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Abstract:

We present a benchmark for the evaluation and comparison of algorithms which reconstruct a
surface from point cloud data. Although a substantial amount of effort has been dedicated to the
problem of surface reconstruction, a comprehensive means of evaluating this class of algorithms is
noticeably absent. We propose a simple pipeline for measuring surface reconstruction algorithms,
consisting of three main phases: surface modeling, sampling, and evaluation.We employ implicit
surfaces for modeling shapes which are expressive enough to contain details of varying size, in
addition to preserving sharp features. From these implicit surfaces, we produce point clouds by
synthetically generating range scans which resemble realistic scan data. We validate our synthetic
sampling scheme by comparing against scan data produced via a commercial optical laser scanner,
wherein we scan a 3D-printed version of the original implicit surface. Last, we perform evaluation
by comparing the output reconstructed surface to a dense uniformly-distributed sampling of the
implicit surface. We decompose our benchmark into two distinct sets of experiments. The first
set of experiments measures reconstruction against point clouds of complex shapes sampled under
a wide variety of conditions. Although these experiments are quite useful for the comparison of
surface reconstruction algorithms, they lack a fine-grain analysis. Hence to complement this, the
second set of experiments are designed to measure specific properties of surface reconstruction,
both from a sampling and surface modeling viewpoint. Together, these experiments depict a
detailed examination of the state of surface reconstruction algorithms.
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We present a benchmark for the evaluation and comparison of algorithms
which reconstruct a surface from point cloud data. Although a substantial
amount of effort has been dedicated to the problem of surface reconstruc-
tion, a comprehensive means of evaluating this class of algorithms is no-
ticeably absent. We propose a simple pipeline for measuring surface re-
construction algorithms, consisting of three main phases: surface modeling,
sampling, and evaluation. We employ implicit surfaces for modeling shapes
which are expressive enough to contain details of varying size, in addi-
tion to preserving sharp features. From these implicit surfaces, we produce
point clouds by synthetically generating range scans which resemble real-
istic scan data. We validate our synthetic sampling scheme by comparing
against scan data produced via a commercial optical laser scanner, wherein
we scan a 3D-printed version of the original implicit surface. Last, we per-
form evaluation by comparing the output reconstructed surface to a dense
uniformly-distributed sampling of the implicit surface. We decompose our
benchmark into two distinct sets of experiments. The first set of experiments
measures reconstruction against point clouds of complex shapes sampled
under a wide variety of conditions. Although these experiments are quite
useful for the comparison of surface reconstruction algorithms, they lack
a fine-grain analysis. Hence to complement this, the second set of experi-
ments are designed to measure specific properties of surface reconstruction,
both from a sampling and surface modeling viewpoint. Together, these ex-
periments depict a detailed examination of the state of surface reconstruc-
tion algorithms.

1. INTRODUCTION

Over the past two decades there has been an immense amount of
effort dedicated to the problem of surface reconstruction. The prob-
lem of surface reconstruction may be formulated as follows: given
a sampling of points measured on a surface, recover the original
surface from which those points came. This problem is motivated
by a large number of applications. For instance, surface reconstruc-
tion is a crucial first step in the recovery of non-rigid motion of
time-varying geometry [Sharf et al. 2008; Li et al. 2009], and used
as “ground-truth” data for multi-view stereo reconstruction evalua-
tion [Seitz et al. 2006].

The generality of the problem has given rise to a wide variety of
surface reconstruction algorithms. The distinctions in the various

reconstruction algorithms hinge on the expected form of the input
point data and output reconstructed surface. The input may be a
single depth image, a registered point cloud, or a registered point
cloud equipped with normals. Moreover, the modality of the point
data plays a major role in reconstruction, where various modalities
from the 3D vision literature include optical laser scanners, struc-
tured lighting, structure from motion, and photometric stereo.

The form of the output can be broken down into two main com-
ponents: surface representation and the dependency on the input
data. The surface representation may be a parametric surface, an
implicit surface, and a triangulated surface mesh. The dependency
on the input data can range from interpolating all of the input data,
interpolating only a subset of the input, or simply approximating
the input.

The focus of this work is on the evaluation and comparison of
surface reconstruction algorithms which take as input a registered
point cloud equipped with normals and output a triangulated sur-
face mesh which approximates the input data. More specifically,
we focus on input data acquired via triangulation-based scanning,
wherein normals are absent and must be computed from the points
themselves. This class of input is extremely broad, and quite com-
mon in point cloud data due to the rising ubiquity of triangulation-
based scanners such as optical laser scanners. This class of output
is very flexible for surface reconstruction, in that triangle meshes
are capable of representing surfaces of arbitrary detail, while the
approximation requirement allows for much freedom in reconstruc-
tion from point clouds containing large imperfections.

Despite the vast amount of work in this class of algorithms, to
date there has been an insufficient means of evaluation. These al-
gorithms typically operate on acquired scan data, where there ex-
ists the lack of a computational representation of the surface from
which the scanned points were measured. Hence it is not possible
to compare the reconstructed surface to the original surface, and it
is quite common for such approaches to instead provide a visual
comparison. Quantitative measures are typically done using syn-
thetically generated data, but existing quantitative evaluation ap-
proaches contain a number of shortcomings, ranging from the rep-
resentation of the reference shape, to how sampling is performed.

Our benchmark for surface reconstruction rectifies these defi-
ciencies in evaluation, providing the following contributions:
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Fig. 1. Here we have synthetically sampled the Gargoyle model, and ran eight separate reconstruction algorithms on this point cloud. Note the differences
between the algorithms on the claw, where some algorithms oversmooth the data, while others result in spurious holes being produced. Our benchmark aims
to generate such imperfect point cloud data and study these various forms of error.

—Realistic data. We utilize a collection of both simple and com-
plex shapes, where an implicit surface is used as the computa-
tional representation. We then synthetically scan the implicit sur-
face to provide a collection of point clouds, where our scanning
simulation is validated against real data.

—Accuracy. By employing implicit surfaces we have a precise
means of performing evaluation, in both positional and differ-
ential measures. We utilize particle systems to uniformly sam-
ple both the implicit surface and the reconstructed surface mesh,
thereby minimizing any potential bias of measure from the cor-
responding triangulation.

—Comprehensiveness. The set of experiments depicts a broad
range of behavior across surface reconstruction algorithms.

Part of the difficulty in establishing a comprehensive set
of experiments is the large variability in point clouds. Under
triangulation-based scanning, a surface may be sampled under a
wide variety of conditions, producing point clouds containing many
different characteristics such as noise, outliers, nonuniform sam-
pling, and missing data. This variablity is only further enhanced
when scan data must be processed to produce an oriented point
cloud, where registration and normal orientation must be per-
formed. With all of these factors considered, it is difficult to de-
termine the effectiveness of a surface reconstruction algorithm op-
erating on an arbitrary point cloud; see Figure 1 for an illustration.
In light of this, our experiments are broken down into two sets, one
giving a macro view of reconstruction, and the other giving a micro
view.

The first set of experiments samples a small number of complex
shapes under a large variety of scanner settings. A point cloud for
a given a shape provides us with a number of evaluation measures,
and we aggregate each measure over all point clouds to provide
an error distribution for a given shape. This serves two purposes.
First, it provides a more objective means of comparing algorithms

by looking at their performance over a distribution, rather than a
single point cloud which could easily bias a certain class of algo-
rithms. Secondly, it illustrates just how effective an algorithm is at
reconstructing a single shape as a whole, given that a shape may be
sampled in an unbounded number of ways.

The second set of experiments complements the first, by measur-
ing algorithmic performance in the presence of specific sampling
and shape properties. In order to achieve this, we operate in a con-
trolled setting, and as such complex shapes are inappropriate since
they may obfuscate the specific properties we are trying to measure.
Hence we use a set of simple shapes, some strictly smooth and oth-
ers containing sharp features, each sampled in ways to elucidate
specific properties for carefully examining surface reconstruction
algorithms.

Lastly, we have made our dataset and benchmark code avail-
able to the public (at: http://www.cs.utah.edu/∼bergerm/
recon bench). Our experiments should benefit the surface recon-
struction research community twofold. The first set of experiments
may be used to obtain an immediate comparison across reconstruc-
tion algorithms, while the second set of experiments should prove
useful for one to observe specific algorithmic behavior. Combined,
our benchmark provides a comprehensive insight into this class of
surface reconstruction algorithms.

2. RELATED WORK

Surface Reconstruction: Broadly speaking, we may classify sur-
face reconstruction algorithms by their expected input and the type
of output they produce.

