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Abstract:

Creating high-quality quad meshes from triangulated surfaces is a highly non trivial task that
necessitates consideration of various application specific metrics of quality. In our work, we follow
the premise that automatic reconstruction techniques may not generate outputs meeting all the
subjective quality expectations of the user. Instead, we put the user at the center of the process
by providing a flexible, interactive approach to quadrangulation design. By combining scalar field
topology and combinatorial connectivity techniques, we present a new framework, following a
coarse to fine design philosophy, which allows for explicit control of the subjective quality criteria
on the output quad mesh, at interactive rates.

Our quadrangulation framework uses the new notion of Reeb atlas editing, to define with a small
amount of interactions a coarse quadrangulation of the model, capturing the main features of
the shape, with user prescribed extraordinary vertices and alignment. Fine grain tuning is easily
achieved with the notion of connectivity texturing, which allows for additional extraordinary
vertices specification and explicit feature alignment, to capture the high-frequency geometries.
Experiments demonstrate the interactivity and flexibility of our approach, as well as its ability to
generate quad meshes of arbitrary resolution with high quality statistics, while meeting the users
own subjective requirements.
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Abstract—Creating high-quality quad meshes from triangulated surfaces is a highly non trivial task that necessitates consideration of
various application specific metrics of quality. In our work, we follow the premise that automatic reconstruction techniques may not generate
outputs meeting all the subjective quality expectations of the user. Instead, we put the user at the center of the process by providing a
flexible, interactive approach to quadrangulation design. By combining scalar field topology and combinatorial connectivity techniques, we
present a new framework, following a coarse to fine design philosophy, which allows for explicit control of the subjective quality criteria on
the output quad mesh, at interactive rates.
Our quadrangulation framework uses the new notion of Reeb atlas editing, to define with a small amount of interactions a coarse
quadrangulation of the model, capturing the main features of the shape, with user prescribed extraordinary vertices and alignment. Fine
grain tuning is easily achieved with the notion of connectivity texturing, which allows for additional extraordinary vertices specification
and explicit feature alignment, to capture the high-frequency geometries. Experiments demonstrate the interactivity and flexibility of our
approach, as well as its ability to generate quad meshes of arbitrary resolution with high quality statistics, while meeting the user’s own
subjective requirements.

Index Terms—Quadrangulation, Reeb graph, Connectivity operators.
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1 INTRODUCTION

The generation of quad meshes from triangle meshes is a
challenging task that requires the simultaneous management
of many objective and subjective quality criteria, such as
feature alignment, orthogonality, regularity, and adaptive
sampling. Automatic optimization of multiple criteria is
difficult, where global and local constraints may contradict
each other. For instance, enforcing local feature alignment
may induce many vertices with non-ideal valences (not
equal to 4), called extraordinary vertices, which affects the
regularity of the mesh in a global way. Thus, the notion
of an ideal quad mesh is application dependent but also
subjective.

User assisted schemes overcome the difficulties of auto-
mated decisions by providing the user with the ability
to influence the importance of the quality criteria and
related constraints. Starting with the pioneering work of
Krishnamurthy and Levoy [25], there has been substantial
work in this area, for instance by Tarini et al. [39] and Tong
et al. [43]. We design a user-centric approach that offers
exhaustive capabilities and comprehensive control during
quadrangulation design. This work targets knowledgable
users from the diverse application domains of quadrilat-
eral meshes, otherwise frustrated by inappropriate design
decisions made by automated techniques.
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However, most of the existing semi-automatic techniques
try to approximate the user’s constraints through an opti-
mization process [21], [5], [35], which may fail in pre-
cisely reproducing the exact configuration the user had
in mind (inaccurate approximation of feature corners or
misalignment of the extraordinary vertices). Moreover, they
do not enable tools dealing with global and local con-
straints simultaneously. Also they often delegate tasks to
the user not directly related to quad mesh design, such
as the specification of paramaterization conditions or the
selection of eigenfunctions. Finally, previous work has not
been specifically designed to develop editing operations at
interactive rates, a necessary feature for iterative artistic
design.

We address these challenges, proposing a new quadrangu-
lation framework that supports an explicit global and local
control during the meshing process. In addition to design
and editing at interactive rates, our framework provides
flexibility by enabling the user to relocate extraordinary
vertices as well as to modify mesh alignment, orientation
and connectivity. These tasks are achieved through the new
concepts of the Reeb atlas and Connectivity textures.

Contributions We reduce the challenges of quad mesh
construction to that of topology aware scalar field design,
while maintaining flexible control of the output mesh, at
interactive rates. An itemized list of our main contributions:

• Flexible and interactive quadrangulation with ex-
plicit and robust control of extraordinary vertices and
mesh alignment, experiencing response times of edit-
ing operations under half a second for models with up
to 400,000 triangles.

• Local and global design flexibility, control of the
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Fig. 1. For an input polygonal model (a), our interactive quadrangulation framework is driven by a user-defined scalar field
(b), that guides a Reeb atlas segmentation of the model into a coarse quadrangulation capturing the dominant features of
the shape (c) and allows control of the extraordinary vertices. Since the charts of the Reeb atlas have a guaranteed generic
topology, they can be efficiently parameterized to the unit square (d). Designing connectivity textures of the unit square (e)
enables an easy yet flexible quad-only meshing of the charts, providing a fine-grain control for the explicit capture of the
high-frequency geometric details, while maintaining interactive rates of editing operations.

location, valence, alignment of extraordinary vertices
and of the orientation of the quads, at both a global
and local level.

• Topology aware scalar field design, a novel tech-
nique that allows the explicit control of each contour
of the field, to better capture the model’s geometry and
to design fractional critical contours, while maintaing
a consistent field topology.

