenting information where the ba-
sic currency is a data element, not a file or document [30]. The sys-
tem is built to facilitate the coordination of multiple analysis tools in
a visual environment. To that end, visualizations are not static pic-
tures but rather compositions of elements, and users control visualiza-
tion by dragging and dropping elements in and across frames instead

2

Fig. 3. We believe there is a place for more systems in the highlighted
region: a good tradeoff between what data visualizations can be ex-
pressed and how easy is to get to those visualizations.

of programming scripts. DEFOG follows this information-centric ap-
proach in its design, but uses a single infinite canvas rather than dis-
crete frames.

Tioga-2 introduced a visual environment for coordinating the dis-
play of relational data, ensuring that users could see the results of
each action and program by direct manipulation [2]. In addition, it
introduced the concept of wormholes which allow visualizations to be
embedded in other visualizations. DataSplash extended this environ-
ment with a paint program interface with layers, portals, and layout
management [37]. In addition, it defined a difference between data-
dependent (splash) and data-independent (trim) objects. The system
included the VIQING interface which adds nested visualizations and
graphical methods for visually querying and selecting data according
to relational principles [26]. Many of the goals identified by these
systems overlap with DEFOG’s, but DEFOG allows more direct inter-
action with objects, is not tied to the relational model, and integrates
connections into visualizations.

Frameworks & Languages for Visualization. Another key ad-
vance in simplifying visualization creation has been made possible
by programming toolkits that allow great control over appearance
and interaction of data visualizations. The InfoVis toolkit [15] and
prefuse [17] have both integrated a variety of techniques into stan-
dard, unified frameworks. Many Eyes has extended this concept to a
web-based system where visualizations can be created and shared [35].
GUESS allows users to explore graph data and provides users with the
ability interact with arbitrary data both visually and via the simplified
Gython language [1]. More recently, Protovis has sought to bridge the
gap between powerful but complicated graphical languages and easy-
to-use high-level visualization systems [7]. DEFOG shares this goal
but seeks a solution by coupling language with high-level interfaces
so users can also visually interact with the data they are exploring.

One key difference between DEFOG and other data-centric systems
is how the system was designed: instead of retrofitting an informa-
tion visualization tool to allow more flexibility and customization, we
started with a vector-based graphics editor, and added information vi-
sualization along with data-driven drawing methods. This has natu-
rally led to novel features, such as for example, the ability to spec-
ify faces for connections (see Section 3). Another important feature
of DEFOG is the ability to programmatically manipulate data using
Python, providing users a powerful language to customize access to a
wide variety of data sets. Last, but not least, DEFOG integrates and
extends a number of features that have been adopted in other systems

and that are extremely useful in the context of data exploration and
presentation (see details below).

Visualization Models. The DEFOG model builds on work in the
modeling of visualization and visual exploration. Mackinlay devel-
oped expressiveness criteria and a composition algebra for relational
information in graphical presentations [23] rooted in Bertin’s graphi-
cal objects and relationships [6]. Lee and Grinstein examined differ-
ent types of visual explorations in the context of databases and classi-
fied interactions according to query and visualization operations [21].
They also noted that visualizations can be changed without return-
ing to the data and new queries can be defined from the visualiza-
tions. Chi and Reidl presented an operator model for visualization
that placed emphasis on the difference between operators that change
views versus those that modify the underlying values [11]. Chi also
developed a taxonomy of visualization techniques according to the
data state reference model and suggested that systems could benefit
from standardized operations [10]. Tang et al. addressed data model
considerations, generalized interfaces for data access, data transfor-
mations concerns, and the difference between scripting and interactive
specification [34]. Like this work, the DEFOG model draws on a sep-
aration between data and view, but it also maintains a low-level link
between graphical primitives and individual data items.

Connecting Visualizations. Using multiple views in order to
better understand data is a well-established technique, but accurately
displaying and coordinating has been the subject of study. Roberts has
argued that multiple views for visualizing the same data can lead to
better understanding of data, but many systems were designed with
multiple views as an added feature rather than a base component of
the system, effectively discouraging users from exploiting them [28].
Brushing and linking across different visualizations has proven ef-
fective to coordinate views [4]. In addition, Card et al. have noted
that animation can help users track changes in visualizations [9, 29].
Mackinlay et al. developed the spiral calendar and time lattice to max-
imize screen space by providing multiple views in a single canvas [24].
DEFOG seeks to help users understand relationships between different
visualizations by displaying faces for such links and animating trans-
formations in the data.