One class of algorithms takes as input an unoriented point cloud
and produces an interpolating surface in the form of a triangu-
lation that uses a subset of the input points as vertices. Often
these “connect-the-dots” algorithms are filtration-based techniques;
they first build a triangulation with more elements than needed

http://www.cs.utah.edu/~bergerm/recon_bench
http://www.cs.utah.edu/~bergerm/recon_bench
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and then prune away triangles not near the surface. By using the
Delaunay triangulation coupled with modeling the point cloud as
an ε-sample [Amenta and Bern 1999], many of these algorithms
come with provable guarantees regarding the quality of the re-
construction. Extensive research efforts have been devoted to this
model, producing the Cocone [Amenta et al. 2002] and Power
Crust [Amenta et al. 2001] algorithms. Many other extensions have
been compiled in a recent survey [Cazals and Giesen 2006] and
monograph [Dey 2007].

Restricting the reconstruction to have vertices only on the input
point cloud can often be limiting when the data is non-uniform, in-
complete, or noisy. Algorithms that build approximating surfaces
give a flexible alternative in these situations. Here the output is of-
ten a triangulation of an isosurface of a best-fit implicit function
of the input. Many of these algorithms [Hoppe et al. 1992; Bois-
sonnat and Cazals 2002] compute a distance field by estimating the
tangent plane at every point and computing closest distance using
these tangent planes. However, normal estimation in the presence of
imperfect data is a difficult problem, despite recent advances [Mitra
and Nguyen 2003; Dey et al. 2005].

Surface approximation from oriented point sets has gained re-
cent attention. Approaches range from computing an indicator
function [Kazhdan 2005; Kazhdan et al. 2006; Alliez et al. 2007;
Manson et al. 2008], to locally fitting functions and moving least
squares methods [Alexa et al. 2001; Ohtake et al. 2003; Ohtake
et al. 2005b; Fleishman et al. 2005]. These approaches are well-
equipped at handling various imperfections in the data, and provide
for an interesting class of algorithms to study for comparison and
evaluation.

Reconstruction Evaluation: In the area of surface reconstruc-
tion evaluation, most of the above approaches employ qualitative
methods for evaluating the effectiveness of their approach com-
pared to other algorithms. This usually takes the form of a visual
comparison. However, significantly less work has been devoted to
obtaining quantitative measures. This is due to the common use
of scan data, where there is no longer a computational representa-
tion of the shape. For synthetic data, the works of [Kazhdan 2005;
Manson et al. 2008; Sussmuth et al. 2010] take a triangle mesh as
ground truth, and randomly sample the triangles directly to obtain
a point cloud. This form of sampling, however, does not reflect the
type of data obtained from scanned data which is consequently or-
ganized into a point cloud. The works of [Hoppe et al. 1992; ter
Haar et al. 2005] obtain synthetic scans of a triangle mesh from
ray tracing or z-buffering the mesh. While these methods may pro-
duce realistic data under the assumption of completely clean data,
in order to replicate common scan artifacts these approaches are
insufficient. Our approach also generates synthetic range data, but
is more complete since we simulate an optical triangulation-based
scanner.

A drawback of all of these approaches is the use of a triangle
mesh as ground truth. Sampling a triangle mesh, either directly
or through synthetic scans, may produce “faceted scans”, where
multiple samples lie on a single triangle. This can be misleading
for reconstruction algorithms, as the reconstruction may preserve
these faceted portions. It is also problematic to use a triangle mesh
as ground truth for comparing surfaces. METRO [Cignoni et al.
1998] has become quite common for comparing two triangulated
surface meshes, however for surface reconstruction we are more
interested in seeing how well a reconstructed surface compares to
a real shape which is smooth, not necessarily a faceted approxima-
tion. Moreover, if we are interested in comparing differential quali-
ties, we have an ill-posed definition of surface normals when using
a triangle mesh as ground truth.
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Fig. 2. Overview of our benchmark. First we create an implicit represen-
tation of a surface mesh. We then sample this implicit surface by syntheti-
cally scanning the shape to obtain individual range scans, and consolidate
the scans into a single oriented point cloud via registration and normal esti-
mation. We run a reconstruction algorithm on this oriented point cloud, and
compare this output to the implicit model and a dense uniform sampling of
the implicit shape to obtain quantitative results.

Similar Benchmarks: Finally, related benchmarks exist in
the area of 3D stereo reconstruction, such as for binocular
stereo [Scharstein and Szeliski 2002] and multiview stereo [Seitz
et al. 2006]. Both use real-world data as input to the various acqui-
sition methods. Multiview stereo, in particular, applies VRIP [Cur-
less and Levoy 1996] to each range scanned surface, and uses the
resulting triangle mesh as the gold standard for comparison. How-
ever, as pointed out for example by [Kazhdan et al. 2006], VRIP is
certainly not free of errors, and arguably every surface reconstruc-
tion algorithm will contain errors in the presence of imperfections
in scanned data. Thus, having a clear understanding of these types
of errors is crucial when using a reconstructed surface as a gold
standard for comparison.

3. OVERVIEW

Our benchmark may be broken up into three main phases: sur-
face modeling, sampling, and evaluation. See Figure 2 for the full
pipeline.

We first start off with an implicit surface. In order to minimize
any potential bias inherit with our implicit surface representation,
we use integrated polgonal constraints, and approximate an im-
plicit surface from a triangle mesh, as detailed in Section 4.
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We then sample this implicit surface to obtain an oriented point
cloud. We simulate the process of an optical triangulation scan-
ner in order to produce range scans. We then slightly overlap the
range scans and register them via a rigid-body registration algo-
rithm. From the registered point cloud, we then compute and orient
normals for each point, producing an oriented point cloud suitable
for the class of algorithms under consideration. These steps are de-
scribed in more detail in Section 5.

From the oriented point cloud, we may now run a surface recon-
struction algorithm on the input. This gives us a triangle mesh, for
which we compare by using the implicit surface, as well as a dense
uniformly sampled point cloud of the implicit surface. We may then
construct positional and normal error metrics, demonstrated in Fig-
ure 2 as individual distributions of point-to-point correspondences.
This is explained in more detail in Section 6.

4. SURFACE MODELING

We model the shapes in our benchmark using implicit surfaces. Our
choice of implicit representation is driven by two basic require-
ments: expressivity and computational efficiency. It just so happens
that most of the surface reconstruction algorithms under consider-
ation satisfy these two requirements. However, modeling implicit
surfaces under point/normal constraints may introduce bias for cer-
tain algorithms.

We instead model implicit surfaces under integrated polygonal
constraints. Namely we create smooth and piecewise-smooth im-
plicit surfaces by approximating triangulated surface meshes, or
more generally polygon soup, through weight functions integrated
over polygons. The advantages of using polygonal constraints over
point constraints are twofold. First, approximation from a point
cloud may produce specific forms of surface features in the pres-
ence of missing data; under polygon soup, we can ensure there is
no such missing data. Secondly, identification and preservation of
sharp features of a polygonal mesh is far more robust than a point
cloud.

4.1 Polygonal MPU

Our implicit representation is a straightforward extension of Multi-
level Partition of Unity (MPU) [Ohtake et al. 2003] applied to poly-
gon soup, with the main distinction of integrating weight functions
over polygons. We use the weight function of [Shen et al. 2004],
defined for a given point x ∈ R3 and for an arbitrary point on a
triangle t, p ∈ t:

w(x,p) =
1

(|x− p|2 + ε2)
2 (1)

Here, ε is a smoothing parameter. We may now integrate this weight
function over the entire triangle t:

w(x, t) =

Z
p∈t

w(x,p)dp (2)

For evaluating Equation 2, [Shen et al. 2004] propose a method for
numerical integration. However, we derive a closed form solution
for this expression. This prevents potential numerical inaccuracies
caused by a quadrature scheme, which could be particularly detri-
mental to having a reliable benchmark. We outline the derivation in
Appendix A.

Equipped with a mechanism for integrating weights over poly-
gons, we proceed with MPU by fitting shape functions to a triangle
soup T = {t1, ..., tn}. We adaptively build an octree over T , where
for each octree cell we associate with it a sphere whose radius is the

length of the diagonal of the cell. We then gather all triangles which
are contained in, or overlap the sphere, and fit a shape function to
those triangles.

In practice we use linear functions for our shape functions, where
for each cell i we associate the function gi(x) = xTci + bi. For
all triangles which belong to the sphere of cell i, Ti ⊂ T , we fit the
shape function as follows:

ci =

P
t∈Ti

R
p∈t

pw(si,p) dpP
t∈Ti

R
p∈t

w(si,p) dp
(3)

bi = −
fi P

t∈Ti
nt

R
p∈t

w(si,p) dpP
t∈Ti

R
p∈t

w(si,p) dp
, ci

fl
(4)

Where nt is the triangle normal of t and si is the center of the
sphere for cell i. Although one may use higher order shape func-
tions under polygonal constraints, such as quadrics, we found the
difference to be negligible, where the main difference is that for
linear functions we require a larger number of shape functions to
adequately approximate T .

