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Chapter 1

Overview of Uintah

1.1 The Center for the Simulation of Accidental

Fires and Explosions (C-SAFE)

1.1.1 Center History

The Uintah software suite was created by the Center for the Simulation of Accidental
Fires and Explosions (C-SAFE). C-SAFE was originally created at the University of
Utah in 1997 by the Department of Energy’s Accelerated Strategic Computing Ini-
tiative’s (ASCI) Academic Strategic Alliance Program (ASAP). (ASCI has since been
renamed to the Advanced Simulation and Computing (ASC) program.)

Center Objective

C-SAFE’s primary objective has been to provide a software system in which funda-
mental chemistry and engineering physics are fully coupled with nonlinear solvers,
visualization, and experimental data verification, thereby integrating expertise from a
wide variety of disciplines. Simulations using the Uintah software can help to better
evaluate the risks and safety issues associated with fires and explosions in accidents
involving both hydrocarbon and energetic materials.

Target Simulation

The Uintah software system was designed to support the solution of a wide range
of highly dynamic physical processes using a large number of processors. However,
our specific target simulation has been the heating of an explosive device placed in a
large hydrocarbon pool fire and the subsequent deflagration explosion and blast wave
(Figure 1.1). The explosive device is a small cylindrical steel container (4” outside
diameter) filled with plastic bonded explosive (PBX-9501). Convective and radiative
heat fluxes from the fire heat the outside of the container and subsequently the PBX.
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After some amount of time the critical temperature in the PBX is reached and the
explosive begins to rapidly decompose into a gas. The solid-¿gas reaction pressurizes
the interior of the steel container causing the shell to rapidly expand and eventually
rupture. The gaseous products of reaction form a blast wave that expands outward
along with pieces of the container and any unreacted PBX. The physical processes
in this simulation have a wide range in time and length scales from microseconds
and microns to minutes and meters. Uintah was designed as a general-purpose fluid-
structure interaction code that can simulate not only this scenario but a wide range of
related problems.

Figure 1.1: Target Simulation - Fire-Container-
Explosion.

Complex simulations such
as this require both immense
computational power and
complex software. Typical
simulations include solvers
for structural mechanics, flu-
ids, chemical reactions, and
material models. All of
these aspects must be inte-
grated in an efficient manner
to achieve the scalability re-
quired to perform these sim-
ulations. The heart of Uin-
tah is a sophisticated com-
putational framework that
can integrate multiple sim-
ulation components, analyze
the dependencies and com-
munication patterns between
them, and efficiently ex-
ecute the resulting multi-
physics simulation. Uintah
also provides mechanisms for
automating load-balancing,
checkpoint/restart, and par-
allel I/O. The Uintah core
was designed to be general,
and is appropriate for use in
a wide range of PDE algo-
rithms based on structured
(adaptive) grids and particle-in-cell algorithms.
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1.2 Uintah Software

The Uintah Computational Framework (also referred to as Uintah or the UCF) consists
of a set of software components and libraries that facilitate the solution of Partial
Differential Equations (PDEs) on Structured AMR (SAMR) grids using up to hundreds
to thousands of processors.

One of the challenges in designing a parallel, component-based and multi-physics
application is determining how to efficiently decompose the problem domain. Com-
ponents, by definition, make local decisions. Yet parallel efficiency is only obtained
through a globally optimal domain decomposition and scheduling of computational
tasks. Typical techniques include allocating disjoint sets of processing resources to each
component, or defining a single domain decomposition that is a compromise between
the ideal load balance of multiple components. However, neither of these techniques
will achieve maximum efficiency for complex multi-physics problems.

Uintah uses a non-traditional approach to achieving parallelism by employing an
abstract task graph representation to describe computation and communication. The
task graph is an explicit representation of the computation and communication that oc-
cur in the coarse of a single iteration of the simulation (typically a timestep or nonlinear
solver iteration). Uintah components delegate decisions about parallelism to a sched-
uler component by using variable dependencies to describe communication patterns
and characterizing computational workloads to facilitate a global resource optimiza-
tion. The task graph representation has a number of advantages, including efficient
fine-grained coupling of multi-physics components, flexible load balancing mechanisms
and a separation of application concerns from parallelism concerns. However, it creates
a challenge for scalability which we overcome by creating an implicit definition of this
graph and representing it in a distributed fashion.

The primary advantage of a component-based approach is that it facilitates the sep-
arate development of simulation algorithms, models, and infrastructure. Components
of the simulation can evolve independently. The component-based architecture allows
pieces of the system to be implemented in a rudimentary form at first and then evolve
as the technologies mature. Most importantly, Uintah allows the aspects of parallelism
(schedulers, load-balancers, parallel input/output, and so forth) to evolve indepen-
dently of the simulation components. Furthermore, components enable replacement of
computation pieces without complex decision logic in the code itself.

Please see the Developers Guide (http://www.uintah.utah.edu/trac/chrome/
site/UintahAPI.pdf) for more information about the internal architecture of Uintah.

1.2.1 Software Ports

Uintah has been ported and runs well on a number of operating systems. These include
Linux, Mac OSX, Windows, AIX, and HPuX. Simulating small problems is perfectly
feasible on 2-4 processor desktops, while larger problems will need 100s to 1000s of
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processors on large computer clusters.

1.2.2 Uintah Software History

The UCF was orginally build upon the SCIRun Problem Solving Environment. SCIRun
provided a core set of software building blocks, as well as a powerful visualization
package. While Uintah continues to use the SCIRun core libraries, Uintah’s use of the
SCIRun PSE has been retired in favor of using the VisIt visualization package from
LLNL.
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Chapter 2

Using Uintah

Several executable programs have been developed using the Uintah Computational
Framework (UCF). The primary code that drives the components implemented in
Uintah is called sus, which stands for Standalone Uintah Simulation. The existing
components were originally developed to solve a complex fluid structure problem in-
volving a container filled with an explosive enveloped in a fire.

The code models the fire and the subsequent heat transfer to the container followed
by the resultant container deformation and ultimate rupture due to the ignition and
burning of the explosive material all running on thousands of processors requiring thou-
sands of hours of computer time and hundreds of gigabytes of data storage. Although
Uintah was developed originally to solve this complicated multi-physics problem, the
general nature of the algorithms and the framework have allowed researchers to use
the code to investigate a wide range of problems. The framework is general purpose
enough to allow for the implementation of a variety of implicit and explicit algorithms
on structured grids. In addition, particle based algorithms can be implemented using
the native particle support found in the framework.

This code leverages the task based parallelism inherent in the UCF to implement
several time stepping algorithms for structural mechanics, fluid dynamics, and fluid
structure interactions. What follows is a description of using sus within the realm of
structural mechanics, fluid mechanics, and structure-fluid interactions.

2.1 Installing the Uintah Software

For information on downloading the Uintah software package (via tarball or SVN),
and how to setup (configure) and build (make) the system, please refer to the Uintah
Installation Guide.
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2.2 Mechanics of Running sus

For single processor simulations, the sus executable (Standalone Uintah Simulation)
is run from the command line prompt like this:

sus input.ups

where input.ups is an XML formatted input file. The Uintah software release contains
numerous example input files located in the src/StandAlone/inputs/UintahRelease

directory.
For multiprocessor runs, the user generally uses mpirun to launch the code. De-

pending on the environment, batch scheduler, launch scripts, etc, mpirun may or may
not be used. However, in general, something like the following is used:

mpirun -np num_processors sus -mpi input.ups

num processors is the number of processors that will be used. The input file must
contain a patch layout that has at least the same number (or greater) of patches as
processors specified by a number following the -np option shown above.

In addition, the -mpi is optional but often times necessary if the mpi environment
is not automatically detected from within the sus executable.