DEFOG maintains a single, zoomable canvas with all information
displayed visually to simplify interaction and allow a user to store and
view all of their information in a single view. The Spatial Data Man-
agement System implements a visual interface for large collections of
data with zoomable views and pictorial displays [13, 19, 20]. Pad and
Pad++ provide an infinite, multiscale, hierarchical sketchpad to aid in
information creation, sharing, and retrieval [5, 27]. Stolte et al. ad-
dressed multiscale visualizations with zoom graphs and the changes in
visual and data abstractions as the graph is traversed [33]. The use of
the single, infinite canvas also allows users to compose the objects to
create images for presentation purposes.

Hierarchies. A hierarchical representation of data is an effective
means of organizing large volumes of data, especially when there is
a natural categorization. Beyond normal graph representations of hi-
erarchies, there are a number of techniques that effectively organize
hierarchical data visually. Treemaps provide a space-filling alternative
to graph-based layouts of hierarchical data [31]. Archambault et al.
introduce the idea of open, cut, and hidden metanodes for topologi-
cally preserving hierarchical data [3]. DEFOG represents hierarchies
as groups nested in groups and allows users to construct and mod-
ify hierarchies interactively. In addition, it provides open and closed
group states, mirroring the ideas from metanodes.

3 MODEL

The DEFOG system is supported by a flexible and extensible model
that emphasizes visual display derived from data objects. Like illus-
tration systems, the DEFOG model has a scene composed of elements;
each element has a visual display type and a set of parameters and pro-
grammatic specifications to configure appearance. Currently, elements
are either nodes with position and size information or connections
which relate two elements—a connection may link connections—and

3

contain a path between those elements. In addition, any node may
contain a set of child nodes.

Unlike standard illustration systems, each element may be linked to
an object, a set of attributes and methods that encapsulate an entity, as
defined in object-oriented programming. Because of these references,
the appearance of any element can be configured using expressions
that use the attributes and methods of the object. Graphical properties
are not defined by points, centimeters, or inches, but by expressions
that utilize information from objects. Thus, nodes linked to data ob-
jects with country information might be colored according to their con-
tinent and sized according to the log of population. We show that this
simple model for visualization leads to intuitive and powerful modes
of interaction for data exploration and presentation.

3.1 Scene
Like many visualization and illustration frameworks, DEFOG has a
scene that contains all of its elements. Because the scene is displayed
as a single, infinite canvas, the scene may contain elements that repre-
sent a variety of data objects from different sources. Each element has
a face, which defines its graphical display; the face may be constructed
by a program and is configured via a set of parameters. In addition,
an element may have a link to an object with defined data attributes
and methods. Then, the face, its program, and its parameters can be
configured using attributes and methods from the object. For example,
we might configure the face of an element that represents a country
with a program that combines the text of is name with an image of
its flag. The flag and name parameters of this program can be set
by the flag image method, which reads the flag image based on a
country code attribute and returns the image, and the name attribute
of the referenced object.

Scene elements can be further classified as either nodes or connec-
tions. A node may contain other nodes as its children, just as an object
may contain other objects. The face, the visual representation of the
node, might display individual child nodes or choose to aggregate the
information from these nodes in its display. A node also contains a
position in the scene as well as a size measure. Connections relate two
elements of the scene; the linked elements might be nodes, connec-
tions, or one of each. Like nodes, connections have configurable faces
and can be backed by an object. In addition, they may be directed
with one element designated as the source and the other as the desti-
nation. Finally, a connection contains a path which defines a sequence
of points from the source to the destination.

In addition to configuring the faces of individual elements of the
scene, users can manipulate the scene by changing positions and paths
of single or multiple elements. A user might, for example, choose to
move an entire set of nodes to a different position in the scene. Note
that manipulation of elements in the scene can affect other elements.
For example, changing the position of a node that is connected to an-
other element has the effect of modifying the path of that connection
element.

Formally a scene without connections is a sentence in the language
generated by the following productions:

S → ES | ε

E → N | N(S)S
N → n1 | n2 | n3 | . . .

where S is the scene, E is an element, N is a node. S is the start sym-
bol, and we add the restriction (not in the production rules) that no
node is repeated in a single sentence. The parentheses after a node in-
dicates that the nodes inside the parentheses are children of that node.
This means that the structure of the nodes of a scene is equivalent to
a rooted, ordered tree; the parentheses simply allow us to write this
linearly.