The octree is built such that each cell is subdivided only if the
zero set of its shape function deviates sufficiently from the sphere’s
triangles. If the octree cell’s sphere is empty to start, then we grow
the radius of the sphere out until we encompass a sufficient number
of triangles, and terminate the subdivision with its shape function.
Once the octree construction is complete, we have a spherical cov-
ering of the space. We may then evaluate the implicit function at
a point by blending all shape functions whose spheres contain that
point:

f(x) =

P
i qi(x)gi(x)P

i qi(x)
(5)

Where qi is a quadratic b-spline function centered at si.
To preserve sharp features, we follow [Ohtake et al. 2003] in

detecting sharp features within a leaf cell and consequently apply-
ing CSG operations for exact feature preservation. In these cases,
rather than using polygon soup we instead use a manifold triangle
mesh, so that sharp features can be easily identified by observing
dihedral angles. We then apply union and intersection operations
on overlapping shape functions to exactly preserve the sharp fea-
ture, where we support edges and corners containing a maximum
degree of four.

4.2 Benchmark Shapes

We have modeled shapes specific for our two sets of experiments.
Our first set of experiments consists of complex shapes, and so we
have modeled five shapes containing different types of complexi-
ties. See Figure 3 for these shapes. The Gargoyle model contains
details of various feature sizes, ranging from the bumps on the bot-
tom to the ridges on its wings. The Dancing Children model is of
nontrivial topology, in addition to having many varying features,
such as the rim of the hat on the left child and wrinkles in the cloth.
The Quasimoto model is representative of a shape containing ar-
ticulated parts, such as arms, legs, and head. Lastly, the Daratech
and Anchor models are shapes which contain sharp features and
small topological features such as tunnels. These topological fea-
tures pose a significant challenge for scanners to adequately sam-
ple.

The second set of experiments utilizes shapes which may be sam-
pled in a controlled manner. See Figure 4 for these shapes. The
Bumpy Sphere contains smooth features at varying scales. The Spi-
ral shape is primarily composed of a thin cylindrical feature. Lastly,
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Fig. 3. Complex shapes created via our Polygonal MPU scheme. In our experiments these shapes are utilized by performing synthetic range scanning under a
wide variety of typical use-case scan parameters. This class of shapes contains many interesting characteristics for scanning, such as multiple scales of detail,
nontrivial topology, and sharp features.

the Mailbox consists of straight and curved sharp features alike,
while also remaining simple enough to sample in a controlled set-
ting.

Fig. 4. Simple shapes created via our Polygonal MPU scheme. In our ex-
periments these shapes are scanned in a precise a manner in order to repli-
cate specific scanning difficulties, such as sparsity, missing data, and noise.

5. SAMPLING

The intent of our sampling scheme is to best replicate the acquisi-
tion process of a triangulation-based scanner, in order to produce
realistic point clouds. To this end, sampling is composed of three
intermediate stages: synthetic range scans, registration, and orienta-
tion. Our sampling scheme aims to replicate the common properties
found in scanned data, illustrated in Figure 5. See Figure 6 for an
illustration of our synthetic scanner’s capability in replicating such
properties.

5.1 Synthetic Range Scans

We simulate the acquisition of range scans by modeling a basic
optical laser-based triangulation scanning system. Such scanning
systems suffer from random error and systematic error. Random
error is due to physical constraints, such as noise in the laser, vari-
ations in the reflectance due to surface materials, and non-linear
camera warping. Systematic error is the result of imprecise range
measurement due to the peak detection algorithm. Our range scans
are generated by synthesizing random error, while reproducing sys-
tematic error by performing standard peak detection.

Random Error Synthesis: We synthesize random errors by gen-
erating a series of radiance images, where each image is the result
of a single laser stripe projection onto the implicit surface. To this

end, given a pinhole camera at position c and a baseline configu-
ration, we first generate the exact range data by ray tracing the im-
plicit surface. We reject all points that are not visible from the laser
position, which is a function of the baseline distance. This provides
us with a set of pixels containing geometry P = {p1,p2, ...,pn}
and their corresponding points X = {x1,x2, ...,xn}.

We now project laser stripes onto the range geometry.
We model each laser stripe projection according
to a cylindrical projection, parameterized by laser
position l, field of view of the laser stripe α, and
triangulation angle θ. The triangulation angle is
defined with respect to an initial laser stripe plane.
We may then define the laser stripe frustum as the
volume enclosed by the two planes {l, θ − α

2
} and {l, θ + α

2
}. A

point is considered to be contained within the frustum if it is within
positive distance to both planes. The inset depicts a 2D illustration
of this configuration, where the red points of the green curve are
considered to be within the laser’s frustum.

For a single laser stripe, we gather all range geometry which is
contained within the stripe. This consequently defines the set of
“active” pixels which the laser stripe contributes to. We then de-
termine the noise-free radiance at pixel pi due to a laser stripe at
triangulation angle θ by [Curless and Levoy 1995]:

Lθ(pi) = |ni · ω|e
−2.0(d(xi))

2

β2 (6)

Where ni is the normal of the implicit surface at xi, ω is the unit
vector pointing towards the laser position from xi, d : R3 → R is
the closest distance to the laser frustum, and β is the width of the
frustum at xi. Here we assume that the surface is purely diffuse,
hence the BRDF is reduced to a constant factor which we omit.

In practice, diffuse surfaces suffer from noise in the form of laser
speckle, where surface roughness contributes to variations in the
reflectance [Baribeau and Rioux 1991]. We observe that this form
of noise is more significant the further away from the center of the
laser stripe frustum. We model this as additive noise sampled under
a normal distribution, wherein the bandwidth is the distance away
from the center of the laser stripe:

L̃θ(pi) = Lθ(pi) + ηεσ(xi) (7)

Here, η is a user-specified noise magnitude, while ε is a random
variable normally distributed with bandwidth σ, the distance away
from the center stripe. In addition, we also allow for smoothing of
the noisy radiance image by convolving L̃θ with a Gaussian kernel
of a user-specified bandwidth.
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(a) Uniform sampling (b) Nonuniform sampling

(c) Noisy data (d) Misaligned scans

Fig. 5. Common properties of scanned data on a sampled curve. The green
curve is the true curve, while the red points are the oriented points sampled
from the curve.

Systematic Error: For each corrupted radiance image L̃θ , we
next perform peak detection in order to find each pixel’s laser stripe
plane. From the laser stripe plane, depth is obtained simply by trian-
gulation. A common assumption in many peak detection algorithms
is for the radiance profile, either over space or time (i.e. triangula-
tion angle), to be Gaussian [Curless and Levoy 1995]. However in
the presence of depth discontinuities, curved surfaces, and noise,
this assumption is violated, resulting in range containing system-
atic errors.

To this end, we consider all radiance images L̃θ defined for each
triangulation angle θ ∈ {θ1, θ2, ...θm}, where m is the number
of laser stripes. For each pixel, we consider its radiance profile
as θ increases. We fit a Gaussian to this radiance profile via the
Levenberg-Marquardt method. This Gaussian provides us with a
mean, which determines the stripe plane, as well as a peak magni-
tude and variance, for which we use both as a means of rejecting
unconfident range data.

Please see Appendix B for the full list of scanning parameters
and common parameter settings.

5.2 Validation

It is important to verify that the range scans we are producing con-
tain artifacts found in real scans. To this end, we validate the man-
ner in which we generate range scans by comparing them to data
acquired by commercial scanning systems. We illustrate our capa-
bility of replicating noise and missing data artifacts, which arguably
have the greatest impact on surface reconstruction. We are not inter-
ested in exactly reproducing scans produced by commercial scan-
ning systems. Most systems perform post-processing which is far
beyond the scope of our scanning simulation. Instead, we show that
our scanning simulation is expressive enough to generate a range of
scan artifacts, while still capable of generating artifacts of a com-
mercial scanner under proper scan parameters. To perform valida-
tion, we use the following pipeline: model implicit surface → 3D
print surface → scan printed model → register scan to implicit sur-
face → compare to our synthetic scan.

We have manufactured the Gargoyle model via 3D printing,
through the company Shapeways. The minimum detail at which
models may be manufactured through Shapeways is 0.2mm. From
this physical model, we then scan it via an optical triangulation-
based scanner, namely the NextEngine scanner. In its finest res-
olution mode, termed macro mode, the scanner has a maximum

(a) Uniform sampling (b) Nonuniform sampling

(c) Noisy data (d) Misaligned scans

Fig. 6. Common Characteristics of 3D scans. These point clouds were
generated using our synthetic scanner, illustrating our capability to repli-
cate common scan properties. In the noise and misalignment insets we have
color mapped the points by their distance away from the implicit shape,
with yellow being far and green being close.

accuracy of 0.127mm. For shapes in which the distance from the
camera is at a specified optimum, and whose normal is approxi-
mately aligned with the camera’s optical axis, we found this to be
true. However for a complex shape like the Gargoyle, as we will
demonstrate, the accuracy can indeed vary and the noise becomes
a greater magnitude then that of the shape’s resolution.

