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Abstract:

Most spectral/hp element methods, whether employing a modal or nodal basis representation,
evaluate non-linear differential operators in ”physical space” at a collection of collocation or
quadrature points. The number of points used is often set to what is needed to represent the
original solution over an element (or integrate the square of the function over an element), and not
to what is needed to represent the square of the function. This discrepancy leads to aliasing errors,
which when the fields are highly resolved have little appreciative impact and hence can be ignored.
In under-resolved scenarios, aliasing can pollute the solution leading to decreased accuracy and
issues of stability. These errors can be eliminated by consistent integration at the price of increased
computational cost. In most engineering simulations, however, the issue is not binary: not all
elements within a simulation domain contain under-resolved solutions nor full-resolved solutions.
The location and times at which elements support under-resolved solutions varies based upon the
dynamics of the system. Hence an efficient mean of taming aliasing errors can be through dynamic
quadrature.
In this report, we present analysis that compares the computational efficiency of an adaptive
consistent integration strategy that dynamically adapts the level of quadrature based upon aliasing
indicator, with the traditional consistent integration approach. Hierarchical Gauss-Kronrod
quadrature is used, allowing for both error estimation and consistent integration of quadratic
non-linearities at a single set of points which have as their subset the classic integration points.
Our theoretical estimates indicate for our adaptive scheme to be efficient, linear quadrature needs
to be used on the majority of elements to keep the overall computational cost less than the cost
of the consistent integration approach. Two dimensional type elements are considered in all the
analysis.
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nor full-resolved solutions. The location and times at which elements support under-

resolved solutions varies based upon the dynamics of the system. Hence an efficient

mean of taming aliasing errors can be through dynamic quadrature.

In this report, we present analysis that compares the computational efficiency of an

adaptive consistent integration strategy that dynamically adapts the level of quadrature

based upon aliasing indicator, with the traditional consistent integration approach.

Hierarchical Gauss-Kronrod quadrature is used, allowing for both error estimation and

consistent integration of quadratic non-linearities at a single set of points which have

as their subset the classic integration points. Our theoretical estimates indicate for our

adaptive scheme to be efficient, linear quadrature needs to be used on the majority

of elements to keep the overall computational cost less than the cost of the consistent

integration approach. Two dimensional type elements are considered in all the analysis.

Keywords: spectral/hp elements, high-order finite elements, aliasing, de-aliasing,

integration errors, Gaussian integration, Gauss-Kronrod points, consistent inte-

gration, over-integration, insufficient quadrature, adaptive quadrature

1 Introduction

In spectral/hp element methods, the quadratic non-linearities of the incompressible Navier-

Stokes equations and the cubic non-linearities in the compressible Navier-Stokes are typically

computed in physical space using collocation projections. Specifically, the primary fields (e.g.,

velocity, pressure, energy) are first transformed into a physical space representation where

the fields are discretely evaluated at a set of collocation points.
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In spectral/hp element methods following a tensor-product numerical quadrature ap-

proach, quadrilateral and hexahedral elements are integrated at tensor-products of Gauss-

Legendre (GL) or Gauss-Lobatto-Legendre (GLL) points [8, 11, 12] and triangles, tetrahe-

dra, prisms and pyramids are integrated at tensor-product configurations of Gauss-Lobatto-

Legendre (GLL) points and Gauss-Radau-Legendre (GRL) points, GLL-GRL-GRL points,

GLL-GRL-GLL points and GLL-GLL-GRL points respectively [11, 12]. Once a collection

of collocation/quadrature points have been specified, non-linear products can be obtained

at the discrete points in a collocation fashion analogous to the pseudo-spectral evaluation

commonly adopted in global spectral methods.

A normal practice in polynomial Galerkin methods is the use of sufficient quadrature to

integrate the linear differential terms exactly. In [13, 17] it was argued that employing an

insufficient quadrature rule for evaluating non-linear terms leads to an aliasing error that

pollutes the solution, possibly degrading the accuracy of the solution and in the worst case

leading to issues in the numerical instability of the scheme. In [13], the proposed solution

was dubbed “over-integration” – a term implying that de-aliasing of the solution requires

the use of more quadrature points than would be necessary to integrate linear differential

terms in a polynomial Galerkin method exactly. In this paper we refer to this technique

as “insufficient quadrature” (the same language used by [14]) since this terminology more

accurately represents the approximation. The errors caused by insufficient quadrature can be

bounded by the theoretical estimates of [6], and often this result is used to support the idea

that, if the simulation is well-resolved, then the numerical crimes committed by insufficient

quadrature are negligible. However, as pointed out in [5] the theory does not address what
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happens in the marginally or badly resolved cases frequently encountered in practice.

Although use of consistent integration of the non-linear products eliminates the problems

associated with aliasing brought on by insufficient quadrature used when handling non-linear

terms, there is a computational penalty (as reported in [9]). Specifically, as was discussed

in [13], at least 3/2 times more quadrature points per direction are required to properly inte-

grate quadratic non-linearities (two times more points per direction for cubic non-linearities).

Hence, there may be a reasonably high computational cost when adopting consistent integra-

tion rules for the non-linear terms as compared to a quadrature rule designed to consistently

handle the standard linear terms.

The numerical practitioner often wants to know answers to the following questions: (1)

When is exact or consistent integration absolutely necessary? (2) Do all elements (or regions

of the domain) require the use of consistent integration or can its use be selective? (3) If

use of consistent integration can be done on a selective basis, how does one automatically

determine when it should be used? And lastly, (4) Is there any computationally efficient,

dynamic middle-ground between insufficient quadrature and exact integration (for example,

that uses consistent integration only when necessary and does so in a way that the decision

algorithm is not more costly than doing consistent integration everywhere)?

The main purpose of this report is to understand the computational costs when evaluating

quadratic non-linear products on one-dimensional and two-dimensional spectral/hp discreti-

sations with the goal of helping the numerical practitioner answer the questions mentioned

above. Once solved in one- and two-dimensions, the results of this study extend naturally

to the aforementioned three-dimensional discretisation types. Specifically, we attempt to
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answer (or review the answers to) the following questions:

• What is the computational cost of consistent integration versus the “under-integration”

alternative?