Uintah provides for restarting from checkpoint as well. For information on this, see
Section 2.6, which describes how to create checkpoint data, and how to restart from it.

2.3 Uintah Problem Specification (UPS)

The Uintah framework uses XML like input files to specify the various parameters re-
quired by simulation components. These Uintah Problem Specification (.ups) files are
validated based on the specification found in src/StandAlone/inputs/UPS SPEC/ups spec.xml

(and its sibling files).
The application developer is free to use any of the specified tags to specify the data

needed by the simulation. The essential tags that are required by Uintah include the
following:

<Uintah_specification>

<SimulationComponent>

<Time>

<DataArchiver>

<Grid>

Individual components have additional tags that specify properties, algorithms,
materials, etc. that are unique to that individual components. Within the individual
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sections on MPM, ICE, MPMICE, Arches, and MPMArches, the individual tags will
be explained more fully.

The sus executable verifies that the input file adheres to a consistent specification
and that all necessary tags are specified. However, it is up to the individual creating
or modifying the input file to put in physically reasonable set of consistent parameters.

2.4 Simulation Components

The input file tag for SimulationComponent has the type attribute that must be
specified with either mpm, mpmice, ice, arches, or mpmarches, as in:

<SimulationComponent type = "mpm" />

2.5 Time Related Variables

Uintah components are time dependent codes. As such, one of the first entries in each
input file describes the time-stepping parameters. An input file segment is given below
that encompasses all of the possible parameters. Most are self-explanatory, and not all
are required, (e.g <max Timestep>, <max delt increase>, <end on max time exactly>

and <delt init> are all optional). <timestep multiplier> serves as a CFL num-
ber, that is, a number, usually less than 1.0, that is used to moderate the timestep
automatically calculated by the individual components.

<Time>
<maxTime> 1.0 </maxTime>
<initTime> 0.0 </initTime>
<delt_min> 0.0 </delt_min>
<delt_max> 1.0 </delt_max>
<delt_init> 1.0e-9 </delt_init>
<max_delt_increase> 2.0 </max_delt_increase>
<timestep_multiplier>1.0 </timestep_multiplier>
<max_Timestep> 100 </max_Timestep>
<end_on_max_time_exactly>true </end_on_max_time_exactly>

</Time>

2.6 Data Archiver

The Data Archiver section specifies the directory name where data will be stored and
what variables will be saved and how often data is saved and how frequently the
simulation is checkpointed.

The <filebase> tag is used to specify the directory name and by convention, the
.uda suffix is attached denoting the “Uintah Data Archive”.
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Data can be saved based on a frequency setting that is either based on time intervals;
<outputTimestepInterval> floating point time increment </outputTimestepInterval>

or timestep intervals;
<outputInterval> integer number of steps </outputInterval>

Each simulation component specifies variables with label names that can be spec-
ified for data output. By convention, particle data are denoted by p. followed by a
particular variable name such as mass, velocity, stress, etc. Whereas for node based
data, the convention is to use the g. followed by the variable name, such as mass,
stress, velocity, etc. Similarly, cell-centered and face-centered data typically end with
the a trailing CC or FC, respectively. Within the DataArchiver section, variables are
specified with the following format:

<save label = "p.mass" />
<save label = "g.mass" />

To see a list of variables available for saving for a given component, execute the
following command from the StandAlone directory:

inputs/labelNames component

where component is, e.g., mpm, ice, etc.
Check-pointing information can be created that provides a mechanism for restarting

a simulation at a later point in time. The <checkpoint> tag with the cycle and
interval attributes describe how many copies of checkpoint data is stored (cycle)
and how often it is generated (interval).

As an example of checkpoint data that has two timesteps worth of checkpoint data
that is created every .01 seconds of simulation time are shown below:

<checkpoint cycle = "2" interval = "0.01"/>

To restart from a checkpointed archive, simply put “-restart” in the sus command-
line arguments and specify the .uda directory instead of a ups file (sus reads the copied
input.xml from the archive). One can optionally specify a certain timestep to restart
from with -t timestep with multiple checkpoints, but the last checkpointed timestep
is the default. When restarting, sus copies all of the appropriate information from the
old uda directory to its new uda directory.

Here are some examples:

./sus -mpm -restart disks.uda.000 -nocopy

./sus -mpm -restart disks.uda.000 -t 29

2.7 Simulation Options

There are many options available when running MPM simulations. These are generally
specified in the <MPM> section of the input file. A list of these options taken from
inputs/UPS SPEC/mpm spec.xml is given in section 7.4.
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2.8 Geometry objects

Within several of the components, the material is described by a combination of physi-
cal parameters and the geometry. Geometry objects use the notion of constructive solid
geometry operations to compose the layout of the material from simple shapes such
as boxes, spheres, cylinders and cones, as well as operators which include the union,
intersections, differences of the simple shapes. In addition to the simple shapes, trian-
gulated surfaces can be used in conjunction with the simple shapes and the operations
on these shapes.

Each geometry object has the following properties, label (string name), type (box,
cylinder, sphere, etc), resolution (vector quantity), and any unique geometry parame-
ters such as origin, corners, triangulated data file, etc. The operators which include, the
union, the difference, and intersection tags contain either lists of additional operators
or the primitives pieces.

As an example of a non-trivial geometry object is shown below:

<geom_object>
<intersection>
<box label = "Domain">

<min>[0.0,0.0,0.0]</min>
<max>[0.1,0.1,0.1]</max>

</box>
<union>
<sphere label = "First node">

<origin>[0.022,0.028,0.1 ]</origin>
<radius>0.01</radius>

</sphere>
<sphere label = "2nd node">

<origin>[0.030,0.075,0.1 ]</origin>
<radius>0.01</radius>

</sphere>
</union>

</intersection>
<res>[2,2,2]</res>
<velocity>[0.,0.,0.]</velocity>
<temperature>0 </temperature>

</geom_object>

The following geometry objects are given with their required tags:
box has the following tags: min and max which are vector quantities specified in

the [a, b, c] format.
sphere has an origin tag specified as a vector and the radius tag specified as a

float.
cone has a tag for the top and bottom origins (vector) as well as tags for the top

and bottom radius (float) to create a right circular cone/frustum.
cylinder has a tag for the top and bottom origins (vector) plus a tag for the radius

(float).
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parallelepiped requires that four points be specified as illustrated by the ASCII
art snippet taken from the source code:

//********************************************
// //
// *-------------* //
// / . / \ //
// / . / \ //
// P4-------------* \ //
// \ . \ \ //
// \ P2.........\....* //
// \ . \ / //
// P1--------------P3 //
//
// Returns true if the point is inside (or on) the parallelepiped.
// (The order of p2, p3, and p4 doesn’t really matter.)

tri is a tag for describing a triangulated surface. The name tag specifies the file
name to use for reading in the triangulated surface description and the points file. The
triangulated surface (file name.tri) contains a list of integers describing the connectivity
of points specified in file name.pts. Here is an excerpt from a tri file and a points file:

Triangulated file

1 39 41
1 41 38
38 41 42
. . .

Points file

0 0.03863 -0.005
0.35227 0.13023 -0.005
0.00403479 0.0296797 -0.005
. . .

The Mach 2 Wedge example in Section 8.4 depicts usage of this option.
The boolean operators on the geometry pieces include difference, intersection,

and union.

The difference takes two geometry pieces and subtracts the second geometry
piece from the first geometry piece. The intersection operator requires at least
two geometry pieces in forming an intersection geometry piece. Whereas the union

operator aggregates a collection of geometry pieces. Multiple operators can be used to
form very complex geometry pieces.

An additional input in the <geom object> field is the <res> tag. In MPM, this
simply refers to how many particles are placed in each cell in each coordinate direction.
For multi-material ICE simulations, the <res> serves a similar purpose in that one can
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specify the subgrid resolution of the initial material distribution of mixed cells at the
interface of geometry objects.