• Reeb atlas parameterization, by exploiting the topo-
logical guarantees of a Reeb graph segmentation cou-
pled with our topology aware scalar field design,
we derive a robust technique for parameterization,
topological and geometrical editing on surfaces of
arbitrary topology.

• Connectivity texturing, interactive local modifica-
tions to the output mesh with interaction tools similar
to on-surface texture painting.

2 RELATED WORK

The literature on quad mesh generation has experienced
considerable growth in the last few years. To better contex-
tualize our work, this discussion organizes existing tech-
niques as to the level of user control allowed within the
varying approaches. For a more comprehensive discussion
on the subject, we direct the reader to the surveys of Alliez
et al. [2] and Hormann et al. [20].

Automated techniques. Automated techniques aim at
building a quadrangulation avoiding user intervention alto-
gether. For example, connectivity-based approaches convert
polygons into quad elements with local operators that are
driven by advancing fronts [30], simplification to base
domains and regular refinement [9], merging adjacent tri-
angles [26], and the projections of voxel vertices [22], [6].

The global distribution of rectangular cells facilitates the
construction of quad-dominant connectivity [44]. Addition-
ally, numerical integration of orthogonal vector fields [23]
and principal curvature directions [1], [29] is successful in
automatically constructing well shaped and aligned quad
elements. Global parameterization schemes [34], [3] and
individual parameterization of localized charts [4] generate
quality meshes dominated by regular vertices (valence 4).
While these techniques have varying success concerning
feature alignment, adaptive sampling, and element quality,
automated methods do not provide flexible mechanisms to
handle extraordinary vertices (valence other than 4) and
mesh alignment that may lead to undesirable artifacts in
the final mesh. As the concept of the ideal quad-mesh is
versatile, application dependent and subjective, flexibility
and control are of paramount importance.

User-driven techniques. We discuss user-driven techniques
as those methods that provide mechanisms to allow addi-
tional user annotations of the model offering some relative
control over extraordinary vertices and mesh alignment.
For example, quadrangulations from scalar fields allow
inputs including the specification of extrema vertices [13]
to control the placement of integer polar singularities that
correspond to extraordinary vertices in the final mesh, as
well as conductance terms to control mesh alignment [37].
Spectral quadrangulation requires the user to select the
appropriate eigenfunction [12], offering partial control over
the extraordinary vertices (where each extremum of the
eigenfunction has an unconstrained valence), and extended
user inputs to influence alignment and importance sampling
[21]. Direction field painting [5], [35] by the user influences
mesh alignment while trying to determine automatically
natural locations for extraordinary vertices. User-defined
coarse quad meshes drive the global structure of a final quad



JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 3

representation, locally sampling each region with regular
grids [25], or setting up linear system constraints for a
global parameterization [43], or by adhering to specific
connectivity rules to develop highly regular polycube rep-
resentations [39], [45], [27].

Existing user-driven techniques permit increased control
in the quad meshing process by allowing specification
of alignment and/or handling of extraordinary vertices.
However, the interactions may not be straightforward (with
additional inputs dictated by the nature of the algorithm
and not by that of the quad design process itself) nor
offer a full exact control over the final mesh structure at
interactive rates. In this work, we propose a framework that
encorporates multi-level control, local and global, of the
mesh structure and alignment, with interactive response to
editing operations.

3 FRAMEWORK OVERVIEW

Our quadrangulation framework is motivated
by several target features, including inter-
activity, local and global editing scopes

final mesh
stitching

Reeb atlas
segmentation

and
parameterization

connectivity
textures

local editing
interaction

scalar field design

Reeb graph
construction

global editing
interaction

input polygonal mesh
and design flexibility. These
goals are intended to sup-
port the user’s artistic pro-
cess by providing important
functionalities, allowing con-
stant modification of the de-
sign with interactive response
times for any editing oper-
ation. Our local and global
controls encourage a multi-
level design philosophy: first,
modifying the overall struc-
ture affecting the configu-
ration of the extraordinary
vertices, as well as coarse
mesh alignment; then provid-
ing small-scale handling to
capture the high-frequency geometrical details of the sur-
face. The remainder of this section presents a framework
overview, illustrated to the right and in Fig. 1.

We reduce the challenging problem of quad mesh construc-
tion to that of topology aware scalar field design to take
advantage of the efficient nature of scalar field computation.
The global geometry and structure of the quad mesh is
inferred from a user-defined scalar field constructed over
the input triangular mesh (Fig. 1b). This first stage of our
framework uses an efficient linear system solver based on
fast Cholesky fatorization of the Laplace operator. We build
on this in a novel way with topological constraints for
explicit control of all critical level sets within the scalar
field (Sec. 6).

Despite its advantages of simplicity and speed, scalar field
based quadrangulation [13] can only model integer singu-
larities, corresponding to the critical points of the scalar

field and generating high-valence extraordinary vertices. In
order to overcome this issue, while exploiting the speed
and flexibility of scalar field design, we introduce the new
notion of Reeb atlases (Sec. 5). Given a scalar field defined
on the input mesh, we build the Reeb graph (Fig. 1c) to
guide a chart segmentation with local parameterizations of
the surface (Fig. 1d). Global editing operators of the Reeb
atlas modify the scalar field by manipulating the geometry
of structures derived from the Reeb graph.

After establishing a segmentation and local parameteriza-
tions that define a coarse quad mesh, we introduce the
notion of connectivity textures (Sec. 7) that provide the
user an easy and flexible localized control of the quad mesh
construction. In this stage, the user defines the local connec-
tivity as a texture living on top of the parameterization of
the chart of interest. This connectivity texture abstraction
increases the design flexibility by enabling any meshing
strategy, not only restricted to parameterization contouring.
A stitching procedure (Sec. 7.2) composes the connectivity
textures to construct the quad-only mesh (Fig. 1e).

A typical usage scenario of our interactive approach is
presented in Sec. 8 along with its performance evaluation.