• At the extra cost of evaluating the function at a larger number of Gauss-Kronrod points

on all elements, can one devise a scheme in which performing consistent integration on

only a small proportion of elements is more efficient than consistent integration on all

elements?

The report is organized as follows. In Section 2, we present a theoretical discussion of

the aliasing error due to the projection of squared polynomials (to mimic quadratic non-

linearities) and provide a numerical example to help gain intuition into the results in higher

dimensions. We also present an example mesh and flow solution from a published three-

dimensional fluid mechanics simulation that helps demonstrate that a large number of the

elements within the simulation domain do not need consistent integration, and hence the

added cost of the procedure on these elements is a waste of computational resources. The

combination of these two examples motivates our search for a dynamically adaptive strategy.

In Section 3 we present a review of tensor-product quadrature rules as typically used in

spectral/hp element discretisations with specific emphasis on the operation counts incurred.

In Section 4 we present the core building block of our adaptive strategy, Gauss-Kronrod

integration. Gauss-Kronrod integration is a (spatially) hierarchical quadrature rule that

augments traditional Gaussian integration rules; the hierarchical nature of the point locations

allow one to develop error estimation strategies. In Section 5 we present both the algorithm

and operation cost analysis for our dynamic adaptation strategy. In Section 6, we discuss
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two alternatives to our initial adaptive scheme. In Section 7, we summarize our findings and

provide some guidelines for the numerical methods practitioner to understand the trade-offs

between the different strategies presented.

2 Motivation

To motivate our discussion, we first examine the essence of the non-linear evaluation based on

a simple illustrative example in one dimension. Assume we are given a single spectral/hp ele-

ment E defined on [−1, 1] supporting polynomials up to degree N . We denote by {φi(ξ)}, i =

0, . . . , N an orthonormal basis in L2[−1, 1] (i.e. the scaled Legendre polynomial basis) that

spans the polynomial space PN ; the index i provides the maximum degree of the polynomial

expression denoted by the basis function φi.

We now presume that we have a polynomial expansion of the form:

u(ξ) =
N∑

i=0

ûiφi(ξ),

and we are interested in obtaining the expansion

w(ξ) =
N∑

k=0

ŵkφk(ξ)

such that ‖w(ξ)−[u(ξ)]2‖L2 is minimized. The modal coefficients ŵk are uniquely determined

through the Galerkin projection which can be determined in this case by the following

expression:

ŵk =
N∑

i,j=0

ûiûj

∫ 1

−1

φi(ξ)φj(ξ)φk(ξ) dξ (1)
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for k = 0, . . . , N .

Note that the integrand in Equation (1) contains the product of three polynomials from

PN , and hence it is at most a polynomial in P3N . For notational simplicity, let us define the

inner product of two functions on [−1, 1] as follows:

(f, g) =

∫ 1

−1

f(ξ)g(ξ) dξ,

and the corresponding Gauss-Lobatto-Legendre (GLL) quadrature approximation of the in-

ner product

[f, g]Q =

Q∑
i=1

ωif(zi)g(zi),

where zi and ωi denote the GLL quadrature points and weights, respectively. The natural

number Q denotes the number of points (or weights) used. We know that the GLL quadrature

is an exact approximation (to machine precision) of the inner product when the integrand

I ∈ P2Q−3 and has an error term of the following form [1,10],

EQ = −Q(Q− 1)322Q−1[(Q− 2)!]4

(2Q− 1)[(2Q− 2)!]3
I(2Q−2)(ζ)

where ζ ∈ [−1, 1].

Now let us consider the case where an insufficient quadrature is employed. As a common

example, we consider a quadrature order sufficient to integrate polynomials in P2N , as typ-

ically required for a linear operation in a Galerkin discretisation. The relation between the

true modal solution ŵk, defined in Equation (1), and the approximate modal solution w̃k,
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defined as

w̃k =
P∑

i,j=0

ûiûj[φi(ξ)φj(ξ), φk(ξ)]Q,

is given by the following expression,

w̃k = ŵk −




N∑
i,j=0

i+j>2P−k

ûiûj ((φiφj, φk)− [φiφj, φk]Q)


 , (2)

for k = 0, . . . , N .

To demonstrate how insufficient integration influences the modes, consider the following

“worst-case” numerical example. Suppose that N = 10 (i.e. 10th degree polynomials) and

that the function we are trying to project is given by u(x) =
∑10

i=0 φi(ξ) – which amounts

to all the modal coefficients ûi being set to 1.0 and mimics a case in which an element has

significantly under-resolved the solution within the element. The exact Galerkin projection

yielding the modes ŵk, k = 0, . . . , N can be computed when Q = 17 GLL points/weights

are used to approximate the integral [·, ·]Q given by Equation (1). Suppose, however, that

only Q = 12 GLL points/weights are used (sufficient for integrating a polynomial in P2N

exactly). Instead of arriving at ŵk, we obtain w̃k as given in Equation (2). For this particular

example, the difference between the true and the approximate inner product of the triplet

is negative for each k. Combining this fact with the observation that ûiûj = 1 ∀i, j in this

example, we find that there is additional energy added to every mode but the mean mode

(i.e. k = 0).

In Figure 1, we present a bar chart of the magnitude of the modal energies when reduced

quadrature (w̃k) and exact quadrature (ŵk) are adopted. Note that modification of the

integration rule used (e.g. using Gauss-Legendre as opposed to Gauss-Lobatto-Legendre)
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Figure 1: Magnitude of the modal coefficients when exact quadrature (Q = 17) and reduced

quadrature (Q = 12) is used. In this example, energy is added due to insufficient quadrature

to all but the mean mode (i.e. k=0).

9



or different choices of function may lead to different aliasing characteristics (such as energy

removal).

Whereas our one-dimensional example demonstrates how pernicious aliasing errors can

be and provides strong motivation for using consistent integration, practitioners are quick

to point out that it demonstrates a worst case scenario that is not often to happen (in

the case of being so grossly under-resolved); it does not indeed represent the average case.

To understand the practitioners’ “average case”, one must examine the discretisations and

scenarios under which aliasing might be an issue.

Figure 2: Example of a mesh used in engineering practice (left) and representative flow

solution generated on the mesh (right) as presented in [7].