In addition to the above, it is also possible in MPM simulations to describe geometry
by providing a file containing a series of particle locations. These can be in either
ASCII or binary format. In addition, it is also possible to provide initial data for
certain variables on the particles, including volume, temperature, external force, fiber
direction (used in material models with transverse isotropy) and velocity. The following
is an example in which external force and fiber direction are specified:

<file>
<name>LVcoarse.pts</name>
<var>p.externalforce</var>
<var>p.fiberdir</var>

</file>

where the text file LVcoarse.pts looks like:

0.0385 0.0335 0.0015 0 0 0 0.248865 -0.0593421 -0.966718
0.0395 0.0335 0.0015 0 0 0 0.254892 -0.0220365 -0.966718
0.0405 0.0335 0.0015 0 0 0 0.267002 0.0197728 -0.963493
0.0415 0.0335 0.0015 0 0 0 0.261177 0.0588869 -0.963493

.

.

.

Because these files can be arbitrarily large, an additional preprocessing step must be
taken before issuing the sus command. pfs for “Particle File Splitter” is a utility
that splits the data in the .pts file into a series of files (file.pts.0, file.pts.1, ,
etc), one for each patch. By doing this, each processor needs only read in the data for
the patches that it contains, rather than each processor reading in the entire file, which
can be hard on the file system. Note, that this step is required, even if only using a
single patch, and must be reissued any time the patch configuration is changed. Usage
of this utility, which is compiled into the StandAlone/tools/pfs directory, is:

pfs input.ups

One final option is available for initializing particle positions in MPM simulations,
and that is through the use of three dimensional image data, such as might be collected
via CT scans or confocal microscopy. The image data are provided as 8-bit raw files,
and usage in the input file is given as:

<image>
<name>spheres.raw</name>
<res>[1600, 1600, 1600]</res>
<threshold>[1, 25]</threshold>

</image>
<file>
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<name>spheres.pts</name>
<format>bin</format>

</file>

The <image> section gives the name of the file, the resolution, in pixels, in the
various coordinate directions, and threshold range. Particles will be generated at voxels
within the specified range. The <file> section is the same as that described above. A
different preprocessing utility is provided when using image data (for the same reasons
described previously). Usage is as follows:

pfs2 -b input.ups

The -b indicates that binary spheres.pts.# files will be created, which saves con-
siderable disk space when performing large simulations.

2.9 Boundary conditions

Boundary conditions are specified within the <Grid> but are described separately for
clarity. The essential idea is that boundary conditions are specified on the domain
of the grid. Values can be assigned either on the entire face, or parts of the face.
Combinations of various geometric descriptions are used to aid in the assignment of
values over specific regions of the grid. Each of the six faces of the grid is denoted by
either the minus or plus side of the domain.

The XML description of a particular boundary condition includes which side of the
domain, the material id, what type of boundary condition (Dirichlet or Neumann) and
which variable and the value assigned. The following is a an MPM specification of a
Dirichlet boundary condition assigned to the velocity component on the x minus face
(the entire side) with a vector value of [0.0,0.0,0.0] applied to all of the materials.

<Grid>
<BoundaryConditions>
<Face side = "x-">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
<Face side = "x+">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
. . . .
<BoundaryCondition>

. . . .
<Grid>
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The notation <Face side = "x-"> indicates that the entire x minus face of the
boundary will have the boundary condition applied. The id = "all" means that all
the materials will have this value. To specify the boundary condition for a particular
material, specify an integer number instead of the ”all”. The var = "Dirichlet" is
used to specify whether it is a Dirichlet or Neumann or symmetry boundary conditions.
Different components may use the var to include a variety of different boundary con-
ditions and are explained more fully in the following component sections. The label

= "Velocity" specifies which variable is being assigned and again is component de-
pendent. The <value> [0.0,0.0,0.0] </value> specifies the value.

An example of a more complicated boundary condition demonstrating a hot jet of
fluid issued into the domain is described. The jet is described by a circle on one side
of the domain with boundary conditions that are different in the circular jet compared
to the rest of the side.

<Face circle = "y-" origin = "0.0 0.0 0.0" radius = ".5">
<BCType id = "0" label = "Pressure" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "0" label = "Velocity" var = "Dirichlet">

<value> [0.,1.,0.] </value>
</BCType>
<BCType id = "0" label = "Temperature" var = "Dirichlet">

<value> 1000.0 </value>
</BCType>
<BCType id = "0" label = "Density" var = "Dirichlet">

<value> .35379 </value>
</BCType>
<BCType id = "0" label = "SpecificVol" var = "computeFromDensity">

<value> 0.0 </value>
</BCType>

</Face>
<Face side = "y-">
<BCType id = "0" label = "Pressure" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "0" label = "Velocity" var = "Dirichlet">

<value> [0.,0.,0.] </value>
</BCType>
<BCType id = "0" label = "Temperature" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "0" label = "Density" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "0" label = "SpecificVol" var = "computeFromDensity">

<value> 0.0 </value>
</BCType>
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</Face>

The jet is described by the circle on the y minus face with the origin at 0,0,0 and a
radius of .5. For the region outside of the circle, the boundary conditions are different.
Each side must have at least the "side" specified, but additional circles and rectangles
can be specified on a given face.

An example of the rectangle is specified as with the lower corner at 0,0.181,0 and
upper corner at 0,0.5,0.

<Face rectangle = "x-" lower = "0.0 0.181 0.0" upper = "0.0 0.5 0.0">

2.10 Grid specification

The <Grid> section specifies the domain of the structured grid and includes tags which
indicate the lower and upper corners, the number of extra cells which can be used
by various components for the application of boundary conditions or interpolation
schemes.

The grid is decomposed into a number of patches. For single processor problems,
usually one patch is used for the entire domain. For multiple processor simulations,
there must be at least one patch per processor. Patches are specified along the x,y,z
directions of the grid using the <patches> [2,5,3] </patches> which specifies two
patches along the x direction, five patches along the y direction and 3 patches along the
z direction. The maximum number of processors that sus could use is 2 ∗ 5 ∗ 3 = 30.
Attempting to use more processors than patches will cause a run time error during
initialization.

Finally, the grid spacing can specified using either a fixed number of cells along
each x,y,z direction or by the size of the grid cell in each direction. To specify a
fixed number of grid cells, use the <resolution> [20,20,3] </resolution> . This
specifies 20 grid cells in the x direction, 20 in the y direction and 3 in the z direction.
To specify the grid cell size use the <spacing> [0.5,0.5,0.3] </spacing> . This
specifies the a grid cell size of .5 in the x and y directions and .3 in the z direction.
The <resolution> and <spacing> cannot be specified together. The following two
examples would generate identical grids:

<Level>
<Box label="1">

<lower> [0,0,0] </lower>
<upper> [5,5,5] </upper>
<extraCells> [1,1,1] </extraCells>
<patches> [1,1,1] </patches>

</Box>
<spacing> [0.5,0.5,0.5] </spacing>

</Level>
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<Level>
<Box label="1">

<lower> [0,0,0] </lower>
<upper> [5,5,5] </upper>
<resolution> [10,10,10] </resolution>
<extraCells> [1,1,1] </extraCells>
<patches> [1,1,1] </patches>

</Box>
</Level>

The above examples indicate that the grid domain has a lower corner at 0,0,0 and an
upper corner at 5,5,5 with one extra cell in each direction. The domain is broken down
into one patch covering the entire domain with a grid spacing of .5,.5,.5. Along each
dimension there are ten cells in the interior of the grid and one layer of “extraCells”
outside of the domain. extraCells are the Uintah nomenclature for what are frequently
referred to as “ghost-cells”.