3.2 Nodes
As described earlier, a node in DEFOG is composed of two main in-
gredients: a face and a link to a data object. The graphical face in-

cludes a geometric shape along with position, size, color, label, and
texture. Note that one object might be referenced by multiple nodes,
each with its own face, leading to multiple visual encodings of the
same object in the scene. A face is configured by selecting a program
that generates the graphical representation and setting parameters that
control the display. A program defines the computations used to gen-
erate the face including it attributes like geometry, position, and color.
DEFOG includes, for example, programs for generating scatterplots,
histograms, and tag clouds. Programs may also be user-defined, pro-
viding a flexible means to add new visualization techniques to DEFOG
without requiring changes the interface. Parameters may be exposed
in the definition of the program and set using arbitrary expressions that
may reference the underlying object. While a face can be configured
statically, the power of the model comes from being able to utilize at-
tributes and methods from the object. One might configure a group
of nodes to be colored according to any attribute or the result of some
method called for each object.

Another important feature of nodes is their ability to encapsulate
other nodes. As in object-oriented programming, a node can include
lists of child objects. In addition, users may identify such groups man-
ually by selecting a set of nodes in the scene and performing a group
operation. In the scene description sentence n1(n2n3(n4)), the chil-
dren of n1 are n2 and n3; n2 has no children; and n3 has a single child,
n4. A face is open when both the face and its children are rendered,
and closed children are not rendered. Figure 4 illustrates the idea of
open and closed nodes for a histogram. Note that open faces allow
individual child nodes to be selected, moved, or modified.

Fig. 4. Example of histogram as a closed node (left) and as an open
node (right).

Figure 5 is an example of a face of n1 configured with a scatterplot
program. This scatterplot program expects the two parameters x value
and y value to be configured. In the example, we define these expres-
sions to be log10(mean(oilc)) and mean(explife), respectively. Note
that the scatterplot program evaluates and positions the children of n1
according to the values of these expressions; some programs use the
object itself while others use the object’s children. The face gener-
ated for n1 according to the program contains axis lines, labels, and a
title, and positions the children nodes according to the evaluated ex-
pressions. Figure 6 shows the result of applying a parallel coordinates
program configured with the expressions mean(explife), mean(oilc)
and mean(gdppc) to the scene shown on the left of Figure 5. In this
case, the face and transformation of the seven nodes were modified to
reflect the requirements of a parallel coordinates plot.

Note that programs can utilize data from a node’s linked object, its
children, or even its ancestors. In the programs we have implemented,
only properties of the linked object or the node’s children are used, but
in theory, the ancestors of a node could also be used. This would allow
propagation of properties so that data could be normalized. For exam-
ple, with a dataset where each country node contains its provinces as
children, we could define programs that color provinces according to
their countries, specified by their parent nodes. In addition, because
the parameters are separate from the program specification, a user can
easily update the expressions used without changing the program. Fi-
nally, some operations including scaling, moving, or rotating individ-
ual nodes can be accomplished manually, without running a program.

4

Fig. 5. Application of a scatterplot program to node n1 configured to plot
the mean oil consumption in log scale and mean life expectancy for the
children of n1. The resulting scene is shown on the right. Note that n1
was updated to n′1 with a new face and the children nodes were updated
to new locations and sizes.

3.3 Connections

Visualizations often encode relationships between elements, and DE-
FOG provides support for customized display of these connections.
The most basic representation of a connection is a line connecting the
faces of the two linked objects, but DEFOG allows connections to be
displayed according to properties of the objects they connect or prop-
erties of the relationship itself. For this reason, a connection, like a
node, is an element with a face as well as a link to the object defining
the relation. In addition, it contains pointers to the source and target
elements—either may be a node or connection. Also, the source and
target may be the same element; Figure 7 contains such loops. While
a connection’s face is similar to that of a node, it also contains a path
describing the geometry of a route between the connected elements.
Including path definition as a separate attribute allows users to manu-
ally alter the route and programs to incorporate and stylize the exist-
ing path. For example, a program for a connection might configure
the width of a path and add perpendicular slashes based on parameters
that are set using attributes and methods from the underlying object.

Figure 7 shows a visualization generated as part of a cancer study
where scientists are searching for evidence of correlations between
pairs of cancer types. In this example, a connection relates two cancer
types (ordering is important) and has a measure of the strength of the
relationship based on observed evidence. The figure shows these re-
lationships both as connections in a node-link diagram (right) and as
nodes in a dot-plot (left) of each relationship against the strength of ev-
idence. Because connections are elements, and have a linked data ob-
ject, they can also be treated as nodes. In addition, this example shows
cross-visualization identity relationships; the magenta lines show how
where top three relationships in the dot-plot are located in the node-
link diagram. Finally, the face for the connections in the node-link
diagram is a labeled line, and we have lines in both directions because
the relationships are ordered.

To specify the order in which connections should be rendered we
associate a node and an order parameter (“before” or “after”) to each
connection. When rendering the scene with connections, before ren-
dering a node, we check if there are connections associated with that
node and draw them before or after that node is rendered depending
on the order parameter. Connections will move up or down in the ren-
dering pipeline by updating their associated node or order.