Consider the mesh present in Figure 2 (left) and corresponding flow solution (right)

taken from the work of one of the authors [7] in which they are studying the wake dynamics

generated by flow around two circular cylinders in a staggered spatial configuration. In large

part for numerical reasons, the mesh used for numerical simulation contains a large number

of elements upstream of the cylinders (i.e. ahead of the cylinders) and flanking the cylinders.

The solution in these elements is equally to or is only a small perturbation off of the inflow

free-stream condition, which is set to a uniform flow going left to right. Although the full

three-dimensional (non-linear) Navier-Stokes equations are being solved in these elements,
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the solution is so well resolved that consistent integration provides no appreciative benefit

for the required computational cost. Only a small proportion of elements residing around

and in the wake of the cylinder cover regions in which the dynamics of the system would

even suggest the use of consistent integration.

These two examples provide the motivation for our work. In the worst case, aliasing errors

can greatly impact the solution quality in a variety of ways. Consistent integration is one

means of avoiding aliasing issues, but is rather expensive compared to what is normally done

in practice. As demonstrated by the flow example, large regions may never need the benefits

of consistent integration, and hence correspond to a wasted investment of computational

resources. The key questions are then how to determine what elements need consistent

integration and how to employ it adaptively if and when it is needed. In the next section,

we review the quadrature approaches that are commonly used in spectral/hp elements, in

Section 4 we introduce Gauss-Kronrod quadrature, what we think to be the building block

of an aliasing adaptation strategy, and in Section 5 we try to provide an algorithm for

adaptively handling consistent integration.

3 Quadrature Used in Spectral/hp Elements

In this section we review the various quadrature rules used for integrating tensor-product

based spectral/hp element methods [11,12]. We start in Section 3.1 with a review of Gaussian

quadrature with appropriate definitions of notation that will be used throughout the paper.

In Section 3.2 we outline the operator that we will study. In Sections 3.3.1 - 3.3.3, we will

present theoretical estimates on the computational cost of the operator under investigation
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for segments, quadrilaterals and triangles.

3.1 Brief Review of Gaussian Quadrature

Gaussian quadrature can in some sense be considered the work-horse of almost all polynomial

Galerkin spectral/hp methods. Almost all simulation codes apply some form of Gaussian

quadrature. As its usage is ubiquitous, we will not review all the historical and theoretical

properties of the quadrature rule – we refer the interested reader to [5]. In this section,

we will review only those components and notations that we require for discussion of our

consistent integration scheme.

Let us assume for simplicity that we are interested in the integral of a function given by:

I[f ] :=

∫ 1

−1

f(x) dx.

Without loss of generality, we will limit our discussion to integration on [−1, 1]; extensions

to compact intervals and to multi-dimensional elements exist through the use of affine maps

and polynomial bijective a.e. maps respectively.

Gauss-Legendre Quadrature is defined as follows. Given Q Gauss-Legendre points −1 <

x1 < . . . < xk < . . . < xQ < 1 and corresponding weights {αk}, k = 1, . . . , Q, the Gaussian

quadrature approximation of the integral defined above is given by:

GQ[f ] :=

Q∑

k=1

αk f(xk).

Gaussian integration has the unique property that if f ∈ P2Q−1, GQ[f ] = I[f ]. For more

information on how to calculate the points and weights refer to [12].

Two further quadrature rules are commonly employed. Gauss-Radau-Legendre Quadra-

ture establishes a collection of points and weights such that one of the points is pinned at one
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end of the interval (i.e. −1 = x1 < . . . < xk < . . . < xQ < 1) and has the unique property

that if f ∈ P2Q−2, GQ[f ] = I[f ]. Similarly, Gauss-Lobatto-Legendre Quadrature establishes

a collection of points and weights such that −1 = x1 < . . . < xk < . . . < xQ = 1 and has the

unique property that if f ∈ P2Q−3, GQ[f ] = I[f ].

3.2 Operator To Be Studied

The fundamental operator that we will study in this report is one which takes as input a

vector of modal values on an element and produces a vector of the same dimension denoting

the inner product of the basis functions against the result of a non-linear operator acting

on the input vector. We will focus all our discussion on the simple squaring of a function,

although the results and discussion can easily be extended to more complicated non-linear

operators.

Independent of dimension, assume we denote our polynomial function over an element

Ωe by

u(~x) =
N∑

i=0

ûiφi(~x) ~x ∈ Ωe

and define our input vector as {ûk}N
k=0. If our non-linear operator is the squaring of the

function, then the idealized (exact) output vector of our method {ŵk}N
k=0 is given by:

ŵk =

∫

Ωe

φi(~x) (u(~x))2 dx (3)

= I[φi(~x) (u(~x))2] (4)

where we have assumed appropriate mapping of the element to our reference interval (or

reference element).
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In practice, the integral above is approximated with Gaussian quadrature: ŵk ≈ w̃k =

GQ[φi(~x) (u(~x))2]. In one-dimension, if u ∈ PN and if we employ Gauss-Legendre-Lobatto

quadrature, ŵk = w̃k given Q ≥ d(3N +3)/2e. We will refer to this as consistent integration.

If Q = N + 2 – that is, what is typically done for solving linear advection problems as it

integrates polynomials in P2N exactly – we will refer to this as linear-consistent integration.

Under the assumption that we can compute and cache the values of the integration

points/weights and the basis functions evaluated at those points, the general algorithm we

will employ is as follows:

(0) Input a vector of modal coefficients {ûk}N
k=0 representing a polynomial of at most degree

N . Set the quadrature order to Q based upon either linear-consistent or consistent

integration.

(1) Evaluate the input polynomial at the quadrature points, producing a vector of function

values at the points.

(2) Evaluate the non-linear differential operator at the quadrature points, producing a

vector containing the squared values.

(3) Form the right-hand-side inner product vector {w̃k}N
k=0 using Equation (4).