4 INTERACTIVE SCALAR FIELD DESIGN

In our framework, the global control of the quad mesh
is dependent on the design of a piecewise linear (PL)
scalar field defined on the vertices of the input triangular
surface and linearly interpolated over the triangles. The
construction of this field drives global control mechanisms
over the extraordinary vertices and high-level orientation of
the mesh. To best fit our application, it is important for the
scalar field to be smooth, to contain a controlled number
of critical points, and to be computed and updated within
interactive rates. Harmonic fields become a natural choice
because their properties closely parallel these requirements.
A harmonic field defined on a manifold surface is a scalar
field f : S → R satisfying the differential equation,

∇2f = 0, (1)

subject to boundary conditions (Dirichlet in our context).
In the discrete case, where the surface is given by a
triangular mesh S, the Laplace-Beltrami operator ∇2 is
usually discretized using cotangent weights [33], which
leads to a symmetric and positive-definite sparse matrix
L =W −D whose elements wij of W are defined,

wij =

{
− 1

2 (cotαij + cotβij) if edge [i, j] ∈ S
0 otherwise (2)

where αij and βij are opposite angles to edge eij and D
is a diagonal matrix with elements dii given by row sums
of W .

We make use of the penalty method to impose constraints
to the linear system derived from equation (1). Consider C,
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Fig. 2. The harmonic scalar field f is drafted by the
user, modifying the automatically suggested extrema. Reeb
charts, constructed from the arcs of the Reeb graph, seg-
ment the model into multiple regions with known topology:
annuli and discs.

the set of indices of constrained vertices, then the harmonic
scalar field is obtained by solving the linear system,

(L+ P )f = Pb, (3)

where P is a diagonal matrix with non-zero entries pii = α
only if i ∈ C and α is the penalty weight (in practice
α = 108 [46]). Constrained values are set within the vector
b,

bi =

{
si, i ∈ C
0, otherwise

(4)

where si is the desired scalar value assigned to vertex i.
The main advantage of using penalty method to impose
constraints is that supernodal schemes [11] can be used to
update (and downdate) the Cholesky fatorization, making it
possible to include and remove constraints efficiently [46].

The initial user input to our framework is the specification
of the extrema of an harmonic function. It has been
observed that in general the extrema are best placed at
extremities of prominant features of the shape (Fig 2).
From a meshing perspective, these extrema will correspond
to polar extraordinary vertices (valence editing operations
will be discussed in Sec. 6). We provide the user with an
automatic initial suggestion aiming at detecting prominent
features by computing the integral of the geodesic distance
function [19]. The maxima of this function become the
set C of constrained vertices, where C = {(vi, hi)}Ni=0

is split into two subsets C0 and C1 in accordance with the
height function h, where hmin and hmax are the respective
minimum and maximum values of h, then C0 = {vi | vi ∈
C and hi <

1
2 (hmin + hmax)} and C1 = C − C0. We

assign initial constraint values 0 and 1 to the vertices in C0

and C1 respectively (Eq. 4).

5 REEB ATLAS

Given a scalar field f over a manifold surface S, a straight-
forward quadrangulation strategy consists in computing a
parameterization of S, with U : S → [0, 1], a normalization
of f , and V : S → [0, 1], whose level sets align with the
gradient of f . On the sphere with two antipodal extrema,
U and V respectively map to the latitude and longitude
coordinate systems, and contouring regularly along both
U and V constructs a quad dominant mesh with nearly
orthogonal edges. While this technique has been shown to
be simple and efficient [13], it is limited by the fact it can
only model integer singularities, generating extraordinary
vertices with high valence that correspond to the critical
points of f (points where the gradient of f vanishes,
see [14] for a description in the PL setting). To benefit
from the simplicity and interactive nature of scalar field
based quadrangulation, we extend this methodology with
added structural control by leveraging topological structures
inferred from the scalar field.

5.1 Reeb Graph

Reeb Graphs are traditionally defined through an equiv-
alence relation [36]. In this discussion, we will use an
alternate, but equivalent, formalism [41]. Given a smooth
manifold M, a retraction is defined as a continuous map
such that the image is a subset of its domain M and the
restriction of the map to the image is the identity [18].
A contour retraction of M under a Morse function f is
defined as a continuous map that retracts each contour
(connected component of a level set) of f to a single point.
By continuity, adjacent contours are retracted to adjacent
points and distinct contours are retracted to distinct points.
Then the Reeb graph R(f) is the contour retract of M
under f . It consists of arcs and nodes, where branching
only occurs at critical points of f . The field f can be
decomposed into f = ψ ◦ φ, where φ : M → R(f) is
a contour retraction and ψ : R(f) → R is a continuous
function that maps points in R(f) to the real line R.

Several algorithms have been proposed to compute a Reeb
graph from a piecewise-linear scalar field defined on a
triangular surface S [8], [31]. Our experiments showed
that the saddle contouring algorithm [32] presented the best
performances in our context. Its complexity depends on the
number of simplices in S and the number of saddles of
f . Typically the user designed scalar fields generate few
saddles, leading to virtually linear computation. Moreover,
our implementation explicitly stores the regular vertices of
f along the arcs of the Reeb graph. Although the Reeb
graph is defined for manifolds of arbitrary dimension, we
restrict the remaining discussion to closed 2-manifolds of
arbitrary genus, denoted S (surfaces with boundaries are
discussed in Sec. 8.1).

