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Abstract: 
 

Computational modeling has become a standard methodology in biomechanics, both for 
interpreting experimental results and as an investigative approach. The finite element 
(FE) method is by far the most common numerical technique that is used for this purpose. 
Investigators have primarily used commercial software, such as ABAQUS, that is neither 
geared toward biological applications nor sufficiently flexible to follow the latest 
developments in the field. This lack of a tailored software environment has hampered 
research progress, as well as dissemination of models and results. To address these issues, 
we developed FEBio (http://mrl.sci.utah.edu/software.php?menu=Software), a nonlinear 
implicit FE framework, designed specifically for analysis in computational solid 
biomechanics.  Further, we have created a public forum (http://mrl.sci.utah.edu/forums) 
were models and results are disseminated. The current test suite for FEBio consists of 
over 100 test problems.  The results from FEBio, ABAQUS, and NIKE3D for 
representative problems from the test suite are presented here, showing the nearly 
identical solutions produced by the three codes.  This excellent agreement should give 
researchers confidence going into a new research problem that FEBio can provide 
accurate results.  Finally, we continue to develop FEBio.  New element formulations and 
constitutive equations are being implemented and will become available in future 
versions of the code. 
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Introduction 

The finite element (FE) method is by far the most common numerical discretization and solution 
technique that has been used in computational biosolid mechanics.   The FE method provides a 
systematic method for assembling the response of a complex system from individual contributions of 
elements, and thus is ideal for the complex geometries often encountered in biomechanical systems.  It 
also provides a consistent way to address material inhomogeneities and differences in constitutive 
models between disjoint or continuous parts of a model.  The solution procedure involves the 
consideration of overall energy minimization and/or other fundamental physical balance laws to 
determine unknown field variables over the domain.  The FE method has been applied to problems in 
biomechanics as early as the 1970s (e.g. [1-6]).  The application of finite element analysis in 
biomechanics research and design has increased exponentially over the last 30 years as commercial 
software availability has improved and researchers obtained better access to appropriate computing 
platforms.  Applications have spanned from the molecular to cellular, tissue and organ levels.   

However, the lack of a FE software environment that is tailored to the needs of the field has 
hampered research progress, dissemination of research and sharing of models and results.   Investigators 
have primarily used commercial software, but these packages are not geared toward biological 
applications, are difficult to verify, preclude the easy addition and sharing of new features such as 
constitutive models, and are not sufficiently general to encompass the broad framework needed in 
biomechanics.  To address these issues, we developed FEBio (an acronym for “Finite Elements for 
Biomechanics”), a nonlinear implicit finite element framework designed specifically for analysis in 
computational solid biomechanics [7].   

Arguably the most important aspect of developing a new FE code is proper verification.  The 
American Society of Mechanical Engineer’s ‘Guide for Verification and Validation in Computational 
Solid Mechanics’ [8] defines verification as: 

 
‘The process of determining that a computational model accurately represents the underlying mathematical 
model and its solution.  In essence, verification is the process of gathering evidence to establish that the 
computational implementation of the mathematical model and its associated solution are correct.’ 

 
 In the case of computational solid biomechanics, the mathematical model is based on the partial 
differential equations that arise from the equations of motion (conservation of linear momentum), the 
associated boundary conditions, initial conditions, and constitutive equations.  Development of a 
numerical method of analysis based on the mathematical model requires numerical discretization, 
solution algorithms, and convergence criteria [8, 9].  To verify the numerical methods and 
computational implementation of the mathematical model in FEBio, it must be demonstrated that it 
gives the correct solution to a set of benchmark problems that consist of either analytical solutions or 
results from established FE codes, such as ABAQUS and NIKE3D.  We chose to compare the solutions 
from FEBio to those of ABAQUS and NIKE3D because ABAQUS is the most utilized FE code in the 
field of biomechanics and we have over 15 years experience using NIKE3D. 
 Our long term goal is to develop a freely available, extensible finite element modeling 
framework for solid mechanics, fluid mechanics, solute transport, and electrokinetics in biological cells, 
tissues and organs, based around the FEBio framework.  To date, no such tools are available for general 
use in the public domain.  The specific objectives of this report are to present results for a suite of 
verification problems to verify FEBio and simultaneously illustrate some of its capabilities. 
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Verification Problems 

Results produced by FEBio for a suite of verification problems were compared to the solutions from 
ABAQUS (Version 6.7, Simulia, Providence, RI) and NIKE3D (Version 3.4.2).  The methods (problem 
description) and results for each verification problem are presented together in the following sections.  
The current test suite for FEBio consists of over 100 test problems, and the problems described below 
are representative. 