2.11 Regridder

The regridder creates a multilevel grid from the refinement flags. Each level will com-
pletely cover the refinement flags from the coarser level. The primary regridder used
in Uintah is the Tiled regridder. The tiled regridder creates a set of evenly sized tiles
across the domain that will become patches if refinement is required in the tiles region.

The following is an example of this regridder.

<Regridder type="Tiled">
<max_levels>2</max_levels>
<cell_refinement_ratio> [[2,2,1]] </cell_refinement_ratio>
<cell_stability_dilation> [2,2,0] </cell_stability_dilation>
<min_boundary_cells> [1,1,0] </min_boundary_cells>
<min_patch_size> [[8,8,1]] </min_patch_size>
<dynamic_size> true </dynamic_size>
<patches_per_level_per_proc>8</patches_per_level_per_proc>

</Regridder>

The max levels tag specifies the maximum number of levels to be created. The
cell refinement ratio tag specifies the refinement ratio between the levels. This
can be specified on a per level basis as follows:

<cell_refinement_ratio> [[2,2,1],[4,4,1]] </cell_refinement_ratio>

The cell stability dilation tag specifies how many cells around the refinement
flags are also guaranteed to be refined. The min boundary cells tag specifies the size
of the boundary layers. The size of the tiles is specified using the min patch size tag
and can also be specified on a per level basis.
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Finally the size of the tiles can change at run time. If the number of patches is
higher than what is needed then the tile size will double in the smallest dimension.
Conversely if the target number of patches is low then the tile size will halve in the
longest dimension but will never go below the min patch size . The target number
of patches per processor is specified using the patches per level per proc tag. To
prevent the resizing of tiles set the tag dynamic size to false.

2.12 Load Balancer

The load balancer assigns patches to processors such that work is evenly distributed.
Uintah currently supports a wide array of load balancing algorithms. To specify a load
balancing algorithm add a block similar to the following:

<LoadBalancer type="DLB">
<dynamicAlgorithm>patchFactor</dynamicAlgorithm>
<timestepInterval>50</timestepInterval>
<gainThreshold>0.05</gainThreshold>

</LoadBalancer>

The type specifies which load balancer is used. The type can be DLB, RoundRobin,

SimpleLoadBalancer, or SingleProcessorLoadBalancer. If no load balancer is
specified than either the SimpleLoadBalancer or the SingleProcessorLoadBalancer will
be used. For complex problems including AMR the DLB load balancer should be
used. This load balancer uses advanced algorithms to achieve more efficient patch
assignments. To use the DLB load balancer you must include the dynamicAlgorithm

tag. This tag can be PatchFactor or Zoltan.

<dynamicAlgorithm>patchFactor</dynamicAlgorithm>

Both of these algorithms compute the weight of a patch using either a profiling
model or an algorithm cost model. By default the profiling model is used as it provides
highly accurate estimates and does not require the specification of model parameters.
To disable profiling add the tag

<doCostProfiling>false</doCostProfiling>

This will cause the load balancer to use the cost model Wp = Npc1 + Ncc2 + c3 to
determine the weight of a patch, where Np is the number of particles in the patch, Nc

is the number of cells on the patch, c1 is the weight per particle, c2 is the weight per
cell, and c3 is a constant cost on the patch. These constants can be specified with the
following tags:

<cellCost>1</cellCost>
<particleCost>1.25</particleCost>
<patchCost>4</patchCost>
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The number of particles will always be zero unless the algorithm is instructed to
collect particles with the collectParticles tag.

<collectParticles>true</collectParticles>

The following are a couple of extra load balancer parameters that may be useful.

<timestepInterval>50</timestepInterval>
<gainThreshold>0.05</gainThreshold>
<outputNthProc>8</outputNthProc>

The timestepInterval tag specifies the maximum number of timesteps the simu-
lation can run without attempting to load balance. The gainThreshold tag specifies
the percent improvement that a load balance must provide over the old load balance
in order for the new load balance to be used. Finally the outputNthProc tag causes
the data archive to be written to by every Nth processor instead of every processor.
This can alleviate problems caused by having to many processors attempting to write
to the same file system at the same time.

If the dynamic algorithm is set to Zoltan then the user must also specify which
Zoltan algorithm to use with the zoltanAlgorithm tag.

<zoltanAlgorithm>HSFC</zoltanAlgorithm>

The Zoltan algorithm can be set to HSFC, RIB, RCB.

2.13 UDA

The UDA is a file/directory structure used to save Uintah simulation data. For the
most part, the user need not concern himself with the UDA layout, but it is a good
idea to have a general feeling for how the data is stored on disk.

Every time a simulation (sus) is run, a new UDA is created. Sus uses the <filebase>
tag in the simulation input file to name the UDA directory (appending a version num-
ber). If an UDA of that name already exists, the next version number is used. Ad-
ditionally, a symbolic link named “disks.uda” (is updated to and) will point to the
newest version of this simulations UDA. Eg:

disks.uda.000
disks.uda.001
disks.uda.001 <- disks.uda

Each UDA consists of a number of top level files, a checkpoints subdirectory, and
subdirectories for each saved timestep. These files include:

• .dat files contain global information about the simulation (each line in the .dat
files contains: simulation time value).
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• checkpoints directory contains a limited number of time step data subdirecto-
ries that contain a complete snapshot of the simulation (allowing for the simula-
tion to be restarted from that time).

• input.xml contains the original problem specification (the .ups file).

• index.xml contains information on the actual simulation run.

• t0000# contains data saved for that specific time step. The data saved is specified
in .ups file and may be a very limited subset of the full simulation data.

See Section 2.6 for a description of how to specify what data are saved and how
frequently.
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Chapter 3

Visualization tools – VisIt

Visualization of Uintah data is currently possible using any of two software packages.
These are SCIRun and VisIt. Of these, SCIRun is no longer supported, although legacy
versions will continue to work. The VisIt package from LLNL is general purpose
visualization software that offers all of the usual capabilities for rendering scientific
data. It is still developed and maintained by LLNL staff, and its interface to Uintah
data is supported by the Uintah team.

3.1 Reading Uintah Data Archives

Figure 3.1: Opening an UDA with VisIt

Once you have installed VisIt and the
UDA reader plugin, you can launch VisIt
and start visualizing UDA’s. To open
a UDA, select Open File from the File

menu. Browse into the UDA you want to
load and select the index.xml file. Then
hit on OK and a list of timesteps should
now appear on the gui. Figure 3.1 illus-
trates this process.

3.2 Plots

Figure 3.2: Various plots in VisIt

VisIt displays data as plots. A plot might
render a specific variable or it might ren-
der the structure of the mesh. Figure 3.2
illustrates this.

Note that VisIt attempts to analyze
the variables and associate them with
the appropriate plots. As shown in Fig-
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ure 3.2, only vector variables are available for the vector plot. The most commonly
used plots for visualizing UDA’s are Pseudocolor, Volume and the Vector plot. The
Subset plot can be used to visualize the structure of patches in an AMR dataset.

Figure 3.3: Volume plot attributes in VisIt

Once you have a plot, you change
plot attributes by clicking on the PlotAtts
menu and selecting the plot of you choice.
Alternatively, you may double click on
the plot itself in Active plots window.
For example, if you have a Volume plot
and you want to change its attributes, the
window shown in Figure 3.3 pops up.

As seen in Figure 3.3, you can change
the color map, opacity curve, rendering
method, no. of samples, lighting options,
etc. in this window.

3.3 Operators

A wide variety of operators can be ap-
plied to the plots, as mentioned earlier.
These modify the incoming datasets in
some way (eg., a slice formats a 3D dataset into a 2D slice), which can then be plotted.
However, you will first need to select a plot and then only you can apply an operator
to it (though the order of operation is opposite). An important thing to keep in mind
is that when you select an operator, by default it gets applied to all the plots in the
Active plots window. You will need to uncheck the Apply operators checkbox, in case
you just want to apply the operator to a single plot as shown in Figure 3.4.