Reeb chart. Given the contour retraction φ : M → R(f),
a Reeb chart Si is the preimage by φ of the interior of



JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 5

Fig. 3. Our parameterization strategy maps the boundaries
of the Reeb chart (homeomorphic to an open annulus or
open disc) to the unit square by defining UV Dirichlet
boundary conditions within the Laplace system. Open an-
nuli are cut into discs by a streamline guided by the scalar
field gradient.

an arc Ai of R(f) [42]. By construction, Reeb charts are
continuous pilings of closed 1-dimensional contours. Since
they are the preimage of the interior of arcs, Reeb charts
do not include critical contours and are thus open sets with
the topology of an open annulus (a connected genus zero
surface, with two boundary components excluded). Note
that a boundary component collapses to a point if an arc is
linked to an extremum. Because Reeb charts are constructed
from the regular contours of f , their definition does not
require f to be strictly Morse (i.e. degenerate saddles).

Given the segmentation of the surface into multiple Reeb
charts, the Reeb atlas is defined as the union of these
charts with respective local parameterizations. Because
Reeb charts have a controlled topology, they are robustly,
easily and efficiently parameterized with a generic strategy.
The remainder of this section discusses the parameterization
of a Reeb chart.

5.2 Reeb Chart Parameterization

Each Reeb chart Si of S is built by duplicating the triangles
of S that fully map to the interior of the arc Ai via
φ. Boundary triangles, intersected by the critical contours
adjacent to Ai, are also inserted into Si, illustrated as grey
triangles in Fig. 2. The boundary vertices of Si are projected
onto the nearby critical contour curves.

A parameterization maps the open annulus Si to the unit
square by solving two harmonic functions with Dirichlet
boundary conditions (Fig. 3) using the solver presented in
Sec. 4. The field U : Si → [0, 1] is computed to align with
the level lines of f by constraining the boundary vertices of

Si, projected to the two critical contours, to either U = 0
or U = 1 (Fig. 3). The orthogonal field V : Si → [0, 1] is
computed by tracing a cutting streamline along the mesh
edges of Si guided by the gradient of U , turning the annulus
into a disc. The vertices of the cutting edges are duplicated
and assigned values, V = 0 and V = 1, to map the
boundary of Si to the unit square.

Each Reeb chart Si mapping through φ to an arc of R(f)
adjacent to an extremum of f are parameterized differently
(Fig. 3). The boundary triangles that neighbor the extremum
are included within Si so that Si has a single boundary
component and is homeomorphic to a disc. The boundary
vertices are segmented into four contiguous polylines and
assigned values mapping the boundary to the unit square.
This parameterization scheme splits polar singularities into
four fractional components, discussed in Sec. 6.2.

At this stage, the Reeb atlas represents a coarse quadran-
gulation of the surface. Each Reeb chart is equipped with
its own local parameterization to the unit square and may
be represented by a single quad in the coarse mesh. Note
that saddles of f correspond to extraordinary vertices.

6 GLOBAL EDITING OF THE REEB ATLAS

We propose a set of editing operations to allow the user
to control both the geometry and the topology of the Reeb
atlas. To ensure interactive times in the design process, the
Reeb atlas editing operations are based on modifications of
the underlying scalar field f through fast updates provided
by the supernodal schemes of the penalization solver (Sec.
4). These functionalities provide the user global control on
the orientation of the final mesh by editing the geometry
of Reeb chart boundaries as well as global control on the
valence, location and alignment of extraordinary vertices.

The Reeb chart boundaries are defined by critical contours
of f . While the relocation of minima and maxima is well
understood, consisting of removing the original constraint
and replacing it with a new one at a different location,
moving saddle contours requires a bit more machinery.
This section discusses the constraints we associate with the
saddle contours (Sec. 6.1) and, consequently, our ability to
control them (Sec. 6.2).

6.1 Enforcing the Geometry of Critical Contours

Given a specified critical contour, additional constraints
are added to the Laplace system at the vertices of saddle
triangles (triangles intersected by the critical contour) to en-
sure that the scalar field levelsets respect the user designed
geometry. Assume that the user modified the geometry of
a saddle contour with a scalar value sc (Sec. 6.2) so as to
intersect the triangle t = {p0, p1, p2} on edges e0 = p0p1
and e2 = p2p0 (Fig. 4). The intersection points pin =
p0 + α0(p1 − p0) and pout = p2 + α1(p0 − p2) and scalar
values sin = s0+α0(s1−s0) and sout = s2+α1(s0−s2),
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Fig. 4. Reorienting a saddle contour: the original levelset
curve (a) is modified through the critical contour widget
(b) where the mesh-plane intersection describes the new
contour geometry (c). Saddle triangles are constrained (d)
to ensure the scalar field respects the critical contours (e).

where s0, s1, s2 are associated with the vertices of t, assist
in the definition of vertex constraints. The vertex pi of t
is projected onto the segment pinpout yielding the point p′i
with a scalar value s′i. The scalar constraint assigned to pi
for t is s̃i = sc + (si − s′i). The final constraint of each
vertex is averaged with values of adjacent saddle triangles.
This novel constraint computation enables strict control of
the contour of f , aligning to the user’s designed polyline.

Introducing Dirichlet boundary conditions in this way might
generate unintended critical points in highly constrained
configurations. To remove this potential noise in f , we
use a combinatorial cleanup procedure. The extra critical
points are identified without ambiguity (not belonging to
any constraints) and removed from the Reeb graph [15]. To
reflect the changes induced by the simplification within the
scalar field, we use a breadth-first traversal and simulation
of simplicity ([17], Sec. 3). This procedure guarantees the
topological correctness of the designed scalar field.

6.2 Manipulating the Critical Contours

The modification of saddle curves is achieved via a 3-
dimensional critical contour widget (Fig. 4). This widget
consists of rotational handles that allow the user to orient
a cutting plane whose intersection with the surface defines
the new saddle curve geometry. Anchors can be defined on
the saddle curves to behave as endpoints for the widget,
localizing the effects of the manipulation. This widget
and its design interactions are further demonstrated in the
accompanying video. We further describe the use of this
widget for multiple important and novel controls in scalar
field design.