76.65

52.92

104.9e4

6.3e4 4.4e3

17.0e3

76.65

52.92

104.9e4

6.3e4 4.4e3

17.0e3

Fig. 6. Application of a parallel coordinates program to node n1 of the
left scene on Figure 5. The program is configured to plot the mean life
expectancy, mean oil consumption and mean GDP per capita for the
children of n1. Note that all nodes had their faces modified.

Fig. 7. Relation between cancer sites represented as a node element
inside the dot plot and as a connection element on the node-and-link
diagram on the right. The blues connections link the two representations
for the cancer sites relations with the five smallest p-values. The blue
connections are the result of a DEFOG query of which elements are
representations of the same entity (object) for the bottom five nodes on
the dot plot.

3.4 Expressions and Scripting
As noted earlier, one key feature of DEFOG is that faces can be con-
figured based on data attributes. Furthermore, these parameters can be
computed using arbitrarily complex expressions that reference one or
more attributes from the underlying object or even objects referenced
by that object. This flexibility is possible because DEFOG manipu-
lates objects and attributes as they exist in a programming language
rather than using limited representations like those for relational data
or specific file formats (see e.g., [36]). Thus, it is irrelevant how or

5

even if data exists on disk—DEFOG can be used to explore transient,
in-memory objects created during the course of analysis. DEFOG pro-
vides a set of load routines for ingesting data, and these can be easily
extended by users to support other formats. Additionally, the full func-
tionality of the underlying language can be utilized for manipulating
objects in addition to specifying parameters of the graphical represen-
tation. For example, temperature data read in Fahrenheit might be
converted to Celsius before attempting any visualization by scripting
that conversion in DEFOG.

Allowing arbitrary data manipulation and parameter specification
provides a large amount of power to DEFOG, but we also wish to bal-
ance this power with a simple syntax for non-programmers. Thus,
the DEFOG model works best with languages that allow expressions
to be written in familiar and straightforward syntax like, for example,
Python. In order to further simplify syntax, we amend the language
with built-in shortcuts to access the current object, its attributes, and
its children. The object can be accessed with the underscore character
() so if that object represents a country, its population attribute can be
accessed as .population. Furthermore, we provide $ as a short-
cut for . to make the syntax more friendly. Children of a node can
be accessed via the children attribute via $ children. Then, a
user might compute the log of the mean oil consumption for a county
as

log(mean($oilc))

where oilc is the field of the object that stores the oil consumption.

4 IMPLEMENTATION

The DEFOG system implements the model described in Section 3 and
provides a set of tools and commands to manipulate the data and vi-
sualizations. In this section, we present an overview of the interface,
describe some of the available interactions, and highlight significant
features of the system.

The DEFOG user interface is built around a single, infinite canvas
used to the scene defined by the model. As Figure 8 illustrates, the
canvas is surrounded by a list of available objects, available attributes
of the currently selected objects, a list of available faces, an interactive
console, widgets for configuring color and size, and a list of commands
and keyboard shortcuts. In addition, there is a tool bar at the top of
the window with common operations and a status bar at the bottom
of the window that displays information about the canvas, the current
selection, and recently executed commands. All of these widgets can
be hidden in order to maximize the screen space for the canvas.

Fig. 8. Screenshot of DEFOG prototype with main widgets: Canvas,
Console, Objects, Attributes, Faces, Commands, Color/Size Map.

When data is loaded as the result of either a defined load routine or
an assignment in the interactive console, it is displayed in the object
list. Users then can select data from that list and drag it into the can-
vas. By default, the data appears as a group of circles, but user can
change this appearance by configuring the faces of the elements and
applying any of a set of layout routines to the elements. Upon select-
ing any element, DEFOG displays the available attributes of the object.
As described in Section 3, attributes can be used to configure color,

size, or specific parameters in more complex programs. When more
than one element is selected, DEFOG displays the intersection of the
attributes from each element. Thus, if elements from different datasets
share similar attributes, they can be customized at the same time.

While more structured visualizations require programs, DEFOG
provides accessible controls for configuring the textual label, color,
and size of faces. Labels can be easily added to selected elements by
identifying the attribute to serve as the label. The key component of
both of the color and size configuration widgets is the expression field
which allows arbitrary expressions that can involve attributes of the
selected elements. A user can drag and drop attributes from the at-
tribute palette to the expression field. After identifying an expression,
the user can view the ordered distribution of the values evaluated for
the elements, and configure colors or sizes based on this distribution.
After obtaining a satisfactory map from values to colors or sizes, the
user can apply it to the selected elements.1

Manipulating Sets of Elements. DEFOG also has selection op-
erations, copy-and-paste, and grouping mechanisms, more often seen
in illustration tools than visualization systems. Users can select data
from the scene directly or use filters than leverage the expression syn-
tax described in Section 3.4 to compute selections. In addition, users
can easily explore visualization configurations by copying the cur-
rent version, pasting a second version, and then changing the modal-
ity, color schemes, or any other properties. Finally, DEFOG provides
methods to define hierarchical structure on nodes by allowing users to
group any selection and create a new node whose children are the se-
lected nodes. While some data may natively exist in these hierarchies,
for flat data, users may wish to define groupings to allow programs do
better aggregation.