To compare a real scan to a synthetic scan, we first register the
real scan to the implicit surface. We perform ICP under a rigid-body
deformation in order to best align the real scan to the implicit sur-
face. As the NextEngine does not provide specifics on their CCD
sensor, we take the depth image and utilize the camera calibration
toolbox [Bouguet 2004] to obtain the intrinsic and extrinsic camera
parameters. We feed these camera parameters in to our synthetic
scanning system to obtain a comparable range scan. We note that
a small non-rigid deformation might be preferable to a rigid-body
deformation for registration due to small nonlinear camera defor-
mation artifacts [Brown and Rusinkiewicz 2007]. However, this ad-
versely impacts camera calibration and hence is unsuitable for our
purposes.

Noise Validation: In our scanning simulation noise is strongly
dependent on laser stripe resolution, laser stripe field of view, noise
magnitude, and image smoothing bandwidth. As NextEngine does
not provide these parameters for their system, to compare noise
against the NextEngine scanner we have best estimated the stripe
resolution, field of view, and smoothing bandwidth, while varying
the noise magnitude. See Figure 7 for the comparison. Note that
real scanner noise is in fact anisotropic - a function of the base-
line [Abbasinejad et al. 2009]. Hence we see “bumps” which are
slightly aligned with the direction of the laser projection in the
NextEngine scan. Our synthetic scans demonstrate this anisotropy
as well. We show that by simply tuning the noise magnitude, we
are capable of producing a variety of noise profiles, wherein the
NextEngine scanner is but a subset.

Missing Data Validation: Missing data in a range scan is typ-
ically the result of the rejection of unconfident range data. In our
scanning simulation this is related to the peak intensity threshold,
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Fig. 7. Comparison of noise profiles between our scanning simulation in
increasing noise magnitude (bottom), and a NextEngine scan (top-center).
Note that real scanner noise takes the form of bumps aligned in the direction
of the laser scan projection (top-right), and our synthetic noise is able to
capture this anisotropic noise over varying noise magnitude.

where a small peak may indicate a poor Gaussian fit. Hence to com-
pare missing data to the NextEngine scanner, we vary the peak in-
tensity threshold and observe where regions of missing data exist,
see Figure 8. As shown, the NextEngine scanner has a fixed thresh-
old at which to reject unconfident range, while in our scanning sys-
tem it is a tunable parameter, producing varying degrees of missing
data.

5.3 Scanning and Registration

Given that we have a means of acquiring range scans, next we must
determine where to scan, and register the scans. It is extremely dif-
ficult to automate the process of positioning/orienting a scanner, as
this is inherently a manual process. We assume an ideal environ-
ment wherein we place the scanner at uniformly sampled positions
over the bounding sphere of the object, such that the camera is ori-
ented to look at the object’s center of mass. Note that such acquisi-
tion systems are starting to gain popularity [Vlasic et al. 2009].

From these individual range scans, we next register them into a
single coordinate system. First we overlap the scans by a parame-
terized amount. We then run the registration algorithm of [Brown
and Rusinkiewicz 2007] to align the scans, which is a variant of
ICP wherein a rigid-body transformation is assumed to be suffi-
cient to align all scans. Note that the amount of overlap effectively
determines the quality of the alignment less overlap means a poorer
initialization, and the optimization process may hit an undesriable
local minimum causing misalignment errors.

5.4 Orientation

From the registered point cloud, we must attach a normal to each
point. One option is to simply use the analytical normal defined by
the implicit function. However, for misaligned and noisy data, it
becomes unclear what the normal should be from the implicit func-
tion. Instead, we also allow for normal orientation via the method
of [Hoppe et al. 1992].

Under this method, at every point we estimate its local tangent
plane via PCA, by gathering the k-nearest neighbors and extracting
the eigenvectors of the covariance matrix. PCA, however, does not
give orientation of the normals, and so we employ the minimum
spanning tree approach of [Hoppe et al. 1992] to propagate normal
directions.

Fig. 8. A comparison of missing data between our scanning simulation
in increasing peak threshold (bottom), and a NextEngine scan (top-center).
Note the similarities in regions of missing data between our scan (bottom-
right) and the NextEngine scan, chiefly due to the grazing angle at which
laser strikes the surface, resulting in a low level of radiance.

We note that by using this method, we may end up with
noisy tangent planes using PCA, due to a number of factors such
as nonuniform sampling, noise, misalignment, and missing data.
Moreover, normals may be oriented in the inverse direction due to
these factors. However in certain scanning situations, we may have
knowledge of the scanner positions, which can be used to properly
orient the normals. Hence we allow for both options in our experi-
ments.

6. EVALUATION

In order to evaluate the quality of a surface mesh output by a recon-
struction algorithm against the input implicit surface, we take the
view of discrete differential geometry for defining error measures.
As illustrated in [Hildebrandt et al. 2006], pointwise plus normal
convergence of a polyhedral surface to a smooth surface implies
convergence in: the metric, surface area, and Laplace-Beltrami op-
erator. In their context, pointwise convergence is measured in terms
of Hausdorff distance and normal convergence is measured as the
supremum of the infinity norm over all normals. We take their basic
framework and expand it to include other error measures, in order
to depict a more informative evaluation.

Following [Hildebrandt et al. 2006], for the implicit surface Ω
and corresponding triangulated surface mesh M , we define the
shortest distance map Φ: Ω →M for α ∈ Ω as:

Φ(α) = α + φ(α)NΩ(α) (8)

Where NΩ is the normal field over Ω and φ : Ω → R is the signed
distance along the normal NΩ(α). Hence, so long as the Hausdorff
distance of Ω andM is bound by the reach of Ω, or the minimal ra-
dius of all medial balls. then α is the point on Ω closest in distance
to Φ(α) [Federer 1959]. Slightly deviating from [Hildebrandt et al.
2006], we symmetrically define Ψ: M → Ω for x ∈M as:

Ψ(x) = x + ψ(x)NM (x) (9)

Where NM is the normal field over M and ψ : M →
R is the signed distance along the normal NM (x). Assum-
ing Hausdorff distance is bounded by the reach of M , x is
the point on M closest in distance to Ψ(x). The mappings
Φ and Ψ provide for shortest distance correspondences be-
tween points, providing a means for comparing Ω and M .
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Fig. 9. Complex shapes sampled under particle systems. Note the high
density and uniform distribution in the particles. Both of these properties
are essential for obtaining precise error measures.

In the inset, we see that
(Φ(α),α) is a shortest dis-
tance correspondence, where
for Φ(α) ∈ M , its closest
point on Ω is α. Likewise
(Ψ(x),x) is a shortest dis-
tance correspondence, where for Ψ(x) ∈ Ω, its closest point on
M is x.

6.1 Sampling

In practice, we must sample Ω and M in order to obtain error mea-
sures, similar to METRO [Cignoni et al. 1998]. Ω and M must be
sampled densely enough in order to have precise error measures.
We argue that so long as each set of samples is an ε-sample for
its respective surface, ε � 1, then we are not missing any impor-
tant features of the surface. An ε-sample is a function of the local
feature size (lfs) of a surface [Amenta and Bern 1999], or the min-
imum distance to the medial axis for a given point on a surface.
Lipschitz-continuity of the lfs ensures that for an ε-sample, the dis-
tance between any two points is bound by the lfs, in addition to
bounding the variation in normals [Dey 2007].

Following this we sample Ω by using particle systems [Meyer
et al. 2007], which minimize an energy functional based on inter-
particle distances. We employ a uniform distribution of samples
by prescribing a single inter-particle distance for all particles. This
distance is specified such that it is less than the observed reach of
Ω, hence providing a tight upper bound on the local feature size.
See Figure 9 for uniform samplings of our complex shapes.

Similarly, we use particle systems to sampleM , adapting the ap-
proach of [Meyer et al. 2007] to triangle meshes. Though one may
randomly sample the mesh, or uniformly sample triangles individ-
ually as in METRO [Cignoni et al. 1998], we find that a uniform
distribution is essential to achieve meshing-invariance in certain er-
ror measures, namely mean computation. Rather than specifying an
inter-particle distance for M in the energy minimization, we spec-
ify the number of particles, since an output reconstructed mesh may
be arbitrarily complicated.