Aligning Multiple Saddles. When the scalar field f admits
a succession of nearby saddles (Fig. 5), it may be desireable
to align the associated critical contours. In effect, this

Fig. 5. Thin Reeb charts (left and top) result where multiple
saddles have nearly equivalent scalar values. Our global
editing operations support the geometric contol of the con-
tours, linking the saddle vertices and removing thin Reeb
charts (right and bottom).

functionality coarsens the Reeb atlas by removing thin Reeb
charts to align extraordinary vertices in the final quad mesh.
The atlas coarsening maintains the total number of saddle
vertices while decreasing the number of saddle contours,
yet the Reeb charts remain well defined.

Aligning multiple saddles (Fig. 5) is achieved by first
deleting the critical contours to align. Next, the user clicks
on pairs of saddles to be connected with automated mesh
traversals (shortest paths) providing initial curve segments.
Then, the user can further re-orient them with the critical
contour widget (the aligned curves are then constrained as
discussed in Sec. 6.1).

Subdividing Reeb Charts. In addition to merging Reeb
charts, we support their splitting as well. Because the Reeb
chart is defined as a collection of contours, splitting a
chart into two can be achieved by flagging a particular
contour (i.e. clicking on a vertex) and by construction each
child chart maintains the topological guarantees of the Reeb
atlas segmentation. Reeb chart splitting facilitates alignment
of the scalar field, the charts’ parameterizations and con-
sequently the final quad mesh, to surface features. This
functionality is demonstrated with the L-shape (Fig. 11)
and Moai (Fig. 12) models.

6.3 Fractional Singularities

In the following, we assume that the final quad mesh is
extracted by contouring the local chart parameterizations.
As such, we are able to offer a formalization linking scalar
field critical points and the extraordinary vertices of the
related quadrilateral mesh. We introduce a novel mecha-
nism for controlling the extraordinary vertices, managed
at a global level during the scalar field design, through
the new notion of fractional critical points (an extension
of concepts from direction field design [35] and surface
parameterization [34], [43] to scalar fields).

Fractional Polar Singularities. When a boundary compo-
nent of a Reeb chart is an extremum vertex, parameterizing
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Fig. 6. Fractional poles: a polar vertex (left) split into 2 half-
poles (valence 2, middle) and 4 quarter-poles (valence 3,
right).

the chart with a cutting streamline (as an open annulus) gen-
erates a polar singularity that leads to triangular elements
around a high valence extraordinary vertex (Fig. 6, left). To
guarantee the generation of a quad-only output mesh, we
use the notion of fractional singularity. In particular, our
default parameterization strategy for disc charts (Sec. 5.2)
splits a polar singularity into quarter poles, where the
resulting quad mesh containts 4 valence 3 vertices (Fig. 6,
right).

An alternative proposed to the user is to split the polar
singularity into 2 half-poles, constraining a sequence of
mesh edges with constant min/max f values (0 or 1); then,
the chart is parameterized with a cutting streamline (Fig. 6,
middle). This configuration corresponds to the concept of
non-isolated critical points in the smooth setting. We use
Simulation of Simplicity (SoS) [16] in the PL setting to
maintain a consistent combinatorial representation of f .
The resulting quad mesh has 2 valence-2 extraordinary
vertices at the endpoints of the extremum segment.

Fractional Saddle Singularities. In the spirit of handling
fractional polar singularities, we design fractional saddle
singularities within the scalar field design. Saddle vertices
correspond to extraordinary vertices within the final quad
mesh (Fig. 7, left). We provide a set of atomic editing
operations that enable the user to redistribute easily the
high valency of saddles with the new notions of half-
and quarter-saddles. While there exists multiple possible
combinations of adjacent Reeb chart parameterization con-
figurations, we abrieviate this discussion to the example
shown in Fig. 7.

A non-degenerate saddle contour is a set of two closed
curves admitting exactly one common point. Half-saddle
splitting is supported by modifying the geometry of the
saddle contour to be described, for example, with two
closed curves linked by a middle segment that is aligned
to the edges of the mesh. The half-saddles are defined at
the intersection of the middle segment and the two closed
curves (Fig. 7, middle).

Due to our default parameterization method for discs,
splitting polar vertices into quarter-poles, the construction
of half-saddles can lead to the removal of pairs of extraor-
dinary vertices in the quad mesh. In particular, the singular-
ities of min/split-saddle and merge-saddle/max Reeb charts

Fig. 7. Fractional saddles: a saddle vertex (valence 8, left)
split into 2 half-saddles (valence 6, middle) and 4 quarter-
saddles (valence 5, right).

are removed. On the torus model, all singularities can be
classified as these types, resulting in a completely regular
quadrangulation (Fig. 8).

To design half-saddle configurations (Fig. 7, middle), the
user deletes the original saddle contours and vertex, then
initiates the tracing of two contours from manually chosen
vertices. The middle segment is automatically computed
as the shortest path defined along mesh edges between
the two points. User-defined half-saddle contours can be
geometrically edited via the critical contour widget to
align to surface features. The network of critical contours
defining the half-saddle is assigned a single constraint
isovalue. Note, the middle segment relates to the notion
of non-isolated critical point in the smooth setting, handled
in the PL setting with SoS.

Splitting a saddle reduces the valence of the related vertex
by redistributing it among the multiple, created extraor-
dinary vertices. The quarter-saddle configuration (Fig. 7,
right) further supports this observation, later exemplified
on the Blade model (Fig. 12). Quarter saddles are designed
by first deleting the original saddle contour and vertex.
Then the user clicks on a reference vertex to extract its
isocontour. Three other reference vertices are selected along
this isocontour and pairs of reference vertices are connected
through shortest path computations (Fig. 7, right). Finally,
an extremum is inserted at the location of the original
saddle to maintain a valid field topology. The user can
use the critical contour widget to further align the contour
(constrained as discussed in Sec. 6.1).