Figure 3.4: Unchecking ”selection to all
plots”

The entire list of operators that VisIt
supports can be seen by clicking on the
Operators menu. Also, once you have ap-
plied an operator, you can change its at-
tributes by clicking on the OpAtts menu
and then clicking on the desired operator. Figures 3.5a and 3.5b illustrate how you
can apply a Slice operator to a Pseudocolor plot and then change the operator at-
tributes. First, apply the Pseudocolor plot to a desired variable, and then select the
Slice operator from the Operators menu.

At this point in time, you should have an ordering similar to that in Figure 3.6a.
Once you have this order, select Slice from the OpAtts menu. This will pop up the
Slice operator attributes window, as shown in Figure 3.6b.

You can now play up with the various attributes (eg., selecting normal plane) to
obtain the desired visualization. The checkbox ”Project to 2D” should be unchecked

24



(a) Applying the Pseudocolor
plot to a variable

s
(b) Applying an operator to a
plot

Figure 3.5:

(a) Ordering of an operator and
a plot

(b) Slice plot attributes in VisIt

Figure 3.6:
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is you want to have the slice in 3D space.

3.4 Vectors
s

Figure 3.7: Increasing the number of Vec-
tors

s

By default, VisIt reduces the number of
vectors plotted (to 400) and this needs to
be manually changed to the original num-
ber or something greater, only if required.
This can be accomplished by changing
the attributes of the Vector plot. In Fig-
ure 3.7, the number of vectors has been
increased to 2000.

Also if you would like all the vectors
to be visible, you would need to switch off
both the options, Scale by magnitude

and Auto scale under the Scale tab in
the same window as shown in figure 3.8
describes this.

3.5 AMR datasets s

Figure 3.8: Increasing the scale of Vectors

s

AMR datasets are read the same way as
single level datasets. Once you have it
read, you can apply an plot/ operator on
it. Since the dataset is organized as levels
and patches, you now have the flexibility
of visualizing each of them independently
or as in a group. To achieve this (assum-
ing that you have already selected a plot),
click on the Subset button either on the
Active Plots window in the gui or on the
same option in the Controls menu. This
is illustrated in Figures 3.9a and 3.9b.

3.6 Examples

3.6.1 Volume visualization

1. Read in the uda by selecting the index.xml file. A list of timesteps should now
appear on the gui.
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(a) Clicking on this icon pops
up the Subset window

(b) The Subset window in VisIt

Figure 3.9:

2. The first timestep (cycle 0000) should be preselected. In case you are interested
in plotting a different timestep, just double click on it. Alternatively you can type
it in the small rectangular box (Figure 3.10a), just below the list of timesteps.
This can also be done at a later period in time, when you are done plotting the
variable associated with a specific timestep and want to traverse through the
others.

3. Next we select a variable to plotted. We click on the Plots menu, select the
Volume plot and then select the variable tempIN as shown in the Figure 3.10b.
The number ’1’ refers to the material associated with the variable.

4. The variable tempIN/1 now appears on the Active plots window (Figure 3.10c).
Select the variable and click Draw.

(a) The window on the
gui lists all the timesteps

(b) Selecting a volume
plot and an associated
variable/ material

(c) The list of plots in
the Active plots window

Figure 3.10:

5. A visualization now appears on the Viewer window, as shown in Figure 3.11a.
You can interact with the visualization in terms of rotating it (holding the left
mouse button and dragging it), zooming in/ out (scrolling the roller on the mouse
and/ or selecting the magnifier at the top of the Viewer window) etc.
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6. Once you have this basic volume visualization, you can change its attributes by
double clicking on the Volume - tempIN/1 plot in the Active plots window. This
pops up the Volume plot attributes window (Figure 3.11b and figure 3.11c).

(a) Visualization of a volume on
the viewer window

(b) Volume visualization at-
tributes window

(c) Volume visualization at-
tributes window

Figure 3.11:

The tab Color specifies the color table and the various options associated with it.
The user can add/ remove control points by clicking on the + and - buttons. These
can then be equally spaced by pressing the Align button.

A different color table can be selected by clicking on the Default button and then
selecting an appropriate color table. The color(s) associated with the control points
can be changed by right-clicking on the them and then selecting an appropriate color.

The user also has the option of specifying a Min and Max on the scalar value range
by checking on the associated box(s) and entering in the values.

Figure 3.12: The opacity transfer function
in the attributes window

The second tab Opacity lets you spec-
ify a transfer function for the color ta-
ble. Clicking on the check box Show Col-
ors copies the colors from the color table
onto this graph. Selecting the Interaction
Mode as Gaussian lets you draw curves
and specify a more accurate color table
(Figure 3.12).

You can add in as many curves on the
graph by clicking on the left mouse but-
ton and then placing them accordingly.
To delete an unwanted curve, just right click on it.

After specifying an opacity transfer function, one can select an appropriate render-
ing method, Splatting being the default. The related fields thereafter become active/
inactive as and when different rendering methods are selected.
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3.6.2 Particle visualization

1. To add particles, we select the Molecule plot and then click on the variable
p.temperature as shown in the Figure 3.13a. The asterisk ’*’ refers to all the
materials associated with the variable.

2. The variable p.temperature/* now appears on the Active plots list. Select the
variable and hit Draw. A container in the form of particles now appears on the
Viewer window.

3. Now double click on the variable name in Active plots list. This brings up the
Molecule plot attributes window as shown in Figure 3.13b.

(a) Selecting a molecule plot
and an associated variable/ ma-
terial

(b) Selecting a molecule plot
and an associated variable/ ma-
terial

(c) Selecting a molecule plot
and an associated variable/ ma-
terial

Figure 3.13:

We choose to visualize the particles as Sphere Impostors (doesn’t runs the GPU
out of memory, drawing as Spheres does). We also choose to scale the sphere radius by
a Scalar Variable and specify that variable to be p.temperature/* itself (therefore the
* appears). Since the temperature values are too high, we scale them all by a factor
of 5.e-05 (on the basis of trial and error). Finally in Colors tab, we set the Color map
for scalars as orangehot. Combined with volume visualization, we get a visualization
as shown in Figure 3.13c.

3.6.3 Visualizing patch boundaries

In order to visualize patch boundaries, we use the Subset plot. As with other variables,
we select the Subset plot and an associated variable. The variables have a prefix ’level/
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patch’. There is a level/ patch variable associated with every kind of variable (Cell
Centered, Node Centered, Face Centered) present in the dataset. In the Figure 3.14a,
we select one such variable. Next, we hit Draw. This produces a visualization as shown
in Figure 3.14b.

(a) A patch/ level variable, as-
sociated with every kind of vari-
able

(b) The default visualization of
patches

Figure 3.14:

To generate a wire-frame model, we double click on the Subset plot in the Active
plots window. This pops up the Subset plot attributes window, where we check the
Wireframe mode as shown in Figure‘3.15a. This would produce a visualization, similar
to one shown in Figure 3.15b.

(a) Enabling the ’Wire-
frame’ mode for visualiz-
ing patch boundaries

(b) The patch boundaries after
enabling the wireframe mode

Figure 3.15:
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3.6.4 Iso-surfaces

The easiest way to draw iso-surfaces is to use the ’Contour’ Plot. As with other plots
demonstrated above, the contour plot is selected on a regular 3D scalar variable. Figure
3.16 illustrates this.

Figure 3.16: Selecting the ’Contour’ plot on
a regular 3D scalar variable

Once the plot is selected, we hit
’Draw’. This would produce a visualiza-
tion, similar to one shown in Figure 3.17a.
You can then modify the plot attributes
by double clicking on the plot in the ’Ac-
tive plots’ window. This would pop up
the ’Contour plot attributes window’, as
shown in Figure 3.17b.