If we denote PΩ and PM as the set of samples chosen from Ω
andM , respectively, we build two sets of ordered pairs representing
shortest distance correspondences:

CΩ = {(x,α) | α ∈ PΩ,x = Φ(α)} (10)

CM = {(α,x) | x ∈ PM ,α = Ψ(x)} (11)

6.2 Discrete Error Measures

From here we may define a variety of discrete error measures be-
tween Ω and M . Denoting |S| = |CΩ|+ |CM |, Hausdorff distance
is approximated by:

H(Ω,M) = max
n

max
(x,α)∈CΩ

|x−α|, max
(α,x)∈CM

|α− x|
o

(12)

While mean distance is:

µ(Ω,M) =
1

|S|

“ X
(x,α)∈CΩ

|x−α|+
X

(α,x)∈CM

|α− x|
”

(13)

These measures depict error
in very different ways, as the
inset illustrates. Here the cir-
cle is the smooth shape, while
the piecewise linear curve
is the approximating mesh.
Hausdorff distance will be
large for the pair of shapes on
the left, while mean distance will be rather small, whereas for the
pair of shapes on the right, mean distance will be much larger than
the pair of shapes on the left, while Hausdorff distance will be less.

From these shortest distance correspondences, we have a means
of measuring higher-order geometric properties, by comparing dif-
ferential properties at the correspondences. This is analogous to
defining pullbacks on Φ and Ψ. We opt to measure normal angle
deviations in a similar manner to distance measures. If we denote
γ(α,x) = ∠(NΩ(α),NM (x)), the maximum and mean angle
deviation of point correspondences, respectively, are:

HN (Ω,M) = max
n

max
(x,α)∈CΩ

γ(α,x), max
(α,x)∈CM

γ(α,x)
o

(14)

µN (Ω,M) =
1

|S|

“ X
(x,α)∈CΩ

γ(α,x) +
X

(α,x)∈CM

γ(α,x)
”

(15)

In practice we take NM to be triangle normals, as opposed to more
sophisticated normal estimation methods [Meyer et al. 2002]. Such
methods are sensitive to the triangulation and typically assume
smoothness in the normal field, where in the presence of sharp fea-
tures this can result in undesirable oversmoothing.

Note that when Ω and M are within a Hausdorff distance which
exceeds the reach of Ω, then in certain regions Φ no longer accu-
rately measures shortest distance (likewise for Ψ). To combat this,
for α ∈ Ω and x = Φ(α), if there exists β ∈ PΩ which is closer in
distance to x than α, we exclude the correspondence (x,α) from
CΩ. This corresponds to the fact that Ω is more geometrically com-
plex, locally, than M , so Φ may no longer be bijective. We would
still like to associate a correspondence to α, and so we take the

Fig. 10. A situation where the Φ mapping produces an incorrect shortest
distance correspondence. The dashed red line indicates the normal line from
α to x, giving us an inaccurate correspondence since β is closer to x than
α. So we instead take (α,y) as a correspondence.
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closest point y ∈ PM to α, and add (α,y) as a correspondence to
CM . A similar situation exists for the Ψ mapping. See Figure 10 for
an illustration of the case for Φ. In practice, we use exact distances
whenever the above condition is not violated. We have found this
violation to rarely occur, so long as the surfaces are not too far off
in Hausdorff distance.

6.3 Algorithms

We have chosen a wide variety of publicly available surface recon-
struction algorithms to test our benchmark against. For the sake
of fair comparison, we have only used algorithms which take an
oriented point cloud as input, and output an approximating surface.
Here we provide a categorization and brief description of each algo-
rithm, while also providing an abbreviation of each to help identify
them in the experiments to follow.

Indicator Function: This class of algorithms reconstructs a
three-dimensional solid O by finding the scalar function χ, known
as the indicator function, defined in R3 such that:

χ(x) =


1 x ∈ O
0 x /∈ O . (16)

Where the surface Ω is then defined by ∂O. In practice, these ap-
proaches approximate χ by operating on a regular grid or an octree,
and generate Ω by isosurfacing the grid.

Poisson surface reconstruction (abbr. Poisson) [Kazhdan et al.
2006] solves for χ by noticing that ∇χ should agree with the nor-
mal field N at ∂O. This amounts to inverting the gradient operator,
hence χ is found by solving the Poisson equation:

∇ · ∇χ = ∇ ·V (17)

Where V is the smoothed normal field defined throughout the vol-
ume. The Poisson equation is efficiently solved only near the sur-
face by using an adaptive multigrid solver defined on the octree
built on the point cloud. Note that use of an octree may result in
limited resolution over regions of missing data.

An alternative method of constructing the indicator function is
to solve for it indirectly by projecting χ onto a basis, and then
performing an inverse transform to obtain χ. By invoking Stokes
theorem, this projection need only be performed on ∂O:Z

O

∇ ·F(p)dp =

Z
∂O

〈F(p),N(p)〉 dp (18)

Where F is a vector-valued function whose divergence∇·F defines
the basis.

Fourier surface reconstruction (abbr. Fourier) [Kazhdan 2005]
employs the Fourier basis as part of their solution. For efficiency
they use the Fast Fourier transform (FFT), hence requiring a regular
grid and the grid resolution being a power of two. However, use of
a regular grid has its benefits when faced with missing data, as their
is no loss of resolution.

Wavelet surface reconstruction (abbr. Wavelet) [Manson et al.
2008] employs a Wavelet basis for the solution of Equation 18.
They show how one may use a Haar or a Daubechies (4-tap) basis.
Due to the multiresolution structure of wavelets, they use an octree
for the basis projection, hence similar to Poisson this method may
result in limited resolution over regions of missing data.

Point Set Surfaces: Point set surfaces (PSS) are defined based
on moving least squares (MLS), where a projection operator is used
to define a surface by its collection of stationary points, or where
the output point of the projection operator is its input point. Origi-
nally defined for unoriented points, its definition is greatly simpli-
fied when considering points equipped with normals, and may be

used for surface reconstruction by considering its implicit surface
definition, rather than its projection operator.

Basic PSS methods use a weighted combination of linear func-
tions to locally define the surface at every point. Borrowing ter-
minology from [Guennebaud and Gross 2007], we use two dif-
ferent definitions in our experiments: simple point set surfaces
(abbr. SPSS) [Adamson and Alexa 2003] and implicit moving least
squares (abbr. IMLS) [Kolluri 2005]. The implicit surface defini-
tion of SPSS is:

f(x) = n(x)T (x− c(x)) (19)

Where n is a weighted average of normals in a neighborhood of x,
and c is the weighted centroid in a neighborhood of x. The weights
used in computing the normal and the centroid are derived from a
smooth, positive functionwx defined with respect to x, which gives
points closer to x larger influence. IMLS is defined as the implicit
function:

f(x) =

P
i wx(pi)(x− pi)

T niP
i wx(pi)

(20)

We note that IMLS is a weighted average of linear functions,
whereas SPSS is a single linear function, whose centroid and nor-
mal is a weighted average of points and normals, respectively.

Algebraic point set surfaces (abbr. APSS) [Guennebaud and
Gross 2007] uses spheres defined algebraically as the shape func-
tion. Rather than directly obtaining the implicit function at a point,
APSS must fit a sphere to a neighborhood of points, requiring the
solution of a linear least squares system for every point. By using
a higher-order function, the method can be more robust to sparse
data than SPSS and IMLS.

For our experiments, the software package kindly provided by
Gael Guennebaud contains implementations of SPSS, IMLS, and
APSS. Each PSS is evaluated over a regular grid, and the recon-
structed surface is obtained by isosurfacing the zero level-set. In
the software, neighborhoods used to locally fit functions are esti-
mated at each point based on the density of the input point cloud.
In the presence of missing data this method may produce an empty
neighborhood, producing holes in the output. This has an impact on
evaluation, which we further discuss throughout the experiments
sections.

Multi-level Partition of Unity: In our own implicit surface def-
inition we use a variant of Multi-Level Partition of Unity (MPU)
applied to polygon soup, and so we refer to Section 4.1 for de-
tails about the overall approach, noting that the construction of
MPU with points is quite similar to that of polygons. In our ex-
periments we use three variants. First we use the original approach
of [Ohtake et al. 2003] (abbr. MPU), where linear functions are
used as low-order implicits. We also use the approach of [Nagai
et al. 2009] (abbr. MPUSm), which defines differential operators
directly on the MPU function, though restricted to linear func-
tions. In doing so, diffusion of the MPU function becomes pos-
sible, resulting in a more robust reconstruction method. Lastly, we
also use the method [Ohtake et al. 2005b] (abbr. RBF), which uses
compactly-supported radial basis functions for locally-defined im-
plicit functions in the MPU construction. For all MPU methods
a surface mesh is generated by first evaluating the MPU function
over a regular grid, and isosurfacing the zero level-set to obtain the
surface.