Fig. 8. The torus remeshed with fractional half-saddles
(right) does not contain any extraordinary vertices.
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Fig. 9. Connectivity texturing of a challenging geometry (multiple sharp features) on a purposely coarse segmentation. For
a given Reeb chart (left), global subdivisions reproduce meshing results from isocontouring (top). In contrast, connectivity
texturing maps user designed quadrangulations of the unit square to the parameterized chart (bottom) for improved
flexibility and control. Above, we illustrate snapshots of the design process over time (bottom): in this example, the user
triggered a few polychord insertions, followed by cube subdivisions to capture the feature corners at the top of the shape,
and finally subdivided the texture to obtain the desired sampling density.

7 LOCAL EDITING OF THE CONNECTIVITY TEX-
TURE

To this point the user-defined scalar field guides a Reeb
atlas segmentation of the model, resulting in multiple
individually parameterized mesh regions. In practice, quad-
rangulation techniques based on parameterizations derive a
final quad mesh by uniformly contouring each parameter.
This gridded sampling approach generates all ideal valence
vertices internal to each segmented region; however, it lacks
flexibility in the local design of mesh connectivity. We
introduce connectivity textures that decouple the alignment
of the final mesh elements from the underlying parameter-
izations to improve flexibility in the mesh design (Fig. 9).

Connectivity textures. Similar to texture images, a con-
nectivity texture is a user designed quadrangulation of the
unit square that is mapped to a Reeb chart region based on
its parameterization. This abstraction improves flexibility
within the design process by allowing the user to explicitly
insert additional extraordinary vertices and modify the ori-
entation of the quads. Additionally, internally representing
the quadrangulations within the plane, then projecting the
points onto the Reeb chart improves robustness and speed,
discussed throughout the remainder of this section.

Planar-based Projections. The vertices of a connectivity
texture are efficiently projected to the Reeb chart mesh Si.
To do so, we maintain a planar representation S ′i based
on the parameterization (Sec. 5.2) stored within a binary
space partitioning (BSP) tree. The BSP tree allows efficient
lookups while the one-to-one and onto mapping of Si to the
unit square ensures robustness. Given a quadrangulation Q
of the unit square, the connectivity texture is projected onto
Si in O(mlog(n)) time, where m is the number of quad
vertices and n is the number of triangles in Si. The triangle
t′ ∈ S ′i containing a vertex v ∈ Q is found in O(log(n))
time by virtue of the BSP tree. The projection of v to Si

is obtained based on its barycentric coordinates within t′,
computed on t.

While interactions described in the following section are
performed in 3D-space, where the texture is mapped to
Si, the underlying computations are performed on the unit
square. The connectivity and vertex locations of the final
quad mesh are stored as a texture. With the described
projection methods, we are able to maintain interactive rates
and guarantee smoothly interpolating projections during
vertex movement and mesh subdivision operations.

7.1 Local User Interface

We support a collection of connectivity-based operators to
interactively design and edit the quad elements as desired
by the user’s meshing paradigm. Initially the connectivity
texture assigned to each Reeb chart region is the unit square
(Fig. 9). The user designs a quadrangulation for each re-
gion by applying refinement, coarsening and improvement
operations [24], [38], [10] to the quad elements.

Connectivity Operators. The user interacts with the con-
nectivity texture design by simply selecting an element (or
pairs of elements) for refinement and coarsening, illustrated
by the time lapse in Fig. 9 and showcased in the accompa-
nying video. We support global subdivision of the texture,
user selected edge subdivision that initiates a polychord
insertion, polychord deletion, cube-based subdivision for
polycube-like meshing [39], [45], [27], quad-open and -
close operators, as well as quad-edge and vertex-edge flip-
ping. Meanwhile, we maintain a history stack to undo/redo
the specified operations. By inserting additional extraordi-
nary vertices, the mesh can be designed to precisely adapt
sample densities to complex geometry and better align with
mesh features as compared to isocontouring (Fig. 9).

Vertex Movement. Via connectivity textures, the ability to
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locally modify the location of vertices of the final quad
mesh is straightforward and robust. The mouse movement
is used to perturb the uv-mapping of selected vertices. The
vertex re-projection onto the Reeb chart Si is efficiently
computed, and the small processing required to ensure
that the reprojected point moves in the same screen space
direction as the mouse is negligible, maintaining interactive
rates. It is important to note that vertex movement simul-
taneously executes local relaxation to allow easy displace-
ments of groups of vertices in a single mouse move, while
ensuring orthogonality of the quads, where identifying flags
differentiate anchor vertices that remain unaffected by the
smoothing, as shown in the video.

7.2 Final Mesh Stitching

Because the quadrangulations are constructed individually
for each Reeb chart region, the final composition of the
mesh is handled with a post process stitching and localized
vertex relaxation. The stitching algorithm greedily merges
pairs of nearest boundary vertices. Two vertices, va and
vb, are merged if the distance between them, dab = |va −
vb|, is smaller than a ratio of the minimum distance to the
neighboring boundary vertices, d < αda and d < αdb (in
practice α = 0.25), where da = min(|vi − va|, |vj − va|)
and db = min(|vm − vb|, |vn − vb|). The vertices vi,j and
vm,n are the neighboring boundary vertices of va and vb
respectively.

T-junctions may be present after the greedy stitching al-
gorithm exhausts the possible vertex mergers. Similarly
addressed in geometry clipmaps [28] and rectangular multi-
chart geometry images [7], we resolve such regions to
develop a watertight mesh. Where clipmaps insert zero-
area triangles and multi-chart geometry images use lo-
cal remeshing of boundary triangles, we must couple T-
junctions to ensure quad-only connectivity. Edge flips have
been applied to merge nearby zero-area triangles [40], but
this causes a twist in the mesh elements that negatively
affects the alignment of mesh edges.