The ’Select by’ option can be changed
to ’Value(s)’ and ’Percent(s)’. When
specifying multiple values, they should be
separated by a space.

(a) Iso-surface visualization (b) The attributes window
for the ’Contour’ plot

Figure 3.17:

3.6.5 Streamlines

The ’Streamlines’ plot has issues with the current version of VisIt (1.11.2 and older).
However, these have been corrected in the trunk and should be out in version 2.0. The
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controls remain the same in all these version and the example below was implemented
on the trunk version.

As shown in Figure 3.18 we select the ’Streamlines’ plot on a vector variable. We
then double click on the plot itself, which pops up the ’Streamlines attributes window’.

Figure 3.18: Selecting the ’Streamlines’
plot on a vector variable

We set the ’Distance’ parameter such
that it covers the entire computational
domain. We set the ’Streamline direc-
tion’ as forward. In the ’Source’ tab, Fig-
ure 3.19a, we define the ’Source type’ as
’Line’. We can select other options too,
notably ’Single Point’, ’Sphere’ etc. We
now define the line ’Start’ and ’End’ co-
ordinates. In this specific case, we define
them as [-0.1 -0.05 0] and [-0.1 0.05 0] re-
spectively. This choice ensures that we
cover the entire y axis and start at the leftmost corner of the computational domain.

To ensure that our stream lines are smooth, we change the ’Maximum step length’
in the in the ’Advanced’ tab. In this case, we change it to 1.e-05. The thing to keep in
mind is that this length should be order of magnitude smaller than the length of the
computational domain. This is shown in Figure 3.19b.

Once these parameters are set, we hit ’Apply’ and then click on the ’Draw’ button
on the gui. This produces a visualization similar to one shown in Figure 3.19c.

(a) Setting the ’Source’
tab parameters

(b) Setting the ’Advanced’
tab parameters

(c) Streamlines visualization

Figure 3.19:
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3.6.6 Visualizing extra cells

For visualizing extra cells we use the ’Inverse Ghost Zone’ operator 3.20a in conjunction
with the ’Pseudocolor’ plot. Since the plugin reads in extra cells as ghost cells, the
usage of this operator make sense in this scenario.

After the operator is applied to the ’Pseudocolor’ plot, we double click on the
operator to change its attributes. We switch to ’Both ghost zones and real zones’ in
this window 3.20b and hit ’Apply’.

We then hit ’Draw’. When combined with the ’Mesh’ plot we get a visualization
similar to the one shown in Figure 3.20c. The pick operations on the viewer can then
be used to investigate the value(s) in these extra cells.

(a) Selecting
the Inverse
Ghost Zone
operator

(b) The attributes win-
dow for the ’Inverse Ghost
Zone’ operator

(c) Extra cells together with the ’Mesh’ plot

Figure 3.20:

3.6.7 Picking on particles

The ’Node pick mode’ on the visualization window can be used to pick particles and
investigate particles attributes. After plotting particles using the ’Molecule’ plot, the
user can then select the ’Node pick mode’ 3.21 and select particles (by clicking on
them) of interest.
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Figure 3.21: The ’Node pick mode’ on the
visualization window

Once a particle is picked, the ’Pick’
window pops up with the particle at-
tributes. By default only the variable
plotted is queried, if the user wants to
query more variables per pick - they can
be added by selecting additional variables
from the ’Variables’ menu and as shown
in the Figure 3.22.

Figure 3.22: The ’Pick’ window
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Chapter 4

Data Extraction Tools

Uintah offers a number of tools for accessing data stored in Uintah Data Archives
(“UDAs”). Because the format of Uintah data is specific to the framework, these tools
allow a user to quickly extract data, which can then either be postprocessed within
that tool (simple modification of the source code may be necessary), postprocessed with
external software such as Matlab or Octave, or simply plotted with, e.g. gnuplot. These
tools are not compiled automatically when “make sus” is issued. To compile them cd
to “opt/StandAlone/tools” and issue “make”. These tools are described below.

4.1 puda

The command line extraction utility puda (for “parse Uintah data archive”) has a
number of uses. For example, it may be used to extract a subset of particle data from
a UDA. Once the extraction tools have been compiled, the puda executable will be
located in opt/StandAlone/tools/puda/. If the executable is run with no additional
command line arguments, the following usage information will be displayed:

Usage: puda [options] <archive file>

Valid options are:
-h[elp]
-timesteps
-gridstats
-listvariables
-varsummary
-jim1
-jim2
-partvar <variable name>
-asci
-tecplot <variable name>
-no_extra_cells (Excludes extra cells when iterating over cells.

Default is to include extra cells.)
-cell_stresses
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-rtdata <output directory>
-PTvar
-ptonly (prints out only the point location
-patch (outputs patch id with data)
-material (outputs material number with data)
-NCvar <double | float | point | vector>
-CCvar <double | float | point | vector>
-verbose (prints status of output)
-timesteplow <int> (only outputs timestep from int)
-timestephigh <int> (only outputs timesteps up to int)
-matl,mat <int> (only outputs data for matl)

*NOTE* to use -PTvar or -NVvar -rtdata must be used
*NOTE* ptonly, patch, material, timesteplow, timestephigh are used in conjunction with -PTvar.

As an example of how to use puda, suppose that one wanted to know the locations
of all particles at the last archived timestep for the const test hypo.uda First one
may wish to know how many timesteps have been archived. This could be accomplished
by:

puda -timesteps const_test_hypo.uda

The resulting terminal output would be:

Parsing const_test_hypo.uda/index.xml
There are 11 timesteps:
1: 1.8257001926347728e-05
548: 1.0012914931998474e-02
1094: 2.0005930425875382e-02
1640: 3.0015616802173569e-02
2184: 4.0005272397960444e-02
2728: 5.0011587657447343e-02
3271: 6.0016178181543284e-02
3812: 7.0000536667661845e-02
4353: 8.0001537138146825e-02
4893: 9.0000702723306208e-02
5433: 1.0001655973087024e-01

These represent all of the timesteps for which data has been archived. Suppose now
that we wish to know what the stress state is for all particles (in this case two) at the
final archived timestep. For this one could issue:

puda -partvar p.stress -timesteplow 10 -timestephigh 10 const_test_hypo.uda

The resulting output is:

Parsing const_test_hypo.uda/index.xml
1.00016560e-01 1 0 281474976710656 -2.72031498e-10 -1.05064208e-26 -2.53781271e-08 -1.05064208e-26 -2.72031498e-10 -1.23584688e-09 -2.53781271e-08 -1.23584688e-09 1.63840079e-07
1.00016560e-01 1 1 0 1.93256890e-13 6.56787331e-18 1.85514400e-14 6.56787331e-18 2.24310469e-13 1.85519650e-14 1.85514400e-14 1.85519650e-14 -3.20052991e+06

The first column is the simulation time, the third column is the material num-
ber, the fourth column is the particle ID, and the remaining nine columns represent
the components of the Cauchy stress tensor (σ11,σ12,σ13, ..., σ32,σ33). If desired, the
terminal output can be redirected to a text file for further use.
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4.2 partextract

The command-line utility partextract may be used to extract data from an individual
particle. To do this you first need to know the ID number of the particle you are
interested in. This may be done by using the puda utility, or the visualization tools.
Once the extraction tools have been compiled, the partextract utility executable will be
located in /opt/StandAlone/tools/extractors/ . If the executable is run without
any arguments the following usage guide will be displayed in the terminal:

No archive file specified
Usage: partextract [options] <archive file>

Valid options are:
-mat <material id>
-partvar <variable name>
-partid <particleid>
-part_stress [avg or equiv or all]
-part_strain [avg/true/equiv/all/lagrangian/eulerian]
-timesteplow [int] (only outputs timestep from int)
-timestephigh [int] (only outputs timesteps upto int)

As an example of how to use the partextract utility, suppose we wanted to find the
velocity at every archived timestep for the particle with ID 281474976710656 (found
above using puda) in the “const test hypo.uda” file (src/StandAlone/inputs/MPM).
The appropriate command to issue is:

partextract -partvar p.velocity -partid 281474976710656 const\_test\_hypo.uda

The output to the terminal is:

Parsing const_test_hypo.uda/index.xml
1.82570019e-05 1 0 281474976710656 0.00000000e+00 0.00000000e+00 -1.00000000e-02
1.00129149e-02 1 0 281474976710656 -1.03554318e-19 -1.03554318e-19 -1.00000000e-02
2.00059304e-02 1 0 281474976710656 -1.99388121e-19 -1.99388121e-19 -1.00000000e-02

.