 
Strip Biaxial Stretching of an Elastic Sheet with a Circular Hole.  A thin, initially square sheet 
containing a centrally located circular hole was subjected to uniaxial stretching. The example 
demonstrates the use and verifies the results of a hyperelastic material in plane stress.  The undeformed 
square sheet was 2 mm thick and 165 mm on each side with a centrally located internal hole of radius 
6.35 mm (Fig. 1).  The sheet was meshed with 32 three-field elements. 
 Plane stress boundary conditions were defined for the in-plane faces of the sheet.  The sheet was 
stretched to a width of 1181 mm using nodal displacements, while the edges parallel to the displacement 
were restrained from contracting using nodal constraints.  The sheet material was represented by a 

hyperelastic Mooney-Rivlin constitutive model with uncoupled deviatoric and volumetric behaviour. 
The uncoupled strain energy W is given by: 

      2

1 1 2 2

1
3 3 ln

2
W C I C I K J       (1) 

1C and 2C are the Mooney-Rivlin material coefficients, 1I and 2I are the invariants of the deviatoric part 

of the right Cauchy-Green deformation tensor, TC F F   , where ( 1 3)J F F , F is the deformation 
gradient, K is the bulk modulus, and  detJ  F is the Jacobian of the deformation.  When 2 0C  , this 

model reduces to an uncoupled version of the incompressible neo-Hookean constitutive model in Eq. 
(1).  For this problem, the Mooney-Rivlin coefficients and bulk modulus were 1 0.1863C   MPa, 

2 0.00979C  MPa, and K = 100 as first used by Oden [10] to match the experimental results for a 
rubber sheet first reported by Treloar [11].  The reaction force vs. percent elongation predicted by FEBio 
was compared to results from ABAQUS and NIKE3D. 
 The total nodal reaction force predicted by FEBio was identical to the results produced by 
NIKE3D, but varied some from ABAQUS due to the different algorithms used to enforce the material 
incompressibility (Fig. 2).  FEBio and NIKE3D use an augmented-Lagrangian routine to enforce 
isochoric deformation while ABAQUS uses a Lagrangian multiplier routine. 

A BA B

Figure 1.  A) Underformed mesh.  B) Deformed mesh. 
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Upsetting of an Elastic Billet.  The compression of a billet of material with two rigid flat surfaces was 
analyzed using only nodal constraints and displacements as the boundary and loading conditions.  This 
is a simplification of the contact problem presented next because the material is only compressed to the 
point when the material bulging from the middle of the billet makes contact with the flat surfaces (Fig. 
3, B).  The results from this problem were used to further verify the results from the contact problem 
presented next (Fig. 3, C).   
 A quarter-symmetry, plane strain model of a cube of material was produced for this problem 
(Fig. 3, A).  The model dimensions were 1 X 1 X 0.1 mm and a butterfly mesh with 10 elements per 
outer side and one element through the thickness produced converged results.  Boundary and loading 
conditions were prescribed using nodal constraint and nodal loads, respectively.  The billet was 
represented as a Mooney-Rivlin material with C1 = 1 MPa, C2 = 10 MPa, and bulk modulus (K) = 
10,000 MPa.  An augmented-Lagrangian routine was used to enforce an isochoric deformation. 
 The displacement of the top right node of the mesh (the billet bulge) was plotted versus the 
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Figure 2.  Total nodal reaction force versus percent 
elongation results for FEBio, ABAQS, and NIKE3D 
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Figure 3.  A) Undeformed billet mesh.  B) Deformed non-
contact billet.  C)  Deformed billet with contact. 
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percent compression and the results from FEBio were compared to results from ABAQUS and NIKE3D. 
 The lateral displacement of the billet predicted by FEBio was nearly identical to the results 
produced by ABAQUS and NIKE3D (Fig. 4). 