Items (1) and (3) can in general be computed through the use of two techniques: matrix-

based methods and sum-factorization. In the sections to follow, we will provide the theoret-

ical computational cost estimates for the procedure for these two approaches.
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3.3 Cost Functions

Here we examine the different cost functions for the linear and over quadrature mentioned

in the previous section considering different element types. In the expressions that follow,

• M is the number of modes,

• N = M − 1 is the polynomial order,

• Q is the number of quadrature points,

• M0 is the number of modes in direction 0,

• M1 is the number of modes in direction 1,

• N0 is the expansion order of the basis in direction 0,

• N1 is the expansion order of the basis in direction 1,

• Mtot is the total number of modes of the expansion,

• Q0 is the number of quadrature points in direction 0,

• Q1 is the number of quadrature points in direction 1,

• µ is the operational cost of the floating point multiplication, and

• α is the operational cost of the floating point addition.
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3.3.1 Segment

We consider the right hand side projection of the polynomial squared,

w̃k =

∫

Ωe

u2(x)φk(x)dx (5)

following the procedure for forming the right-hand-side vector mentioned in the previous

section, and we provide theoretical cost estimates when computing this operator on segments.

To evaluate (5),

• The cost of item (1), ti =
∑N

n=0 ûnφn(xi), ∀(i):

Citem1 = QMµ + Q(M − 1)α

• The cost of item (2), ti = t2i , ∀(i):

Citem2 = Q ∗ µ

• The cost of item (3), w̃k =
∑

i αitiφk(xi), ∀(k):

Citem3 = MQ ∗ 2µ + M(Q− 1)α

• Total cost:

Ctot = (3QM + Q)µ + (Q(M − 1) + M(Q− 1))α (6)

3.3.2 Quadrilateral Elements

Here we again provide analytical cost estimates for the right hand side projection of the

polynomial squared,

w̃rs =

∫

Ωe

u2(x, y)φrs(x, y)dxdy (7)
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when using quadrilateral type elements considering first the matrix operations and then the

sum-factorization technique.

matrix operations:

To evaluate (7),

• The cost of item (1), tij =
∑N0

r=0

∑N1

s=0 ûrsφrs(xi, yj), ∀(i, j):

Citem1 = Q0Q1M0M1µ + Q0Q1(M0M1 − 1)α.

• The cost of item (2), tij = t2ij, ∀(i, j):

Citem2 = Q0Q1µ

• The cost of item (3), w̃rs =
∑

i

∑
j αiαjtijφrs(xi, yj), ∀(r, s):

Citem3 = 3M0M1Q0Q1µ + M0M1(Q0Q1 − 1)α.

• Total cost:

Ctot = (4Q0Q1M0M1 + Q0Q1)µ + (Q0Q1(M0M1 − 1) + M0M1(Q0Q1 − 1))α (8)

sum-factorization:

To evaluate (7),

• The cost of item (1), tij =
∑N0

r=0 ψr(xi)
∑N1

s=0 ûrsψs(yj), ∀(i, j):

– The cost of the inner summation: Csum1 = Q1M0M1µ + Q1M0(M1 − 1)α.

– The cost of the outer summation: Csum2 = Q0Q1M0µ + Q0Q1(M0 − 1)α

– Hence the total cost of item (1):

Citem = (Q1M0M1 + Q0Q1M0)µ + (Q1M0(M1 − 1) + Q0Q1(M0 − 1))α.
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• The cost of item (2), tij = t2ij, ∀(i, j):

Citem2 = Q0Q1µ.

• The cost of item (3): w̃rs =
∑

i αiψr(xi)
∑

j αjtijψs(yj), ∀(r, s):

– The cost of the inner summation: Csum1 = Q0M1Q1 ∗ 2µ + Q0M1(Q1 − 1)α.

– The cost of the outer summation: Csum2 = M0M1Q0 ∗ 2µ + M0M1(Q0 − 1)α.

– Hence the total cost of item (3):

Citem3 = (2Q0M1Q1 + 2M0M1Q0)µ + (Q0M1(Q1 − 1) + M0M1(Q0 − 1))α.

• The total cost is:

Ctot = (2Q0M1Q1 + M0M1Q0 + Q1M0M1 + Q0Q1M0 + Q0Q1)µ

+ (Q1M0(M1 − 1) + Q0Q1(M0 − 1) + Q0M1(Q1 − 1) + M0M1(Q0 − 1))α

(9)

3.3.3 Triangular Elements

We evaluate the integral mentioned in (7) this time taking into account the triangular element

shape. We assume, M0 ≤ M1, so the total number of modes is:

Mtot =
1

2
M0(M0 + 1) + M0(M1 −M0) (10)

We consider both matrix operations and sum-factorization technique.

matrix operations

To evaluate (7),

• The cost of item (1), tij =
∑Mtot−1

n=0 φn(xi, yj)ûn, ∀(i, j):

Citem1 = MtotQ0Q1µ + (Mtot − 1)Q0Q1α.
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• The cost of item (2), tij = t2ij, ∀(i, j) :

Citem2 = Q0Q1µ.

• The cost of item (3), w̃m =
∑

i

∑
j αiαjtijφm(xi, yj)Jij, ∀m ∈ Mtot:

Citem3 = MtotQ0Q1 ∗ 4µ + Mtot(Q0Q1 − 1)α

• The total cost is:

Ctot = (5MtotQ0Q1 + Q0Q1)µ + ((Mtot − 1)Q0Q1 + Mtot(Q0Q1 − 1))α (11)

sum-factorization

To evaluate (7),

• The cost of item (1), tij =
∑N0

r=0 ψr(xi)
∑g(r)

s=0 ψs(yj)ûrs, ∀(i, j):

– The cost of inner summation:

Csum1 = (1
2
M0(M0 + 1) + M0(M1 −M0))Q1µ

+(1
2
M0(M0 + 1) + M0(M1 −M0)−M0)Q1α.

– The cost of the outer summation: Csum2 = M0Q0Q1µ + (M0 − 1)Q0Q1α.

– Hence the total cost of item (1):

Citem1 = (1
2
M0(M0 + 1) + M0(M1 −M0) + M0Q0)Q1µ

+(1
2
M0(M0 + 1) + M0(M1 −M0) + (M0 − 1)Q0 −M0)Q1α.

• The cost of item (2), tij = t2ij, ∀(i, j):

Cstep2 = Q0Q1µ.