Fig. 10. T-junctions are resolved by the stitching process:
inserting new quads where multiple T-junctions share a
common edge (a), or performing mesh surgery along the
path between two nearby triangles and inserting quads
along the cut (b).

Fig. 11. Our multi-level approach to quad design (global
segmentation and local design) is flexible, making it possi-
ble to design different quad connectivities and extraordinary
vertex types over the same model. Note that a Reeb graph
with a single arc is divided (left), describing two Reeb charts
with disc topology.

Instead, we implement a greedy algorithm to resolve pairs
of nearby zero-area triangles by inserting new quads be-
tween them. First, multiple T-junctions on a shared mesh
edge are resolved by recursively applying the illustrated
template (Fig. 10), such that any mesh edge contains at
most one T-junction. Then breadth-first traversals compute
the set of shortest paths of mesh edges between mesh
vertices belonging to two different triangles for all triangles
in the model. The mesh is cut along the shortest of these
candidate paths, and new edges inserted between the du-
plicated vertices to form quad-only connectivity (Fig. 10).
The breadth-first traversals and subsequent mesh surgery is
repeated until all pairs of triangles are removed from the
model.

8 DISCUSSION

Typical usage scenario. As described in the accompanying
video, user interaction is required at two levels.

First, in the global view, the user places sparse segmentation
inputs (corresponding to extrema of f ) typically at the
extremity of prominent features if he/she is unsatisfied
with the automatic suggestion. The Reeb atlas is then
automatically completed while guaranteeing the generation
of an atlas made of charts with controlled topology. The
user may decompose further the atlas by the addition or
the subdivision of charts with click interactions. Also, a 3D
widget is provided to edit the alignment of the boundaries
of the chart, and consequently of their parameterization.
Finally, the intersection points of the chart boundaries
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Fig. 12. Various examples of user designed quad meshes generated with our framework accompanied by quality statistics
related to the vertices (vertex count, extraordinary vertex count and the max difference from the ideal valence), the average
mesh angle and scaled Jacobian.

(corresponding to critical points of f ) will correspond to
extraordinary vertices in the final mesh. The user can edit
the valence and location of those extraordinary vertices
with a set of curve editing operations applied on the chart
boundaries as demonstrated in the accompanying video.

Second, when the user is satisfied with the Reeb atlas
segmentation, local views of each Reeb chart are opened
to design connectivity textures via subdivisions, deletions
and element movements. Typically, our experiments showed
that connectivity texturing was often achieved through a
sequence of global subdivisions, possibly with intermediate
cube subdivisions (Fig. 9). Finally, an automated stitching
algorithm generates the final output mesh by composing the
connectivity textures.

Notice that although topology aware scalar field design is
a central technique in our approach, this aspect is totally
hidden to the user who does not have to be knowledgeable
about topology or scalar field design. The system inputs are
solely focused on the users’ quality criteria, determining
the exact placement and valence of extraordinary vertices
as well as localized edge alignment. These controls are
specific and exact as the user does not abstractly affect the
mesh through the modification of algorithmic parameters,
i.e. eigenfunction selection nor boundary parameterization
specifications. Because the Reeb graph can be a close
approximation of the medial axis of the shape [27], it aids
in the creation of a coarse quadrangulation for the model
that captures dominant features with minimal amount of
interaction. Furthermore, the related theory of the Reeb
graph provides important topological guarantees for our
chart segmentation, enabling generic connectivity texture
mapping.

8.1 Experimental Results

We implemented our interactive quadrangulation frame-
work in C++ using the CHOLMOD libraries for our
linear system solver [11]. The timings reported in this
section are the results collected from experiments run on
commodity desktop computers with Linux and MacOS.

The total duration of a quadrangulation session is variable
(from a few seconds to several minutes for the models

presented in this paper, as demon-
strated in the accompanying video),
depending on the complexity of the
input shape as well as the user
skill and design exigence. More
interestingly, and quantifiable, are
the response timings for computa-
tions imposed by our system. The
boxplots (Fig. 13), illustrating the
median, minimum, maximum, as
well as lower and upper quartiles,
highlight the timings acquired from
our experiments for the scalar field
update, Reeb graph computation,

Reeb chart parameterization, and connectivity texture sub-
division and coarsening operations. The median response
timings are well below 0.5s, allowing for real time interac-
tion.

We showcase several models generated using our approach
in Figs. 11, 12, and 14, illustrating important features of
our framework. The L-shaped meshes, with cube-like and
polycube-like connectivity, and the bitori meshes, illus-
trating a single saddle vertex with valence 8 versus two
half-saddles with valence 6, spotlight the design flexibility
(Fig. 11). The Moai and Bimba models showcase the
removal of polar vertices from genus-0 models. The Botijo
model highlights the advantage of the Reeb atlas abstrac-

Fig. 13. Boxplot response timings of our system computa-
tions, measured in seconds as a function of the number of
input triangles.
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Fig. 14. The comparison of our technique against quad meshes from multiple algorithms illustrates our improved control
of extraordinary vertices, i.e. location and valence, as well as element alignment, while producing quality output models
for the Rocker Arm and Bimba models. Extraordinary vertices with a valence greater or less than four are respectively
reported with blue and green spheres. Shaded quad-strips highlight the twisting occurring with previous approaches along
sharp features (blue) or between extraordinary vertices (green).

tion, capable of managing a user-driven segmentation of a
model with complex topology, while providing topological
guarantees necessary for parameterization. Our framework
handles mesh boundaries by either constraining a contour
of f along the boundary, i.e., the Hand, or by filling the
boundary then removing quads from the texture.

In many cases, especially when the Reeb chart describes a
cylindrical mesh component, regular subdivision provides
fast and easy high-quality quadrangulations of the Reeb
charts, i.e., the Botijo handles, the Hand’s fingers, the
torso’s of the Moai and Bimba, as well as pieces of the
Blade and Rocker Arm models. The added flexibility of
connectivity texturing improves the alignment of the final
mesh to surface features (sharp features on the the Rocker
arm, Botijo and Blade models) as well as user designed
adaptivity to better sample high frequency geometry (the
Bimba’s bow, zoom inset in Fig. 14).