Since all visualizations live in a single canvas, selections can span
more than one visualization. Like other systems (e.g.,Polaris [32,36]),
we allow users to both interactively select canvas elements and query
for elements that represent data with certain properties. However, we
also allow such queries to further refine already selected entities. A
user can then select the set of elements in a single visualization on the
canvas and run a query the selects a subset of those points that match
specified criteria. Note that if there is no selection, the query is global
and will select all elements whose underlying objects satisfy the query.
Selections can also be copied and pasted to other regions of the canvas
allow for non-destructive exploration.

In addition, a selection in DEFOG can be organized as a group which
functions in a manner similar to illustration programs. The system
allows a user to select the direct children or parents of items in the
selection. Additionally, they can select orphan items (those that do not
belong to any group) and leaves (objects that are not groups). This
gives a user an intuitive method for drilling down into a visualization.
For example, consider two groups that contain a set of plots whose
configuration we wish to update. By first selecting the two groups and
then selecting the children of the selection, we will have selected all
of the plots and can then configure all of them at the same time. If a
face is open and we have selected both a group and its children, we
can select only the group by sub-selecting the orphans.

Layout and Navigation. While the default layout of data ele-
ments is an ordered grid, DEFOG provides an array of methods for
layout and arrangement. Users can manually align elements as they
would in an illustration program, but can also use layout algorithms
that respect connections to generate trees, graphs, and other node-link
diagrams. Such layout tools make it possible to integrate plots and
graphs with faces based on customized graphics.

Finally, DEFOG contains commands to navigate the canvas. While
a single, infinite canvas provides an unlimited working environment,
it can also lead to information overload. To alleviate these issues, DE-
FOG contains zoom operations that allow users to focus on current
work or jump to a particular region in addition to the normal zoom
in/out commands. In addition, there are scaling operations to ensure
that visualizations can be resized to align with others that may have
been created at a different resolution.

1The video shows how this works.

6

Customized Visualizations. Many visualization systems facili-
tate analysis and produce initial results but require additional polish-
ing in an illustration tool for presentation. Because DEFOG allows
a wide range of customization for the appearance of both individual
data elements and relations, users can design presentation graphics as
refinements to existing visualizations. Even during exploration, it can
be beneficial to annotate, highlight, and even move elements. Anno-
tations can help draw attention to specific points or tell a story about
a particular data point. DEFOG allows simple annotations that can aid
in chronicling the exploration process. Highlights serve to draw atten-
tion to specific regions of a visualization, and can help show specific
pieces in the context of the entire visualization. Finally, DEFOG allows
users to define and import path specifications to construct faces with
complex glyphs.2

Because the model defines a relationship between two canvas ele-
ments (e.g.,two objects) according to the data they represent, DEFOG
can locate and link equivalent entities. There has been a significant
amount of work on linking multiple-view visualizations and a number
of techniques that help draw attention to equivalent data points in dif-
ferent views. For example, brushing allows an unobtrusive means to
interactively locate equivalent data across views [4]. Our approach is
explicit, as we represent relationships by drawing lines between equiv-
alent data. Note that this is possible because all visualizations live in
a single canvas. Such lines resemble parallel coordinate visualizations
as shown in Figure 7. This allows users to find, locate, and save rela-
tionships between equivalent data in different visualizations.

Programming Language Support. DEFOG is designed to take
advantage of support from existing programming languages. Rather
than define new syntax, users can interact with their data via syntax
from an existing language. The associated data of an element can
therefore be stored as an object in the language. In addition, DEFOG
provides a console where users can manipulate the data using the full
power of the language, and move analysis from the visual domain to
the scripting domain and vice versa. Any variable is automatically dis-
played as an available element, and users can use commands like sel
to obtain the objects that are selected in the canvas. Our implementa-
tion of DEFOG extends Python for language support, but it should be
possible to add support for other languages as well.