• The cost of item (3), w̃rs =
∑

j αjψs(yj)
∑

i αitijψr(xi)Jij, ∀(r, s) :
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– The cost of the inner summation: Csum1 = Q0M0Q1 ∗ 3µ + Q0M0(Q1 − 1)α.

– The cost of the outer summation:

Csum2 = (1
2
M0(M0 + 1) + M0(M1 −M0))Q1 ∗ 3µ

+(1
2
M0(M0 + 1) + M0(M1 −M0))(Q1 − 1)α.

– Hence the total cost of item (3):

Citem3 = 3(1
2
M0(M0 + 1) + M0(M1 −M0) + Q0M0)Q1µ

+(1
2
M0(M0 + 1) + M0(M1 −M0) + Q0M0)(Q1 − 1)α.

• The total cost:

Ctot = 4(Mtot + Q0M0 + Q0)Q1µ

+ ((Mtot + (M0 − 1)Q0 −M0)Q1 + (Mtot + Q0M0)(Q1 − 1))α (12)

Figure (3) shows the plots of the cost functions for quadrilateral and triangular elements.
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Figure 3: Cost in function of 1D expansion order, top row: linear quadrature; bottom row:

consistent quadrature.
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4 Review of Gauss-Kronrod Quadrature

The lesser-known area of Gaussian quadrature within the spectral/hp element community

is that of Gauss-Kronrod quadrature. A review of the historical and theoretical background

is provided in [2]. Means computing the Gauss-Kronrod points and weights are provided

in [3, 15], with extensions to Kronrod-Radau and Kronrod-Lobatto in [16].

Gauss-Kronrod Quadrature is defined as follows. Given 2Q+1 Gauss-Kronrod(-Legendre)

points −1 < z1 < . . . < zk < . . . < z2Q+1 < 1 and corresponding weights {ωk}, k =

1, . . . , 2Q + 1, the Gaussian quadrature approximation of the integral defined above is given

by:

K2Q+1[f ] :=

2Q+1∑

k=1

ωkf(zk)

Gauss-Kronrod integration has several unique properties (reviewed in [4]), amongst them

are:

• If f ∈ P3Q+1, K2Q+1[f ] = I[f ].

• The Gauss-Legendre points are a subset of the Gauss-Kronrod points: {xk}Q
k=1 ⊂

{zk}2Q+1
k=1 . The weights do not have a similar property; the Gauss-Kronrod weights

differ from the Gauss-Legendre weights.

• The points that are “added” to the Gauss points are interlacing (a Gauss-Kronrod

point lies in-between two Gauss quadrature). That is, if you consider the 2Q + 1

Gauss-Kronrod points:

−1 < z1 < z2 < z3 < z4 < . . . < z2Q−2 < z2Q−1 < z2Q < z2Q+1 < 1

22



the Q Gauss(-Legendre) points are interlaced as follows:

−1 < z1 < x1 < z3 < x2 < . . . < xQ−1 < z2Q−1 < xQ < z2Q+1 < 1

which can be succinctly written as z2j = xj, j = 1, . . . , Q.

• The weights corresponding to the points that are “added” are all positive.

The first two properties are exploited to allow one to form a quadrature error estimator.

Consider the following:

K2Q+1[f ] =

2Q+1∑

k=1

ωkf(zk) (13)

=

Q∑

k=1

ωkf(xk) +

Q+1∑

k=1

ω2k−1f(z2k−1) (14)

= GQ[f ] +

Q∑

k=1

(ωk − αk)f(xk) +

Q+1∑

k=1

ω2k−1f(z2k−1) (15)

= GQ[f ] +

2Q+1∑

k=1

ω̃kf(zk) (16)

where ω̃2k−1 = ω2k−1, k = 1, Q + 1.

In the application of Gauss-Kronrod rules, both GQ[f ] and K2Q+1[f ] are evaluated and

the pair of approximations of I[f ] is used to estimate the error in GQ[f ].

5 Adaptation Strategy and Cost Analysis

In this section we present an adaptive quadrature algorithm based upon the use of Gauss-

Kronrod quadrature. We propose an “aliasing indicator” to be used for determining on what
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elements consistent integration should be used. We show theoretical computational results

which give the percentage of elements on which consistent integration can be performed such

that the adaptive quadrature scheme is competitive with consistent integration everywhere

in the domain using Gaussian quadrature.

5.1 Adaptation Quadrature Algorithm

(0) Input a vector of modal coefficients {ûk}N
k=0 representing a polynomial of at most degree

N . Set the quadrature order to Q = N + 2.

(1) Evaluate the polynomial at 2Q − 1 Lobatto-Kronrod points, producing a vector of

function values {u(zk)}2Q−1
k=1 .

(2) Evaluate the non-linear differential operator at the 2Q−1 quadrature points, producing

a vector {[u(zk)]
2}2Q−1

k=1 .

(3) Use an aliasing indicator to establish whether to use (a) linear-consistent or (b) Kronrod-

consistent integration on the element. The aliasing indicator takes as input the vector

{[u(zk)]
2}2Q−1

k=1 and returns a binary response denoting (a) or (b).

(4) Form the right-hand-side inner product vector {ŵ}N
k=0 using the strategy selected in

(3). The output is a vector denoting the inner product of the square of the input

polynomial projected against the basis functions.
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5.2 Aliasing Estimator

Following [2], we propose the following aliasing indicator. Let f denote the operator of

interest. Our aliasing indicator is as follows:

(1) Compute µ = GQ[f ].

(2) Compute A1 = K2Q−1[(f − µ)2] and A2 = GQ[(f − µ)2] denoting a type of “variance”.

(3) If |A1 − A2|/|A1| > tolerance do consistent integration using Kronrod quadrature

otherwise do linear-consistent integration using Gaussian quadrature.

5.3 Theoretical Cost Analysis

Here we try to find the percentage of using linear quadrature that yields the theoretical

cost of the adaptive scheme equivalent to the cost of consistent integration. We perform

the analysis for the quadrilateral and triangular element types. We consider the cost of

evaluating the aliasing indicator to be zero.