 
Billet with Contact. This problem adds the complexity of contact between an incompressible material 
and a rigid plane.  The billet was compressed 60% of its original height causing extensive contact 
between the material originally in the middle of the billet and the rigid plane.  The model geometry, 
material, and boundary conditions for this problem were the same as the previous problem, but for this 
problem the compression of the billet was caused by frictionless contact between the billet and rigid 
plane.  This contact was enforced using an augmented-Lagrangian routine. 
 The displacement of the top right node of the mesh (the billet bulge) was plotted versus the 
percent compression and the results from FEBio were compared to results from ABAQUS and NIKE3D. 
 The lateral displacement of the billet predicted by FEBio was nearly identical to the results 
produced by ABAQUS and NIKE3D and furthermore the results for both types of problem line up 
through the smaller range of compression (Fig. 4). 
Crushing of a Pipe.  This problem simulated the crusing of a long, straight pipe of cylindrical cross-

section between two flat, frictionless anvils.  This benchmarking problem includes large rotations and 
contact between deformable and rigid materials.  A quarter-symmetry, plane strain model of a 114.3 mm 
radius pipe with an 8.87 mm thickness was created for this problem (Fig. 5).  The model was meshed 
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Figure 4.  Contact and non-contact billet lateral bulge 
versus percent compression. 

Figure 5.  Undeformed and crushed pipe. 
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with 24 elements along the arc, four elements through the thickness, and one element through the length.  
Nodal constraints were used for the plane-strain and quarter-symmetry boundary conditions and the 
problem was driven by prescribing a 50 mm displacement to the rigid body.  Contact between the anvil 
and pipe was enforced using an augmented-Lagrangian routine.  A St. Venant-Kirchhoff elastic material 
(E = 186 GPa, v = 0.3) was used for this problem.  The rigid body reaction force versus displacement 
predicted by FEBio was compared to the results from NIKE3D and ABAQUS. 
 The variations in the results predicted by the three FE codes (Fig. 6) was due to the differences in 
the linear elastic materials invariant to large rotations implemented in each FE code.  Still, at peak 
displacement there was <3% difference in the predicted forces. 

Cartilage Layer Compressed by a Flat, Rigid, Impermeable Surface.  A half-symmetry finite element 
frictionless contact analysis was performed between a spherical elastic layer anchored to a rigid impermeable 
substrate and a flat impermeable rigid surface (Fig 7).  The geometry was representative of the articular layer of 
an immature bovine humeral head, with a cartilage surface radius of 46.3 mm and a cartilage layer thickness of 
0.8 mm.  The converged mesh consisted of 20 trilinear hexahedral elements through the thickness, 50 along the 
radial direction, and 14 along the circumferential direction.  The top of the cartilage layer was constrained by 
defining the top layer of nodes as a rigid body with all 6 DOF constrained.  The deformation at the center of the 
articular layer was set to 0.095 mm (~12% of the thickness) by displacing the bottom nodes using nodal 
prescribed displacements.  The cartilage layer was represented by the incompressible neo-Hookean constitutive 
model in Eq. (1) to approximate the short-time response of the tissue.  The radial and circumferential stresses 
predicted by FEBio through the thickness of the middle of the cartilage layer were compared to the results from 
ABAQUS and NIKE3D. 
 The predicted radial and circumferential stresses through the thickness of the middle of the cartilage 
layer were the same for FEBio and NIKE3D, but the stresses predicted by ABAQUS were consistently slightly 
larger (Fig. 8).  For this problem the small differences (<3%) are most likely due to FEBio and NIKE3D using 
an augmented-Lagrangian routine to enforce the material incompressibility and ABAQUS using a Lagrangian-
multiplier routine. 
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Figure 6.  Anvil reaction force versus percent 
displacement results for FEBio, ABAQUS, and NIKE3D. 
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Conclusions 

FEBio provides analysis methods and constitutive models that are relevant for this particular field and 
in this regard differ from many of the existing software tools that are currently being used by 
researchers.  But, before FEBio could be trusted to solve more complex problems it needed to be 
verified with solutions from established codes and the results from FEBio for these benchmark 
problems were nearly identical to the solutions produced by ABAQUS and NIKE3D.  This excellent 
agreement should give researchers confidence going into a new research problem that FEBio can 
provide accurate results.  Still, problem specific verification (mesh convergence studies) and 
validation (comparison to a “Gold Standard”) are necessary to assure that the predictions from FEBio 
are accurate for a specific problem. 
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Figure 7.  Cartilage compression model 
loading and boundary conditions. 

Figure 8.  Cartilage radial stress (left) and circumferential stress (right) versus percent thickness 
results for FEBio, ABAQUS, and NIKE3D. 
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