5 EVALUATION

5.1 Biochemical Pathways

Scientists who are collecting and analyzing biochemical pathways
have used DEFOG to simplify the creation of visualizations showing
the relationships between the pieces of the pathways. Among chemical
reactions occurring within a cell, some sequences of reactions behave
as a production chain: an initial substrate (molecule) is transformed
by some reaction, its product (another molecule) is transformed by a
second reaction and so on. This process continues until a final prod-
uct is obtained. A sequence of biochemical reactions that exhibit this
behavior is called a biochemical or metabolic pathway. Scientists of-
ten use node-and-link diagrams to analyze this kind of data where a
variety of information is encoded using arrows to indicate pathway di-
rection and color on both nodes and links to represent attributes like
reaction intensities and molecule concentrations. In addition, they use
statistical plots including scatterplots and histograms to analyze spe-
cific relationships between attribute values.

Figure 1 shows an example outcome when analyzing and visual-
izing this data in DEFOG. In the figure, rectangular nodes are reac-
tions and oval nodes are metabolites (molecules). The number of ar-
rows in a connection indicates how intense the reaction is compared
to a baseline at time zero (red indicates higher intensity, green shows
lower values, and black is equivalent). This diagram was generated
by loading the nodes and connections data and using the Neato lay-
out from GraphViz [16], available in DEFOG. The figure also shows a
plot which examines the fold change of three specific metabolites over
time. Because DEFOG allows access to objects contained in objects

2See the video for an example.

via the attributes list, we can extract measurements over time from the
three metabolites (SUC, AcCoAm, and OHBCoA) as new nodes in the
scene. Then, by grouping the extracted measurements, we can gen-
erate a scatterplot that relates the time attribute of each measurement
with the fold change. By connecting the nodes, we can emphasize
trends in each metabolite, converting the scatterplot to a line plot. Fi-
nally, to better present this information, we have connected the nodes
in our original node-and-link diagram to the corresponding lines in the
line plot.

The scientists were thrilled that instead of taking days to manu-
ally create a diagram in PowerPoint as they were before, they could
use DEFOG to create the diagrams in seconds and also further explore
the data in the context of these diagrams. At the same time, learning
to harness the power of DEFOG took some adjustment, and we aided
their transition by providing extensions to simplify data specification
and visual encoding. Because much of the pathways data was already
saved in spreadsheets, we wrote a specific load routine to ingest this
data and pull out annotations that indicated connectivity information.
To simplify the examination of module concentrations and reaction in-
tensities over time, we extended DEFOG with widgets to explore these
variables over time. Both of these extensions streamlined the explo-
ration and visualization process, and we believe that such extensions
can be important aids for domain-specific research.

5.2 Histories of Workflow Design Processes

A workflow is a description of computational steps to transform input
data into output data. To evaluate DEFOG we used it to analyze a
collection of such descriptions. The collection was generated by a
workflow management system where all the modifications a user did,
starting from an empty workflow, to a solve given tasks was recorded.
For this reason we say it is a collection of histories of workflow design
processes. The dataset consisted of 150 histories from 25 users and
6 tasks. It has been shown that such histories can be used to gather
information about patterns of use [18].

A workflow description in this dataset is modeled as a directed
acyclic graph and each history is modeled as tree structure whose
nodes contain workflow graphs. This kind of “complicated” data types
makes it hard to explore such a dataset with any other tool besides a
low level programming language or custom application. It turned out
that, as soon as we created objects to represent this data, DEFOG was
ready to analyze and generate visualizations like the one shown in Fig-
ure 9.

On the top left of this figure each of the 150 histories is represented
by a circle with its color meaning the task: from task one (white) to
task six (the most saturated green). On the bottom left we copied and
pasted the 150 top left circles/histories and put them into groups: one
for each student. However the circles this time were not the same size,
they were scaled to match the number of workflows contained in each
history. In the context of this application this number is also referred
as: number of actions. On the leftmost plot we copied the student
groups and put them in a scatterplot using for each group the sum of
the number of workflows and the number of branches for the six dif-
ferent task-history trees within each group. In this plot we highlighted
the users Lon and Kaylee because they had a similar total number of
actions, but Lon had significantly less branches than Kaylee. On the
second plot (from left to right) we show the actual number of work-
flows (or actions) in each of the six histories for both Lon and Kaylee.
The colored arrow lines are there to show the task progress: from one
to six. The nodes also grow from task one to task six. The gray lines
connect the histories with the same task number. Note how the blue
dots are always above the corresponding orange nodes: more branches
for Kailee. On the left right we the actual history tree for task six of
Lon and Kaylee. The one that is indicated by the gray curved line on
the second scatterplot. On the tree we highlight by using larger nodes
what are called “branch” nodes and the ones that actually contained
a successfully executed workflow. This were actually represented by
a thumbnail image of the outcome of the workflow execution. In this
collection the six tasks were all to design scientific visualization work-
flows. The final visualization of Lon and Kaylee for task six are high-

7

Fig. 9. DEFOG scene of a visual analysis session on a dataset of histories of workflow design: multiple levels of abstraction investigated in the
same place.

lighted together with the actual workflow graphs that generated it.
Observing Lon and Kailee’s visualizations we noticed that Kailee

couldn’t get it right. Although she generated a larger history tree and
more branches than Lon, we suppose that this was due to confusion.
Another question we raised by this example of Lon and Kaylee was
if trees that contain a deeper single branch correlate with better work-
flows. Although Kaylee had more workflows she never had a branch
as deep as one branch Lon had.