If we denote the cost of forming the right hand side vector using linear integration as C̄lin,

the same cost using the Kronrod approach as C̄k and the cost of evaluating the function at

the Kronrod points and the non-linear operator together as Cfix then we have the following

formula for the cost of the adaptive scheme:

Cadapt = ζC̄lin + (1− ζ)C̄k + Cfix. (17)

We denote the cost of the consistent integration as Ccon. So, in order to have Cadapt =
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Ccon, we get the following value for ζ:

ζ =
Ccon − C̄k − C̄fix

C̄lin − C̄k

. (18)

.

5.3.1 Quadrilateral elements

To determine each individual cost mentioned above we consider first a quadrilateral type

element. Furthermore, like before, we denote the cost of evaluating the polynomial at the

quadrature points as Citem1 , the cost of evaluating the non-linear operator as Citem2 and the

cost of forming the right hand side inner product as Citem3 .

Using the matrix-vector multiply approach, we have

• Ccon = Citem1 + Citem2 + Citem3 , Q0 = Q1 = 3N/2 + 2:

Citem1 = Q0Q1M0M1µ + Q0Q1(M0M1 − 1)α,

= (3N/2 + 2)2(N + 1)2µ + (3N/2 + 2)2((N + 1)2 − 1)α.

Citem2 = Q0Q1µ,

= (3N/2 + 2)2.

Citem3 = M0M1Q0Q13µ + M0M1(Q0Q1 − 1)α,

= (N + 1)2(3N/2 + 2)23µ + (N + 1)2((3N/2 + 2)2 − 1)α. (19)

• C̄k = Citem3 , Q0 = Q1 = 2(N + 2)− 1 = 2N + 3:

Citem3 = M0M1Q0Q13µ + M0M1(Q0Q1 − 1)α,

= (N + 1)2(2N + 3)23µ + (N + 1)2((2N + 3)2 − 1)α. (20)
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• Cfix = Citem1 + Citem2 , Q0 = Q1 = 2(N + 2)− 1 = 2N + 3:

Citem1 = Q0Q1M0M1µ + Q0Q1(M0M1 − 1)α,

= (2N + 3)2(N + 1)2µ + (2N + 3)2((N + 1)2 − 1)α.

Citem2 = Q0Q1µ,

= (2N + 3)2. (21)

• C̄lin = Citem3 , Q0 = Q1 = (N + 2):

Citem3 = M0M1Q0Q13µ + M0M1(Q0Q1 − 1)α,

= (N + 1)2(N + 2)23µ + (N + 1)2((N + 2)2 − 1)α. (22)

Substituting the above values into the equation (18), results in the values for ζ mentioned

in Table 1. As you can see for some polynomial orders we get ζ > 1.0. This means that

for those cases our adaptive scheme is no beneficial comparing to the consistent integration.

Also, for the sum-factorization approach we only get ζ < 1.0 for the last 4 polynomial orders.

Using the sum-factorization approach we have,
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N ζ N ζ

1 1.20 9 0.94

2 1.09 10 0.93

3 1.04 11 0.93

4 1.00 12 0.93

5 0.98 13 0.92

6 0.97 14 0.92

7 0.96 15 0.92

8 0.95 16 0.91

N ζ N ζ

1 1.31 9 1.01

2 1.19 10 1.01

3 1.13 11 1.00

4 1.09 12 1.00

5 1.06 13 0.99

6 1.05 14 0.99

7 1.03 15 0.98

8 1.02 16 0.98

Table 1: ζ values when using matrix-vector multiply approach (left) and sum-factorization

approach (right), for quadrilateral elements.

• Ccon = Citem1 + Citem2 + Citem3 , Q0 = Q1 = 3N/2 + 2:

Citem1 = Q1M0M1µ + Q1M0(M1 − 1)α

+ Q0Q1M0µ + Q0Q1(M0 − 1)α,

= (3N/2 + 2)(N + 1)2µ + (3N/2 + 2)(N + 1)((N + 1)− 1)α

+ (3N/2 + 2)2(N + 1)µ + (3N/2 + 2)2((N + 1)− 1)α.

Citem2 = Q0Q1µ,

= (3N/2 + 2)2µ,

Citem3 = Q0M1Q12µ + Q0M1(Q1 − 1)α

+ M0M1Q02µ + M0M1(Q0 − 1)α,

= (3N/2 + 2)(N + 1)(3N/2 + 2)2µ + (3N/2 + 2)(N + 1)((3N/2 + 2)− 1)α

+ (N + 1)2(3N/2 + 2)2µ + (N + 1)2((3N/2 + 2)− 1)α (23)
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• C̄k = Citem3 , Q0 = Q1 = (2N + 3):

Citem3 = Q0M1Q12µ + Q0M1(Q1 − 1)α

+ M0M1Q02µ + M0M1(Q0− 1)α

= (2N + 3)(N + 1)(2N + 3)2µ + (2N + 3)(N + 1)((2N + 3)− 1)α

+ (N + 1)2(2N + 3)2µ + (N + 1)2((2N + 3)− 1)α (24)

• Cfix = Citem1 + Citem2 , Q0 = Q1 = (2N + 3):

Citem1 = Q1M0M1µ + Q1M0(M1 − 1)α

+ Q0Q1M0µ + Q0Q1(M0 − 1)α

= (2N + 3)(N + 1)2µ + (2N + 3)(N + 1)((N + 1)− 1)α

+ (2N + 3)2(N + 1)µ + (2N + 3)2((N + 1)− 1)α

Citem2 = Q0Q1µ

= (2N + 3)2µ (25)

• C̄lin = Citem3 , Q0 = Q1 = (N + 2):

Citem3 = Q0M1Q12µ + Q0M1(Q1 − 1)α

+ M0M1Q02µ + M0M1(Q0 − 1)α

= (N + 2)(N + 1)(N + 2)2µ + (N + 2)(N + 1)((N + 2)− 1)α

+ (N + 1)2(N + 2)2µ + (N + 1)2((N + 2)− 1)α (26)

Table 1, shows the corresponding ζ values.
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5.3.2 Triangular elements

In this section we perform a similar analysis as the previous section to determine the values

of ζ when using triangular shape elements. We again consider equal number of modes in

both directions, i.e. M0 = M1.