The number of extraordinary vertices is strictly controlled
by the user, and can be maintained to a desired value.
The quality of the meshes used throughout this paper is
measured in the histograms to the left. The quality of the
output models is dependent on the diligence of the user, but,
as demonstrated by the histograms, high quality meshes that
are numerically stable for finite element simulations can be
generated using our system.

8.2 Comparison

In this section, we compare our interactive approach to
automatic [9] and semi-automatic techniques [12], [21], [5],
[35] for a mechanical and an organic model (Fig. 14). In-
cluded in Fig. 14 are quality statistics of the assorted mod-
els, demonstrating that our approach generates quad meshes
with objective quality scores that are on par with other
state-of-the-art techniques. More interestingly, the visual
comparison highlights advantages of our approach which

are not directly reflected by objective quality measurements,
such as: sharp feature preservation, extraordinary vertex
alignment and localized adaptative sampling.

A key advantage of our approach is its ability to robustly
control the number, location, valence and alignment of
the extraordinary vertices. In contrast, other techniques
(Fig. 14) provide output meshes that approximate the user’s
input constraints. As a result, these methods may produce
undesireable effects related to extraordinary vertices, such
as inaccurate approximation of feature corners, misalign-
ment of the emminating mesh edges, and extraordinary
vertex clustering. By strictly designing our meshes to
align extraordinary vertices through straight edge paths, in
contrast to [5], [35] but similar to [12], [21], [9], we design
quad models that are conducive to texturing, coarsening
and smooth surface fitting via subdivision and spline-based
surfaces.

As illustrated in Fig. 14, the extraordinary vertices of both
our Rocker Arm and Bimba models are well aligned, placed
at strategic locations, and the mesh edges between them are
aligned to the sharp features of the models. In particular,
we focus the reader’s attention to the protruding corners
on the top of the Rocker Arm where our approach exactly
captures these elements; as well as the bottom of the Bimba
model to which our edges are aligned and extraordinary
vertices placed within corner regions. In contrast, note the
quad strip twisting that occurs across sharp features with
the other techniques.

Another major distinction between our approach and the
semi-automated techniques is our ability to design a config-
uration that captures the symmetry of the model that may be
difficult to quantify by (semi-)automatic algorithms. For ex-
ample, the Bimba model contains symmetric extraordinary
vertices, i.e., the face and shoulders, with edges aligned
to the model’s curvature, i.e., the face, neck and chest.
Further, the design of the connectivity textures on a local
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scale allows the user to adapt the sample density, capturing
high frequency geometric detail and symmetry of the bow
in the Bimba’s hair (zoom inset in Fig. 14).

8.3 Limitations

An important observation of this work is the link between
extraordinary vertices and critical points of the underlying
scalar field, handled by the Reeb atlas segmentation algo-
rithm. The system requires training of users to understand
the connections between the interactions on the Reeb atlas
and the resulting extraordinary vertices, as well as becom-
ing familiar with the interaction tools. Our current interface
can benefit from more straightforward control mechanisms
to facilitate user interactions. However, as these aspects of
the user interface do not affect the discussed underlying
technologies, we view this as out of the scope of this
research. Furthermore, optimal alignment of quad meshes
often requires adaptive sampling, introducing many extraor-
dinary vertices. While this is completely feasible within our
framework (demonstrated in multiple models in this paper),
it can become time consuming to design and manipulate
such models.

9 CONCLUSION AND FUTURE WORK

Our technique bridges the gap between purely geometrical
approaches and combinatorial connectivity techiques to
leverage advantages of the two distinct worlds within one
coherent system. This study provides interesting insights,
linking scalar field topology to extraordinary vertices and
their global alignment. Our Reeb atlas, the mechanism by
which we induce the alignment and construct a coarse
quadrangulation of the model, enriches scalar field design
by providing topological structure and awareness.

We develop a multi-level methodology that, in addition to
global Reeb atlas updates, supports local editing operations
via connectivity textures to explicitly define the final mesh
structure. Reeb atlas and connectivity textures are two
complementary tools, with partial overlapping scopes, that
uniquely provide global and local controls (respectively).
Designing a complex Reeb atlas will tend to allow simple
connectivity textures (the Hande, Bitorus and Botijo Mod-
els, Fig.12); whereas, designing a simple Reeb atlas will
tend to require complex connectivity textures (RockerArm,
Fig. 9).

Our connectivity textures completely localize the global
effects of quadrangulation design, limited to a single Reeb
chart. Relying on the topological information provided by
the Reeb atlas, our framework is able to resolve conflicts
between regions meshed with different sample densities.
The local operations are performed over the unit square for
efficient and robust computation and projection. We demon-
strate the highly interactive (response times below 0.5s) and
extremely flexible nature of our approach throughout the
paper.

This paper focuses on developing underlying technologies
that provide the flexibility, interactivity and robustness
required by a user-centric meshing process. Based on the
generality and flexibility of our framework, in future work
we intend to enrich our system’s interface with additional
automated user assistances to augment the designer’s pro-
ductivity. At a global scale, improved heuristics may sug-
gest better initial Reeb atlases, possibly providing hints that
contain aligned and/or fractional saddles. At a fine scale,
geometrical analysis in the
parametric domain of individ-
ual Reeb charts can lead to au-
tomated initial geometry-aware
connectivity textures, on which
a user may interactively edit.
Finally, it will be interesting
to further explore the full po-
tential of connectivity textures
to design meshes with arbi-
trary polygons, i.e., hexagons
(right), as well as extensions
to volumetric shape represen-
tations.
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