6 CONCLUSIONS

DEFOG provides a flexible environment for building, composing, and
tweaking visualizations, helping users effectively explore data. It is
built upon a simple model that supports a significant amount of free-
dom to manage and explore data visually. This model is coupled with
a single, infinite canvas where graphical primitives backed by data can
be manipulated and a variety of powerful commands that allow users
to organize and present data according to these visual representations.
We have shown that this implementation can help users better under-
stand their data in two different case studies.

While we believe DEFOG provides good abstractions and interac-
tions to simplify the creation of visualizations, rampant customization
must require time and we cannot expect to eliminate user-interaction.
We can allow a user to customize each element individually, but such
operations will not leverage the group operations and mappings that
make DEFOG more efficient for grouped customization. In addition,
while DEFOG seeks to occupy a space that offers high-level as well as
low-level manipulations, extensions or applications biased to one side
or another devolve into existing approaches. Thus, depending on use,
DEFOG can span large space in the graph shown in Figure 3.

We are working to improve DEFOG by adding features including
better layout support and provenance capture. For layout, better sup-
port for alignment as well as level-of-detail configuration [37] would
allow users to organize and layer information. We also wish to add
provenance capture of the data-oriented exploration in DEFOG. It has
been shown that information about the steps followed during explo-
ration can be used not only to recreate plots but for analysis [18]. In
addition, such provenance can be used to apply similar processing via
analogy or suggest processes for analysis automatically. We believe
that DEFOG can benefit in similar ways, leading to a better under-
standing of exploration that can help improve both the tool itself and
also visualization techniques.

Acknowledgments. The research and development of the Defog
system has been funded by the National Science Foundation under
grants IIS-0905385, IIS-0844546, IIS-0746500, CNS-0751152, the
Department of Energy (SciDAC VACET and SDM centers), and Na-
tional Institutes of Health (NCRR ARRA).

REFERENCES

[1] E. Adar. Guess: a language and interface for graph exploration. In CHI
’06: Proceedings of the SIGCHI conference on Human Factors in com-
puting systems, pages 791–800, New York, NY, USA, 2006. ACM.

[2] A. Aiken, J. Chen, M. Stonebraker, and A. Woodruff. Tioga-2: a di-
rect manipulation database visualization environment. In Data Engineer-
ing, 1996. Proceedings of the Twelfth International Conference on, pages
208–217, Feb-1 Mar 1996.

[3] D. Archambault, T. Munzner, and D. Auber. GrouseFlocks: Steerable Ex-
ploration of Graph Hierarchy Space. IEEE Transactions on Visualization
and Computer Graphics, pages 900–913, 2008.

[4] R. Becker and W. Cleveland. Brushing Scatterplots. Dynamic Graphics
for Statistics, pages 201–224, 1987.

[5] B. Bederson and J. Hollan. Pad++: a zooming graphical interface for
exploring alternate interface physics. In Proceedings of the 7th annual
ACM symposium on User interface software and technology, pages 17–
26. ACM New York, NY, USA, 1994.

[6] J. Bertin. Semiology of graphics. University of Wisconsin Press, 1983.
[7] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.

IEEE Transactions on Visualization and Computer Graphics, 15:1121–
1128, 2009.

[8] S. K. Card, J. D. Mackinlay, and B. Shneiderman, editors. Readings
in information visualization: using vision to think. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1999.

[9] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The information visu-
alizer, an information workspace. In CHI ’91: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 181–186, New
York, NY, USA, 1991. ACM.

[10] E. Chi. A taxonomy of visualization techniques using the data state ref-
erence model. In Proc. of IEEE Information Visualization, pages 69–75,
2000.

[11] E. H.-H. Chi and J. Riedl. An operator interaction framework for vi-
sualization systems. In Proc. of IEEE Information Visualization, pages
63–70, 1998.

[12] S. Cohen, J. Cukier, and M. Wattenberg. Panel: Changing the world with
visualization. InfoVis 2009.