Using matrix-vector multiply approach we have

• Ccon = Citem1 + Citem2 + Citem3 , Q0 = Q1 = 3N/2 + 2:

Citem1 = MtotQ0Q1µ + (Mtot − 1)Q0Q1α,

=
1

2
(N + 1)(N + 2)(3N/2 + 2)2µ + (

1

2
(N + 1)(N + 2)− 1)(3N/2 + 2)2α.

Citem2 = Q0Q1µ,

= (3N/2 + 2)2.

Citem3 = MtotQ0Q14µ + Mtot(Q0Q1 − 1)α,

=
1

2
(N + 1)(N + 2)(3N/2 + 2)24µ

+
1

2
(N + 1)(N + 2)((3N/2 + 2)2 − 1)α. (27)

• C̄k = Citem3 , Q0 = Q1 = 2(N + 2)− 1 = 2N + 3:

Citem3 = MtotQ0Q14µ + Mtot(Q0Q1 − 1)α,

=
1

2
(N + 1)(N + 2)(2N + 3)24µ +

1

2
(N + 1)(N + 2)((2N + 3)2 − 1)α(28)
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• Cfix = Citem1 + Citem2 , Q0 = Q1 = 2(N + 2)− 1 = 2N + 3:

Citem1 = MtotQ0Q1µ + (Mtot − 1)Q0Q1α,

=
1

2
(N + 1)(N + 2)(2N + 3)2µ + (

1

2
(N + 1)(N + 2)− 1)(2N + 3)2α.

Citem2 = Q0Q1µ,

= (2N + 3)2. (29)

• C̄lin = Citem3 , Q0 = Q1 = (N + 2):

Citem3 = MtotQ0Q14µ + Mtot(Q0Q1 − 1)α,

=
1

2
(N + 1)(N + 2)(N + 2)24µ +

1

2
(N + 1)(N + 2)((N + 2)2 − 1)α (30)

Substituting the above formulas into equation 18 yields the values for ζ mentioned in table

2. Again we see that for some polynomial orders our adaptive scheme is no better than the

consistent integration in terms of theoretical costs estimates.

Using the sum-factorization approach we have,
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N ζ N ζ

1 1.12 9 0.88

2 1.02 10 0.87

3 0.97 11 0.88

4 0.94 12 0.86

5 0.92 13 0.86

6 0.90 14 0.86

7 0.89 15 0.86

8 0.865 16 0.85

N ζ N ζ

1 1.18 9 0.93

2 1.07 10 0.92

3 1.02 11 0.91

4 0.99 12 0.91

5 0.97 13 0.90

6 0.95 14 0.90

7 0.94 15 0.90

8 0.93 16 0.90

Table 2: ζ values when using matrix-vector multiply approach (left) and sum-factorization

approach (right), for triangular elements.

• Ccon = Citem1 + Citem2 + Citem3 , Q0 = Q1 = 3N/2 + 2:

Citem1 = MtotQ1µ + (Mtot −M0)Q1α

+ M0Q0Q1µ + (M0 − 1)Q0Q1α,

=
1

2
(N + 1)(N + 2)(3N/2 + 2)µ + (

1

2
(N + 1)(N + 2)− (N + 1))(3N/2 + 2)α

+ (N + 1)(3N/2 + 2)2µ + ((N + 1)− 1)(3N/2 + 2)2α.

Citem2 = Q0Q1µ,

= (3N/2 + 2)2µ,

Citem3 = Q0M0Q13µ + Q0M0(Q1 − 1)α

+ MtotQ13µ + Mtot(Q1 − 1)α,

= (3N/2 + 2)(N + 1)(3N/2 + 2)3µ + (3N/2 + 2)(N + 1)((3N/2 + 2)− 1)α

+
1

2
(N + 1)(N + 2)(3N/2 + 2)3µ +

1

2
(N + 1)(N + 2)((3N/2 + 2)− 1)α (31)
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• C̄k = Citem3 , Q0 = Q1 = (2N + 3):

Citem3 = Q0M0Q13µ + Q0M0(Q1 − 1)α

+ MtotQ13µ + Mtot(Q1− 1)α

= (2N + 3)(N + 1)(2N + 3)3µ + (2N + 3)(N + 1)((2N + 3)− 1)α

+
1

2
(N + 1)(N + 2)(2N + 3)3µ +

1

2
(N + 1)(N + 2)((2N + 3)− 1)α (32)

• Cfix = Citem1 + Citem2 , Q0 = Q1 = (2N + 3):

Citem1 = MtotQ1µ + (Mtot −M0)Q1α

+ M0Q0Q1µ + (M0 − 1)Q0Q1α

=
1

2
(N + 1)(N + 2)(2N + 3)µ + (

1

2
(N + 1)(N + 2)− (N + 1))(2N + 3)α

+ (N + 1)(2N + 3)2µ + ((N + 1)− 1)(2N + 3)2α

Citem2 = Q0Q1µ

= (2N + 3)2µ (33)

• C̄lin = Citem3 , Q0 = Q1 = (N + 2):

Citem3 = Q0M0Q13µ + Q0M0(Q1 − 1)α

+ MtotQ13µ + Mtot(Q1 − 1)α

= (N + 2)(N + 1)(N + 2)3µ + (N + 2)(N + 1)((N + 2)− 1)α

+
1

2
(N + 1)(N + 2)(N + 2)3µ +

1

2
(N + 1)(N + 2)((N + 2)− 1)α (34)

Table 2, shows the corresponding ζ values.
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6 Discussion

The analysis in the previous section, shows that our adaptive scheme will not beat consistent

integration for some polynomial orders and only does so if we use high order quadrature on

just 10 − 15% of the elements. We again mention that in all the analysis we considered

the cost of evaluating the aliasing indicator to be zero. Taking that into account would

not provide any improvement concerning the analytical cost estimates. The reason for the

theoretical limitation is that we evaluate the function and the non-linear operator at the

Lobatto-Kronrod points whether we do linear-consistent or Kronrod integration. Hence

there is a constant cost introduced independent of which option is selected by the adaptivity

indicator. Therefore, another approach would be to do the assessment (the extra cost that

we pay to evaluate the function and the non-linear operator at all the Kronrod points) in

one step and then be able to run with linear-consistent quadrature for a few times and then

do another check. The reason one might consider this argument is that there are sometimes

CFL restrictions for PDEs when the result for an element is already known and we might

not need to do any check until the features have been advected across that element.