Scattered Point Meshing: The method of [Ohtake et al. 2005a]
(abbr. Scattered) is a departure from the above approaches. This
method grows weighted spheres around points in order to deter-
mine the connectivity in the output triangle mesh. Quadric error
functions [Garland and Heckbert 1997] are used to position points



10 •

in the output mesh, which can result in a small amount of simplifi-
cation in the output. Similar to the PSS methods, regions in which
data is absent may result in holes in the output.

6.4 Algorithm Parameters

We provide a brief description of the most relevant parameters for
each algorithm.

Resolution: As all algorithms, except Scattered, contour a grid
to obtain the surface they must contain sufficient resolution to ad-
equately preserve all surface details. For each implicit surface we
first determine the resolution which is necessary to easily extract
the surface with minimal error. We find that across all shapes, a
resolution of 3503 provides for more than enough resolution to pre-
serve surface details, hence for the PSS and MPU methods we have
set their resolution to 350. For Fourier, the resolution at which to
contour is also the resolution at which the FFT is applied. As it
must be a power of two, we set it to 512 in order to reduce any
smoothing resulting from the FFT. Poisson and Wavelet build an
octree over the point cloud, and so we set their maximum depth to
10, giving them an effective resolution of 1024, depending on the
input point cloud density.

Noise: Algorithms tend to handle noise according to their cat-
egorization. For indicator functions, noise may be combatted by
setting a lower resolution at which to solve for the indicator func-
tion and consequently isosurface, though in practice we found them
to perform best at their highest resolution. PSS methods all contain
a bandwidth which determines the extent of neighborhood influ-
ence. A large bandwidth results in more points for consideration
in shape fitting and hence larger data smoothing. MPU methods
and Scattered all contain error thresholds for which to determine
the quality of a shape fit. In the presence of noise the tolerance
may simply be increased to avoid overfitting. MPUSm also pro-
vides parameters specific to their diffusion method, for which we
use author-suggested settings.

Discussion: In practice we set an algorithm’s parameters based
on the characteristics of the input point cloud, namely the noise
level. As the point clouds of experiments 7.1-7.3 contain a con-
stant level of noise, we have kept all algorithm parameters fixed
throughout these experiments. Though one may fine-tune an algo-
rithm’s parameters to improve its performance with respect to a
particular error metric, parameter insensitivity is an important in-
dication of algorithmic robustness. Only in experiment 7.4, where
noise varies, do we set algorithm parameters in accordance with the
noise level.

7. RESULTS

Our results are broken down into two main sets of experiments: one
in which complex shapes are sampled under a variety of sampling
settings, and one in which simple shapes are sampled under specific
sampling settings.

We have not used the maximum angle deviation as an error mea-
sure in our experiments. By using triangle normals as the normal
field over a surface mesh, this measure can be quite high even when
the mesh contains low error in all other measures. As a result, in
comparing algorithms we found this error measure to be rather in-
distinguishable, hence we have omitted it.

Note that it is possible for these algorithms to produce surfaces
containing multiple connected components. We have decided to ex-
tract the largest connected component, in terms of surface area,
as the surface for evaluation rather than all components. Unfortu-
nately, this biases algorithms in which connected components are

created far from the ground truth surface over algorithms which
create additional components near the surface. Hence in addition to
the error metrics, we have provided additional information on the
algorithms including the number of connected components, as well
as the length of the boundary components, whether or not the sur-
face is manifold, deviation from the true genus, and computation
time.

7.1 Error Distributions

Our first set of experiments focuses on the performance of surface
reconstruction algorithms restricted to a single shape. For a single
shape we sample it across a variety of scanner parameter settings,
run all reconstruction algorithms across all point clouds, and com-
pute error metrics for each point cloud. For each algorithm we then
aggregate the error metrics across all point clouds to obtain what
we term error distributions.

We argue that error distributions are more effective for bench-
marking reconstruction algorithms, rather than comparing algo-
rithms with respect to a single point cloud. Each algorithm has its
strengths and flaws for particular forms of data, and to sample a
shape in such a way that it caters towards the strengths of certain
algorithms provides an incomplete picture in the comparison of re-
construction algorithms.

To this end we generate samples by varying scanning parame-
ters across typical use-case settings. Namely, we vary: sampling
resolution, the number of range scans, the distance the camera re-
sides from the object, peak threshold, and variance threshold. To
reproduce small imperfections commonly found in range data, we
introduce a constant, modest amount of noise into the laser signal.
We also slightly overlap the scans and register them, causing small
misalignment errors. For each point cloud we randomly distribute
camera positions uniformly on the bounding sphere of the object,
rather than keeping their positions fixed.

See Figure 11 for the results of this experiment across all shapes,
wherein the distributions take the form of box plots. The three er-
ror measures, mean distance, Hausdorff distance, and mean angle
deviation, illuminate the various strengths and weaknesses of the
algorithms.

Smooth Surfaces: The Gargoyle, Dancing Children, and Quasi-
moto shapes represent our class of shapes containing entirely
smooth surface features. We find that the algorithms generally per-
form quite well on these shapes, however the different error metrics
point to subtle differences in performance. For instance, Wavelet
tends to produce nonsmooth, rather bumpy surfaces, yet the sur-
face tends to stay close to the surface, which is likely due to the use
of wavelet bases in the presence of nonuniform or missing data.
This nonsmoothness is depicted in the mean distance and angle de-
viation plots, yet its Hausdorff distance performance is quite com-
petitive, indicating it never strays too far from the surface.

It is well known that Poisson and Fourier tends to oversmooth the
data, and in our experiments this is reflected in their rather large er-
ror in mean distance. However, in terms of Hausdorff distance and
mean angle deviation they perform rather well, and are fairly con-
sistent in their performance. This indicates that these algorithms are
reliable in reconstructing surfaces which don’t deviate too far from
the original, while also remaining close in differential quantities.
We note that Fourier is more consistent than Poisson, as Poisson
suffers from a lack of resolution in regions of missing data.

While RBF performed well on the Dancing Children and Quasi-
moto models, on the Gargoyle model we see that it performed
poorly across all metrics. The Gargoyle model is particularly diffi-
cult to sample as it has many concavities, and as shown by the lower
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Fig. 11. Plots for all of the error distribution experiments. Each bar plot represents the distribution of a particular error measure for a given shape, sampled
under a wide variety of scan parameters. The median provides a good indication of overall algorithmic performance for a given error measure, while the
quartiles give an indication of algorithmic robustness.

quartile having large error across all metrics, RBF would tend to fill
in the inside of the surface.

Table I. Summary of Error Distribution Experiments
algorithm comps bndry manifold genus time
apss 47.37 140.86 0.50 1.82 36.02
fourier 1.54 0.00 1.00 0.49 28.70
imls 38.48 194.65 0.74 1.66 34.11
mpu 100.69 9.71 0.49 0.79 12.83
mpusmooth 2.88 2.93 0.91 0.67 17.83
poisson 1.54 0.44 1.00 0.63 36.83
rbf 51.73 6.30 0.82 13.55 34.78
scattered 1.90 214.21 1.00 7.47 4.48
spss 174.53 143.14 0.26 3.98 33.53
wavelet 1.35 0.04 1.00 0.71 2.13

Additional information for experiment 1, averaged across all point clouds and
shapes. Here, comps refers to number of connected components, bndry is the
length of boundary components, manifold is whether or not a mesh is manifold,
1 being it is and 0 otherwise, genus refers to the amount which deviates from
the actual genus, and time is in seconds.

Sharp Features: The Anchor and Daratech shapes are partic-
ularly difficult to reconstruct. As these are shapes with sharp fea-
tures, algorithms which only model smooth surfaces will have diffi-
culty in reproducing sharp features. Additionally, these shapes have

small topological features which are difficult to adequately scan
due to occlusion. Hence we do not necessarily expect these algo-
rithms to perform as well on these shapes as the others, and instead
we use these shapes to measure robustness.

In observing MPU and MPUSm, we find instability in the pres-
ence of the Anchor and Daratech point clouds, where large spurious
surface sheets are produced as a result of improperly fitting smooth
shape functions to sharp features. However note that the PSS meth-
ods perform much better, despite also using smooth shape func-
tions. PSS methods fit shape functions at every point, hence the er-
ror will be contained locally if there exists a poor fit, whereas MPU
fits shape functions to the entire shape, resulting in a potentially un-
bounded error if a poor fit exists. Interestingly, RBF performs quite
well in distance, yet has rather large error in normals. We found
the RBF interpolant to remain quite close to the surface, at the ex-
pense of producing high-frequency details, hence the large normal
deviations.