[13] W. Donelson. Spatial management of information. In Proceedings of
1978 ACM SIGGRAPH Conference, pages 203–209. Press, 1978.

[14] M. Ericson. Keynote: Visualizing data for the masses: Information graph-
ics at The New York Times. InfoVis 2007.

[15] J.-D. Fekete. The infovis toolkit. In Proc. of IEEE Information Visual-
ization, pages 167–174, 2004.

[16] E. R. Gansner and S. C. North. An open graph visualization system and its
applications to software engineering. Softw. Pract. Exper., 30(11):1203–
1233, 2000.

[17] J. Heer, S. K. Card, and J. A. Landay. prefuse: a toolkit for interactive
information visualization. In CHI ’05: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pages 421–430, New
York, NY, USA, 2005. ACM.

[18] J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala. Graphical histories for

8

visualization: Supporting analysis, communication, and evaluation. Vi-
sualization and Computer Graphics, IEEE Transactions on, 14(6):1189–
1196, Nov–Dec 2008.

[19] C. Herot. Spatial management of data. ACM Transactions on Database
Systems (TODS), 5(4):493–513, 1980.

[20] C. Herot, R. Carling, M. Friedell, and D. Kramlich. A prototype spa-
tial data management system. ACM SIGGRAPH Computer Graphics,
14(3):63–70, 1980.

[21] J. Lee and G. Grinstein. An architecture for retaining and analyzing visual
explorations of databases. In IEEE Visualization, pages 101–108, 1995.

[22] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic,
S. Lawande, J. Myllymaki, and K. Wenger. Devise: integrated querying
and visual exploration of large datasets. SIGMOD Rec., 26(2):301–312,
1997.

[23] J. Mackinlay. Automating the design of graphical presentations of rela-
tional information. ACM Trans. Graph., 5(2):110–141, 1986.

[24] J. D. Mackinlay, G. G. Robertson, and R. DeLine. Developing calendar
visualizers for the information visualizer. In UIST ’94: Proceedings of the
7th annual ACM symposium on User interface software and technology,
pages 109–118, New York, NY, USA, 1994. ACM.

[25] C. North and B. Shneiderman. Snap-together visualization: a user inter-
face for coordinating visualizations via relational schemata. In AVI ’00:
Proceedings of the working conference on Advanced visual interfaces,
pages 128–135, New York, NY, USA, 2000. ACM.

[26] C. Olston, M. Stonebraker, A. Aiken, and J. Hellerstein. VIQING: Visual
Interactive QueryING. Visual Languages, IEEE Symposium on, 0:162,
1998.

[27] K. Perlin and D. Fox. Pad: An alternative approach to the computer
interface. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, pages 57–64. ACM New York, NY,
USA, 1993.

[28] J. Roberts. On encouraging multiple views for visualization. In Proc. of
IEEE Information Visualization, pages 8–14, 1998.

[29] G. G. Robertson, S. K. Card, and J. D. Mackinlay. Information visualiza-
tion using 3d interactive animation. Commun. ACM, 36(4):57–71, 1993.

[30] S. Roth, P. Lucas, J. Senn, C. Gomberg, M. Burks, P. Stroffolino, J. Kolo-
jejchick, and C. Dunmire. Visage: a user interface environment for ex-
ploring information. Proceedings of Information Visualization, pages 3–
12, 1996.

[31] B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling ap-
proach. ACM Trans. Graph., 11(1):92–99, 1992.

[32] C. Stolte, D. Tang, and P. Hanrahan. Polaris: a system for query, analy-
sis, and visualization of multidimensional relational databases. Visualiza-
tion and Computer Graphics, IEEE Transactions on, 8(1):52–65, Jan/Mar
2002.

[33] C. Stolte, D. Tang, and P. Hanrahan. Multiscale visualization using data
cubes. Visualization and Computer Graphics, IEEE Transactions on,
9(2):176–187, April-June 2003.

[34] D. Tang, C. Stolte, and R. Bosche. Design choices when architecting
visualizations. In Proc. of IEEE Information Visualization, pages 41–48,
2003.

[35] F. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
Manyeyes: a site for visualization at internet scale. Visualization and
Computer Graphics, IEEE Transactions on, 13(6):1121–1–128, Nov.-
Dec. 2007.

[36] C. Weaver. Building highly-coordinated visualizations in improvise. In
Proc. of IEEE Information Visualization, pages 159–166, 2004.

[37] A. Woodruff, C. Olston, A. Aiken, M. Chu, V. Ercegovac, M. Lin,
M. Spalding, and M. Stonebraker. Datasplash: A direct manipulation
environment for programming semantic zoom visualizations of tabular
data. Journal of Visual Languages & Computing, 12(5):551–571, 2001.

9