.

.

It is noted that if the stress tensor is output using the partextract utility, the output
format is different than for the puda utility. The partextract utility only outputs the
six independent components instead of all nine. For example, if we use partextract to
get the stress tensor for the same particle as above at the last archived timestep only,
the output is:

partextract -partvar p.stress -partid 281474976710656 -timesteplow 10 -timestephigh 10 const_test_hypo.uda
Parsing const_test_hypo.uda/index.xml
1.00016560e-01 1 0 281474976710656 -2.72031498e-10 -1.05064208e-26 -2.53781271e-08 -1.05064208e-26 -2.72031498e-10 -1.23584688e-09 -2.53781271e-08 -1.23584688e-09 1.63840079e-07

Compare this output with the output from puda above. Notice that the ordering
of the six independent components of the stress tensor for partextract are σ11,σ22, σ33,
σ23, σ13 , σ12.
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4.3 lineextract

Lineextract is used to extract an array of data from a region of a computational domain.
Data can be extracted from a point, along a line, or from a three dimensional region
and then stored as a variable for ease of post processing.

Usage:

./lineextract [options] -uda <archive file>

Valid options are:
-h, --help
-v, --variable: <variable name>
-m, --material: <material number> [defaults to 0]
-tlow, --timesteplow: [int] (sets start output timestep to int) [defaults to 0]
-thigh, --timestephigh: [int] (sets end output timestep to int) [defaults to last timestep]
-timestep, --timestep: [int] (only outputs from timestep int) [defaults to 0]
-istart, --indexs: <x> <y> <z> (cell index) [defaults to 0,0,0]
-iend, --indexe: <x> <y> <z> (cell index) [defaults to 0,0,0]
-l, --level: [int] (level index to query range from) [defaults to 0]
-o, --out: <outputfilename> [defaults to stdout]
-vv, --verbose: (prints status of output)
-q, --quiet: (only print data values)
-cellCoords: (prints the cell centered coordinates on that level)
--cellIndexFile: <filename> (file that contains a list of cell indices)

[int 100, 43, 0]
[int 101, 43, 0]
[int 102, 44, 0]

The following example shows the usage of lineextract for extracting density data
at the 60th computational cell in the x-direction, spanning the width of the domain
in the y-direction (0 to 1000), at timestep, 7, (note “timestep” actually refers to the
seventh data dump, not necessarily the seventh timestep in the simulation. The variable
containing the density data within the uda is “rho CC,” and the output variable that
will store the data for post processing is “rho.”

./lineextract -v rho_CC -timestep 7 -istart 60 0 0 -iend 60 1000 0 -m 1 -o rho -uda test01.uda.000

4.4 compute Lnorm udas

Compute Lnorm udas computes the L1, L2 and L∞ norms for each variable in two
udas. This utility is useful in monitoring how the solution differs from small changes in
either the solution tolerances, input parameters or algorithmic changes. You can also
use it to test the domain size influence. The norms are computed using:

d[i] = |uda1[i]− uda2[i]| (4.1)

L1 =

∑All Cells
i d[i]

number of cells
(4.2)
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L2 =

√ ∑All Cells
i d[i]2

number of cells
(4.3)

L∞ = max(d[i]) (4.4)

These norms are computed for each CC, NC, SFCX, SFCY, SFCZ variable, on each
level for each timestep. The output is displayed on the screen and is placed in a
directory named ‘Lnorm.’ The directory structure is:

Lnorm/
-- L-0
|-- delP_Dilatate_0
|-- mom_L_ME_CC_0
|-- press_CC_0
|-- press_equil_CC_0
|-- variable
|-- variable
|--etc

and in each variable file is the physical time, L1, L2 and L∞. These data can be plotted
using gnuplot or another plotting program.

The command usage is

compute_Lnorm_udas <uda1> <uda2>

The utility allows for udas that have different computational domains and different
patch distributions to be compared. The uda with the smallest computational domain
should always be specified first. In order for the norms to be computed the physical
times must satisfy

|physical Timeuda1
− physical Timeuda2

| < 1e−5.
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Chapter 5

Arches

5.1 Introduction

The ARCHES component was initially designed for predicting the potential hazard of
an explosive device immersed in or near a pool fire of transportation fuel. Since then,
this component has been extended to solve many industrially relevant problems such
as industrial flares, oxy-coal combustion processes, and fuel gasification.

Given the wide range of length and time scales that are present in these examples,
ARCHES utilizes models for bridging the molecular (micro) scales to the full, large
(macro) scales. More to come....

The ARCHES component solves the conservative, finite volume, low-mach formu-
lation of the Navier-Stokes equation with a pressure projection that includes the effect
of variable density, reaction, and many modes of heat transfer including radiation.

5.2 Governing Equations

The essential governing equations for the Arches component, written in finite volume
form, include the mass balance, momentum balance, mixture fraction balance, and
energy balance equations. Using a bold-face symbol to represent a vector quantity, the
equations are:

1. The mass balance, ∫
V

∂ρ

∂t
dV +

∮
S

ρu · dS = 0 , (5.1)

where ρ is density and u is the velocity vector.

2. The momentum balance,∫
V

∂ρu

∂t
dV +

∮
S

ρuu · dS =

∮
S

τ · dS−
∫
V

∇pdV +

∫
V

ρgdV , (5.2)
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where τ is the deviatoric stress tensor defined as τij = 2µSij − 2
3
µ∂uk

∂xk
δij, the

second isotropic term in τij is absorbed into the pressure projection for the cur-

rent low-Mach scheme, and Sij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. Also in Equation 5.2, g is the

gravitational body force and p is pressure.

3. The mixture fraction balance,∫
V

∂ρf

∂t
dV +

∮
S

ρuf · dS =

∮
S

D∇f · dS , (5.3)

where f is the mixture fraction and a Fick’s law form of the diffusion term
assuming equal diffusivities results in a single diffusion coefficient, D.

4. The thermal energy balance,∫
V

∂ρh

∂t
dV +

∮
S

ρuh · dS =

∮
S

k∇h · dS−
∮
S

q · dS , (5.4)

where h is the sum of the chemical plus sensible enthalpy, q is the radiative flux,
a Fourier’s law form of the conduction term is used with a diffusion coefficient,
k, and the pressure term is neglected.

These equations are solved in an LES context, meaning filters are applied to the equa-
tions. Here, we use Favre filtering, defined as

φ =
ρφ

ρ
,

to isolate the density in the filtered equations. The filtering operations result in the
classic turbulence closure problem and thus models are required.