Topology: Overall, we find that the PSS methods and Scattered
tend to perform quite well in the error metrics. However, these
are also methods which produce holes in the presence of insuffi-
cient data. To depict the performance of these algorithms in terms
of topology, we also show how these algorithms behave in their
number of connected components, total length of boundary compo-
nents, whether or not the reconstructed mesh is manifold, and the
deviation from the true genus, averaged over all point clouds and
shapes – see Table I. As shown, Fourier and Poisson tend to out-
perform these methods in all categories. With respect to the PSS
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Fig. 12. Plots for the sparsity experiment, where we have sampled the bumpy sphere in increasing image resolution. The bottom row depicts a subset of these
point clouds in decreasing sparsity. This experiment demonstrates how well these algorithms infer the surface from a sparse sampling.

methods, this demonstrates that they tend not to produce topologi-
cally clean implicit functions, likely due to their local nature. Ad-
ditionally, we see that Scattered produces large holes, yet all of the
shapes are watertight.

7.2 Sparse Sampling

A common data characteristic of point clouds is sparsity. Namely,
for range scan data it is common for certain areas of the surface
to be sampled less densely than others. Here we investigate how
reconstruction algorithms behave as data sparsity varies in a con-
trolled setting. We are interested in observing how these algorithms
infer the surface between the given input points.

In this experiment we only vary the sampling resolution. We fix
the number of scans and camera positions such that the shape is
sufficiently covered, i.e. no missing data. We use the analytical nor-
mals of the surface, and no noise or misalignment. We use such
clean input in order to restrict the problem to only data inference.
We use the bumpy sphere as the test shape, as the coarse-scale fea-
tures of the surface make data inference plausible.

See Figure 12 for plots of the experiment. MPUSm was unable
to smooth its spherical covering on half of the point clouds due to
the extreme sparsity, so we have omitted it from this experiment.
From the distance measures we immediately see a partitioning of
the algorithms: IMLS, Poisson, SPSS, and Wavelet all tend to be-
have rather poorly, while the other algorithms perform well. We
should certainly expect this for Poisson and Wavelet, as the reso-
lution of the output is proportional to the input size. However, it
is interesting to observe the significant improvement of APSS over
IMLS and SPSS, indicative that fitting spheres under sparse data is
more advantageous than trying to fit planes to the data.

We also see that Fourier demonstrates remarkable robustness to
sparse data. Usnder very sparse data Fourier performs best, whereas
though APSS, MPU, RBF, and Scattered perform better as resolu-
tion increases, they perform rather poorly under very sparse data.
However, observe that as the sampling resolution becomes some-
what dense, the distance error in APSS, MPU, and RBF steadily
decreases while Fourier remains stagnant. This is a consequence of
Fourier’s inherent data smoothing, whereas those algorithms which

fit shape functions to the data only improve their fits as resolution
increases.

7.3 Missing Data

Missing data will almost always be present in scanned data, sim-
ply due to concavities in the shape which can not be reached by
the scanner or insufficient scanning due to physical restraints of the
scanner. In order to have a controlled setting to replicate missing
data, we vary the peak threshold at which range may be rejected
from consideration. We note that this is quite common for scan-
ners, since the accuracy of the scanner suffers when the angle at
which the laser line-of-sight and the normal becomes large, and the
preferred option may be to reject range rather than accept outliers.

Similar to the previous experiment, here we fix the number of
scans and camera positions, and use no additive noise, in order
to isolate missing data as the primary challenge in the input. We
then vary the peak threshold at which to reject samples from 0.8 to
0.4, where 1 is the expected peak. We have used the bumpy sphere
and mailbox shapes, in order to observe the behavior of these al-
gorithms in the presence of missing data on both smooth and sharp
features.

See Figure 13 for plots of the experiment. We find that all of the
indicator function methods perform quite well across both shapes,
with the notable exception of Wavelet failing to converge to the
limit surface as missing data decreases. We credit the robustness of
indicator function methods to being global methods which do not
attempt to fit shape functions.

Indeed, methods which fit shape functions have rather erratic
behavior, particularly in the mailbox shape. MPU, MPUSm, and
RBF are quite unstable, producing spurious surface sheets as miss-
ing data is introduced. When a neighborhood of a sharp feature,
namely an edge, is sampled on one side and not on the other, shape
functions of this kind are expected to be produced. As missing data
increases, the samples used for shape fitting change, which results
in spurious surface sheets only occasionally appearing. This vari-
ability in the points used for shape fitting is the cause of the incon-
sistencies found across MPU, MPUsm, RBF, and the PSS methods
as missing data increases.
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Fig. 13. Plots for the missing data experiments on the bumpy sphere (top row) and mailbox (bottom row). We generate missing data by varying the peak
intensity threshold at which range is rejected. Note the differences in performance between the shape with smooth features and the shape with sharp features,
as missing data is varied.

Scattered and the PSS methods tend to produce holes in the pres-
ence of large missing data, due to an insufficient number of samples
in these areas. This missing data is the cause for their unstable be-
havior in the mailbox shape, as more missing data is introduced.

7.4 Noise

Finally we consider how robust reconstruction algorithms are to
noise in the range data. We consider two scan parameters which
have a signficiant impact on noise, noise magnitude and laser frus-
tum field of view. The effect of noise magnitude is fairly clear,
however we note that the thickness of the laser plays a significant
impact on outliers. The thicker the laser, the more difficult peak
detection becomes at depth discontinuities, resulting in outliers.

To this end, we have taken the spiral shape and sampled it under
varying noise magnitudes, and varying laser thickness. We suffi-
ciently sample it so that missing data or sparsity is not an issue, and
compute normals directly from the points, allowing for improper
orientation if direction propagation is incorrect. For each algorithm
and each point cloud we also manually set the parameters to per-
form best, considering the scale of the noise. For the PSS and in-
dicator function methods, this is quite intuitive. However for all

other methods a maximum error tolerance effectively determines
the amount of smoothing performed, which can be quite sensitive.

See Figure 14 for plots of the noise experiments. Note that
Fourier and Poisson, in terms of all error metrics, are quite robust
in the presence of noise. This is likely due to the global nature of
these methods, where smoothing the data is a natural consequence.
As observed by its large variance, RBF performs rather poorly in
the presence of noise. Indeed, the necessity to produce dipoles for
RBF becomes especially problematic in the presence of noise and
outliers.

We observe that MPU and MPUsm are somewhat robust in the
presence of noise given their small variance in Hausdorff distance,
though interestingly we see significant differences between them
in the two different distance measures. The smoothing performed
via MPUSm tends to expand the surface outward, resulting in poor
mean distance, yet it never strays too far from the surface, hence its
good behavior in terms of Hausdorff distance.

The PSS methods all tend to smooth out noise and remain ro-
bust to outliers. However, we find their far-field behavior to be
quite poor, see Table II. They tend to produce many extraneous
connected components, as well as boundary components.
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Fig. 14. Noise experiments for the spiral shape. Here we vary noise level and laser thickness, and aggregate this into distributions. A small variance in a
distribution is a good indication of robustness to noise.

Table II. Noisy Spiral Statistics
algorithm comps bndry manifold genus time
apss 221.60 0.71 1.00 0.00 50.59
fourier 1.00 0.00 1.00 0.00 27.24
imls 193.16 4.76 1.00 0.00 48.62
mpu 1.20 0.00 1.00 0.00 7.13
mpusmooth 1.08 0.06 1.00 0.00 23.08
poisson 1.00 0.00 1.00 0.00 30.90
rbf 12.48 4.69 0.92 0.30 18.90
scattered 1.08 0.00 1.00 0.44 3.11
spss 257.20 1.13 1.00 0.00 48.18
wavelet 1.00 0.00 1.00 0.00 2.26

Additional information for the noisy spiral experiments, averaged across all
point clouds.

7.5 Discussion

Our small scale experiments tend to correlate well with the results
of the error distribution experiments. For instance, the unstable be-
havior of RBF in the presence of sparse and missing data manifests
itself in its unstable behavior across the gargoyle model, which is
particularly difficult to adequately sample due its numerous con-
cavities. Likewise, the behavior of MPU and to a lesser extent
MPUSm in the presence of missing data on the mailbox correlates
with their large variance in the Anchor and Daratech, indicative that
they have trouble reconstructing sharp features. Conversely, we see
that the stable behavior of Fourier in the small scale experiments
correlates well with its relatively small variance in the distribution
plots.

Our experiments point toward a number of deficiencies in the
state of surface reconstruction. Our results demonstrate the remark-
able robustness of methods based on computation of the indicator
functions, yet these methods tend to oversmooth the data, reflected
in their poor performance in mean distance across complex shapes.
Developing an algorithm based on the indicator function which
does not oversmooth the data would be very useful. Conversely,
although MLS methods perform rather well in terms of mean and
Hausdorff distance across the complex shapes, they demonstrate
poor far-field behavior. We think that combining MLS methods
with global constraints of some nature may rectify these issues.