To simulate the above behavior we consider the following equation as the cost of the modified

adaptive scheme,

Cadapt = γ(ζC̄lin + (1− ζ)C̄k + Cfix) + (1− γ)(ζClin + (1− ζ)Ck) (35)

In equation (35), γ is a parameter in [0, 1]. When γ = 1 we get the equation mentioned in

(17) and when γ = 0, it means there is no extra cost paid when doing only linear quadrature.

The values for C̄lin, C̄k and Cfix are mentioned in the previous section. Here we provide

formulas for Clin and Ck. We consider only the matrix-vector multiply approach and quadri-
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lateral type elements. A similar analysis holds for the sum-factorization technique and

triangular elements.

• Clin = Citem1 + Citem2 + Citem3, Q0 = Q1 = N + 2:

Citem1 = Q0Q1M0M1µ + Q0Q1(M0M1 − 1)α,

= (N + 2)2(N + 1)2µ + (N + 2)2((N + 1)2 − 1)α.

Citem2 = Q0Q1µ,

= (N + 2)2.

Citem3 = M0M1Q0Q13µ + M0M1(Q0Q1 − 1)α,

= (N + 1)2(N + 2)23µ + (N + 1)2((N + 2)2 − 1)α. (36)

• Ck = Citem1 + Citem2 + Citem3, Q0 = Q1 = 2N + 3:

Citem1 = Q0Q1M0M1µ + Q0Q1(M0M1 − 1)α,

= (N + 2)2(N + 1)2µ + (N + 2)2((N + 1)2 − 1)α.

Citem2 = Q0Q1µ,

= (N + 2)2.

Citem3 = M0M1Q0Q13µ + M0M1(Q0Q1 − 1)α,

= (N + 1)2(N + 2)23µ + (N + 1)2((N + 2)2 − 1)α. (37)

Figure 4 shows the cost plots for the adaptive scheme using three different values of γ. The

circles indicate the values of ζ where the cost of the adaptive quadrature equals the cost of

the consistent integration (Ccon). As you can see even with a value of γ as small as 0.1 we

still need to perform linear quadrature close to 70% of the time for our adaptive scheme to
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be competitive with the consistent integration.
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Figure 4: Number of operations vs. ζ for three different values of γ for 5 <= N <= 10.

Circles indicate the cost of the consistent integration.

Another possible approach to avoid the extra cost of evaluating the function and the non-

linear operator at all the Kronrod points is to come up with a simpler aliasing indicator

routine (in the current format, the indicator requires information form all the Kronrod

points). Assuming that we have such an indicator then the adaptive algorithm would be,

(0) Input a vector of modal coefficients {ûk}N
k=0 representing a polynomial of at most degree

N . Set the quadrature order to Q = N + 2.

(1) Evaluate the polynomial at Q Gauss-Lobatto points, producing a vector of function

values {u(zk)}Q
k=1.

(2) Evaluate the non-linear differential operator at the Q quadrature points, producing a

vector {[u(zk)]
2}Q

k=1.

(3) Use an aliasing indicator to establish whether to use (a) linear-consistent or (b) Kronrod-

consistent integration on the element. The aliasing indicator takes as input the vector
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{[u(zk)]
2}Q

k=1 and returns a binary response denoting (a) or (b).

• if linear-quadrature,

(4) Form the right-hand-side inner product vector {ŵ}N
k=0 using Q Gauss points. The

output is a vector denoting the inner product of the square of the input polynomial

projected against the basis functions.

• if Kronrod-quadrature,

(4) Evaluate the polynomial at the remaining Q − 1 Kronrod points, producing a

vector of function values {u(zk)}2Q−1
k=1 .

(5) Evaluate the non-linear differential operator at the remaining Q − 1 Kronrod

points, producing a vector {[u(zk)]
2}2Q−1

k=1 .

(6) Form the right-hand-side inner product vector {ŵ}N
k=0 using 2Q − 1 Lobatto-

Kronrod points. The output is a vector denoting the inner product of the square

of the input polynomial projected against the basis functions.

However, as an example we consider the following calculations for N = 10. We assume in

item (3) that we have decided to do Kronrod quadrature. Since we already have evaluated

the function at 12×12 quadrature points and the total number of Kronrod points is 23×23,

this means a further 23× 23− 12× 12 = 405 evaluation points are needed. Whereas, if we

were only to consider consistent quadrature we would have required 17× 17 = 289 which is

of course less than 405. So, again it would be faster to recompute the entire element using

the consistent quadrature.
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7 Summary

In this report we have provided analytical estimates to understand the computational costs

when evaluating quadratic non-linearities on one-dimensional and two-dimensional spectral/hp

discretisations using different quadrature approaches with the goal of presenting an efficient

strategy for taming aliasing errors. In particular, we have considered an adaptive scheme that

dynamically adapts the level of quadrature based upon an aliasing indicator and compared

that with traditional consistent integration approach. Hierarchical Gauss-Kronrod quadra-

ture was used, allowing for both error estimation and consistent integration of quadratic

non-linearities at a single set of points which have as their subset the classic integration

points.

With the help of the aliasing indicator, our adaptation strategy determines whether to

use consistent (Kronrod) or linear quadrature on an element. We provided theoretical com-

putational results that give the percentage of elements on which consistent integration can

be performed such that the adaptive quadrature is competitive with consistent integration

everywhere in the domain.

Our studies showed that for our adaptive scheme to be efficient we are required to use lin-

ear quadrature on more than 85% of elements assuming quadrilateral and triangular element

types. This is due to the extra cost of evaluating the function and the non-linear operator

at a larger number of Gauss-Kronrod points on all elements regardless of performing linear

or consistent quadrature.

Alternatively, we analyzed two different modifications to our initial adaptation algorithm.

In the first approach in which we are not paying the extra cost for all the elements, we are
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still required to perform linear quadrature on 70% of the elements even when we are only

evaluating the function and the non-linear operator at all the Gauss-Kronrod points on

10% of the elements. In the second strategy, we assumed we had an aliasing indicator for

which we do not require the values of the functions at all the Gauss-Kronrod points. We

again concluded that it is more efficient to recompute the entire domain using consistent

quadrature.
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