Our benchmark should also prove to be useful for recent methods
which resample point clouds with large missing data [Tagliasacchi
et al. 2009; Cao et al. 2010; Shalom et al. 2010]. Although we have
produced such point clouds in order to test robustness, it would be

interesting to see how well these more recent resampling methods
perform quantitatively.

All told, our benchmark consists of 351 point clouds across eight
shapes, providing rich data for surface reconstruction developers.
For our first set of experiments, we have 48 point clouds for each
shape. Over 10 algorithms this amounts to a total of 2400 differ-
ent reconstruction outputs, and over both distance and normal cor-
respondences we have a total of 4800 correspondence mappings.
We think that this construction of a distribution of point clouds
for a given shape could be used in other areas, for instance po-
tentially learning surface reconstruction, by using the point clouds
and ground truth data as training data.

Limitations: While the surfaces in our benchmark cover a broad
range of shapes, they are by no means exhaustive. As surface re-
construction becomes more specialized, such as the reconstruction
of large-scale architectural buildings [Nan et al. 2010], we envision
our benchmark to expand to these specific forms of surfaces. Our
implicit shape representation should easily be able to accomodate
other types of shapes.

Although we have generated a large variety of point cloud data
with our sampling scheme, we are still fixing certain settings which
may otherwise be worthwhile to further explore. For instance, we
assume a diffuse BRDF in the scanning simulation, where it may
be interesting to consider different forms of surface reflectance, and
even spatially-varying BRDFs. Though laser-based optical triangu-
lation scanners are quite popular, other forms of scanning may be
worth simulating in order to replicate different acquisition artifacts,
such as time-of-flight scanners.

8. CONCLUSIONS

We have presented a benchmark for the evaluation and compari-
son of surface reconstruction algorithms, restricted to the class of
algorithms which take an oriented point cloud as input, and pro-
duce an approximating surface as output. Central to our benchmark
is a controlled mechanism for simulating point cloud data acquired
from laser-based scanners. We use a broad class of implicit surfaces
as reference shapes to sample, which allows us to obtain accurate
quantitative measurements for evaluating surface reconstruction er-
ror.

Our extensive experiments enables us to observe a wide range
of behavior across existing algorithms. For instance, global meth-
ods such as those which reconstruct the indicator function are very
robust in the presence of noise, while more local methods such as
MPU and MLS methods produce highly accurate reconstructions in
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the presence of clean data. The experiments point towards poten-
tial future work in surface reconstruction by illustrating the specific
advantages and disadvantages in existing approaches.

By publicly releasing our data and code, researchers will now
be able to benchmark their algorithms against existing algorithms
and see where they stand. Additionally, our modeling and sam-
pling methods will allow researchers to generate surfaces and point
clouds tailored towards their interests. Hence we envision our
benchmark to grow over time, continually incorporating data pro-
vided by the surface reconstruction community.
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APPENDIX

A. CLOSED-FORM SOLUTION OF POLYGONAL
WEIGHT FUNCTIONS

In this section we detail the closed-form solution for Equation 2,
used in the formation of our implicit functions. The basic idea is
to cast the integral into the local coordinate system of the triangle,
and perform integration in terms of polar coordinates, analogous to
the construction of Green coordinates [Lipman and Levin 2010].

For a given evaluation point x and triangle t composed of the
vertices p1 , p2, and p3, and normal n, we project x onto the plane
of t:

x̃ = x +
˙
p1 − x,n

¸
n (21)

Now, for a given p ∈ t, |x− p|2+ε2 = |x̃− p|2+|x− x̃|2+ε2 =

|x̃− p|2+λ1, where λ1 = |x− x̃|2+ε2 and is constant throughout
the integration. We can now rewrite the integral as:Z

p∈t

w(x,p)dp =
X
ti

sgn(ti)

Z
p∈ti

dp

(|x̃− p|2 + λ1)2
(22)

Where t is broken up into t1, t2, t3, formed from the triangles com-
posed of x̃ and p1,p2,p3, and sgn represents the orientation of
the triangle: positive if oriented properly, and negative otherwise.

Without loss of generality we consider a single triangle t1. We
now convert this integral into polar coordinates:Z

p∈t1

dp

(|x̃− p|2 + λ1)2
=

Z θ=β

θ=0

Z R(θ)

r=0

r dr dθ

(r2 + λ1)2

= −1

2

Z β

0

dθ

R(θ)2 + λ1

+
β

2λ1

Where β is the angle in t1 opposite x̃.
In order to have a clean parameterization of the length R(θ), we

break up the integral into two parts by considering the orthogonal
projection of the point x̃ onto its opposing edge, x̂, and breaking

t1 into: t11 =< x̃,p2, x̂ > and t21 =< x̃, x̂,p3 >. Without loss
of generality we consider t11, and we obtain: R(θ) = |x̃−x̂|

cos(θ)
. Hence

the integral becomes:Z β1

0

dθ

R2(θ) + λ1

=

Z β1

0

cos2(θ)

|x̃− x̂|2 + λ1 cos2(θ)

=
β1

λ1

− |x̃− x̂|2

λ1

Z β1

0

dθ

|x̃− x̂|2 + λ1 cos2(θ)

Applying the double angle formula to the above integral we obtain:

=

Z β1

0

dθ

(|x̃− x̂|2 + λ1
2

) + λ1
2

cos(2θ)

Setting a = 2, b = |x̃− x̂|2 + λ1
2

, and c = λ1
2

, we may apply the
relevant antiderivative to obtain:Z

dθ

b+ c cos(aθ)
=

2

a
√
b2 − c2

tan−1

(r
b− c

b+ c
tan

aθ

2

)
+ C

B. DESCRIPTION OF SYNTHETIC SCANNER

Here we provide additional details on our synthetic scanner, as de-
scribed in Section 5.1. To clarify the following discussion, we note
that for each shape in our benchmark we have set its maximum di-
mension to be 70mm. Hence any scanning parameter based on dis-
tance is defined with respect to the bound of 70mm. Additionally,
we place an upper bound on the radiance to be 1.

Our synthetic scanner is controlled by the following parameters:

—Image resolution. The image resolution, in conjunction with the
number of scans used, effectively defines the resolution of the
point cloud.

—Baseline distance. A small baseline distance magnifies depth
errors in triangulation, while a large baseline results in greater
occlusion. We have fixed our baseline to be with respect to the
x-axis of the camera, though this may easily be adjusted to the y-
axis by changing the laser sweep direction. We found that base-
line distances ranging from 10mm to 150mm provide good vari-
ety in triangulation acccuracy and occlusions.

—Stripe frustum field of view. The thickness of the laser stripe
has an impact on peak detection, in appropriately fitting a Gaus-
sian. By default, we set the field of view such that the number
of pixels visible within a distance of 50mm from the camera is
roughly 10, which is a function of the image resolution.

—Stripe resolution. The number of laser stripes to project impacts
the resolution of the depth. By default, we set this to be the x
resolution of the camera, in order to obtain sufficient coverage.
Setting the stripe resolution to be lower than the x resolution may
result in some points not being affected by the laser stripes. By
assigning a sufficiently large stripe frustum field of view, one
may be able to obtain sufficient coverage.

—Noise magnitude. The magnitude of the noise corrupts the laser
projection, making peak detection imprecise. Typical noise mag-
nitudes we have used range from 0, or no noise, to 0.6, which can
greatly corrupt the radiance signal.

—Radiance smoothing bandwidth. Smoothing the radiance im-
age reduces noise, though at the potential cost of sacrificing the
expected Gaussian laser profile. The bandwidth to use is largely
dependent on the stripe frustum field of view and noise level. For
instance, a thick laser under large noise magnitude will require
a fairly large bandwidth to sufficiently smooth out the noise. We
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note that smoothing, in conjunction with additive noise, may re-
sult in a radiance signal with smaller peak magnitudes, which
can impact the peak magnitude threshold.

—Peak magnitude threshold. For large thresholds this will reject
parts of the surface whose radiance signal is determined weak
by a pixel’s corresponding Gaussian fit. This is a major cause
of missing data. For a laser containing little or no noise, typical
thresholds range from 0.8, which will result in only highly con-
fident range data, to 0.1, which will result in the rejection of few
points. Under noise and radiance smoothing, the peak threshold
must be adjusted to account for an expected reduction in peak
magnitude.

—Variance threshold. Range at depth discontinuities are likely to
be rejected under this threshold. We set the variance with respect
to the width of the laser, where by default we only reject range
whose variance in the Gaussian fit is larger than twice that of the
laser width. Similar to the peak magnitude threshold, the vari-
ance threshold is sensitive to the noise magnitude and smoothing
bandwidth.

We note that in our experiments, although we have generated
quite a large number of point clouds, we have hardly explored
the full parameter space of our scanner. By publicly releasing our
synthetic scanner software, surface reconstruction researchers and
practitioners will be able to replicate specific scanning conditions
which they are interested in operating on.
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