Consider a control volume, V , with surface area S. Because the equations will be
solved on a computational grid, one can safely assume that the the control volume has
N faces, where unique faces are identified with their index, k. The discussion is further
simplified by only considering cubic volumes with length h. Given the cubic control

volume, a surface-filtered field for a variable φ is defined as φ
(j)

(x), where the variable
is filtered on a plane in the xj orthogonal direction. Then, for any surface, k, the field
is sampled at the face centered location. For example, if j = 1, the surface-filtered
quantity is

φ
2d,(1)

(x) =
1

h2

∫ x2+h/2

x2−h/2

∫ x3+h/2

x3−h/2
φ(x′)dx′2dx

′
3 . (5.5)

The volume average follows as

φ
3d

(x) =
1

h3

∫ x1+h/2

x1−h/2

∫ x2+h/2

x2−h/2

∫ x3+h/2

x3−h/2
φ(x′)dx′1dx

′
2dx

′
3 . (5.6)
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The bars over the variable, φ, are labeled with ‘2d’ and ‘3d’ superscripts to distinguish
between the two filters. Pope [7] identifies the proceeding definitions as using the
“anisotropic box” filter kernel where the resultant variables are simply averages over
the intervals xj − 1

2
h < x′j < xj + 1

2
h.

For convenience in isolating density in the filtered equations, a Favre-filtered quan-
tity is defined for an arbitrary variable, ϕ, as

ϕ̃2d ≡ ρϕ2d

ρ2d
, (5.7)

and

ϕ̃3d ≡ ρϕ3d

ρ3d
. (5.8)

Because the 2d and 3d filters are explicitly defined, this convention is slightly different
than what is normally observed in the literature. Most literature, however, derives
the filtered equations from the finite difference equations rather than the finite volume
equations. Thus, using ρ2d and ρ3d in Equations 5.7 and 5.8 to stress surface and
volume filtered densities are appropriate for the present discussion.

The previous definitions are applied to the integral forms of the governing equations
to obtain the Favre-filtered LES equations. Nevertheless, there are terms in the Favre-
filtered equations that cannot be solved. These include the surface filtered convection

of momentum, ũiu
2d
j , the surface filtered convection of mixture fraction, ũjf

2d
, and the

surface filtered convection of enthalpy, ũjh
2d

.

For the filtered velocity product, ρ2d ũiu
2d
j , a subgrid stress tensor is defined as,

τ sgsij = ũiu
2d
j − ũ2d

i ũ
2d
j . (5.9)

Similarly, subgrid diffusion terms are defined for mixture fraction and enthalpy,

J f = ũjf
2d
− ũ2d

j f̃
2d , (5.10)

J h = ũjh
2d
− ũ2d

j h̃
2d . (5.11)

(5.12)

Using these definitions, the final form of the Favre-filtered equations is

1. The filtered mass balance,

d

dt

(
ρ̃3d
)

+
Sk
V
nkj
(
ρ2d ũ2d

j

)
= 0 . (5.13)

2. The filtered momentum balance,

d

dt

(
ρ3d ũ3d

i

)
=
Sk
V
nkj
(
−ρ2d ũ2d

i ũ
2d
j + τ 2d

ij + τ sgsij − p2dδij
)

+ ρ3d gi . (5.14)
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3. The filtered mixture fraction balance,

d

dt

(
ρ3d f̃ 3d

)
=
Sk
V
nkj

(
−ρ2d ũ2d

j f̃
2d +D∇f 2d

+ J f
)
. (5.15)

4. The filtered thermal energy balance,

d

dt

(
ρ3d h̃3d

)
=
Sk
V
nkj

(
−ρ2d ũj

2dh̃2d + k∇h2d − q2d + J h
)
. (5.16)

The subgrid momentum stress, τ sgsij , the subgrid mixture fraction dissipation, J f ,

and the subgrid heat dissipation, J h, contain the unresolved or subgrid action of the
turbulence on the transported quantities. Since these terms arise from definitions,
models are introduced to include the subgrid effects that they represent. These models
are discussed next.

5.2.1 Subgrid Turbulence Models

The construction of both J f and J h is relatively straight forward. Invoking an “eddy-
viscosity” modeling concept, the subgrid transport due to turbulent advection is treated
as an enhanced diffusion term for the unclosed terms listed above. That is, the subgrid
mixture fraction dissipation and subgrid enthalpy dissipation are respectively written
as,

J f = Dt
∂f

2d

∂xj
, (5.17)

and

J h = kt
∂h

2d

∂xj
. (5.18)

To model Dt and kt, constant turbulent Schmidt (Sct),

Sct =
1

ρ

µt
Dt

, (5.19)

and Prandlt (Prt),

Prt =
1

ρ

µt
kt
, (5.20)

numbers are assumed with where µt is a turbulent viscosity. Following Pitsch and
Steiner [6], the values of the turbulent Schmidt and Prandlt number are taken as
Sct = Prt = 0.4, which is consistent with a unity Lewis number assumption.

For the subgrid scale stress tensor, τ sgsij , two common LES turbulence closure mod-
els are the constant coefficient Smagorinsky model [8] and the dynamic coefficient
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Smagorinsky model [4]. As with the scalar subgrid modeling terms, the eddy viscosity
model is again invoked for τ sgsij . Defining the deviatoric subgrid stress tensor as,

τ d,sgsij = τ sgsij −
1

3
τ sgskk δij, (5.21)

the subgrid stress is taken as,

τ d,sgsij ≈ −2νtSij = −2(Cs∆)2|S|Sij , (5.22)

where ∆ is the filter width, νt is the eddy viscosity and |S| ≡ (2SijSij)
1/2. For the

Smagorinsky model, Cs ≈ 2 depending on the filter type, numerical method, and flow
configuration [7].

For the dynamic Smagorinsky model, Cs is computed by taking a least squares
approach to determining the length scale [3],

(Cs∆)2 =
〈LijMij〉
〈MijMij〉

, (5.23)

where
Lij = 2(Cs∆)2|̂S|Sij − 2(Cs∆̂)2 |̂S|Ŝij , (5.24)

and
Mij ≡ 2

(
|̂S|Sij − α

2|Ŝ|Ŝij
)
. (5.25)

The hat defines an explicit test filter and the angled brackets in Equation 5.33 concep-
tually represent an averaging over a homogeneous region of space that, experience has
shown, is necessary for stability. Experience has also shown that averaging over the
test filter width is adequate and the filter width ratio, α = ∆̂/∆, is usually taken to
be 2.

5.2.2 Subgrid Momentum Dissipation

Addressing the momentum closure involves finding a suitable model for the subgrid
scale stress tensor, τ sgsij . Two common LES turbulence closure models are examined:
the constant coefficient Smagorinsky model and the dynamic coefficient Smagorinsky
model. In LES modeling, field variables are decomposed into a spatially filtered field
and a residual component, u = u + u′. This decomposition is known as a Leonard
decomposition. While seemingly similar to a Reynolds decomposition used in Reynolds
Averaged Navier-Stokes (RANS) models, the Leonard decomposition has the property
that the filtered residual component is generally not equal to zero, u′ 6= 0. As a result,
the subgrid stress term contains several terms,

τ sgsij = (ui + u′i) (ui + u′i)− uiuj ,
= uiuj − uiuj︸ ︷︷ ︸

Lij

+uiu′j + u′iuj︸ ︷︷ ︸
Cij

+u′i + u′j︸ ︷︷ ︸
Rij

, (5.26)
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referred to as the Leonard stress, the cross stresses, and the Reynolds stress respectively.
It is useful to consider the physical interpretation of the various components of

the stress. The Leonard term is responsible for filtering and projecting the nonlin-
ear interactions of the resolved components back to the finite LES space. This is a
correction to the resolved advective term in accordance with the stated explicit filter
used to derive the LES equations. It does not account for aliasing errors. The first
cross term represents advection of the resolved field by turbulent fluctuations. The
second cross term represents the advection of subgrid scales by the resolved field. The
Reynolds stress is familiar from RANS and represents the advection of subgrid scales
by turbulent fluctuations.

As with the scalar subgrid modeling terms, the eddy viscosity model is again invoked
for τ sgsij . The most common eddy viscosity model in LES is the Smagorinsky model [8].
Defining the deviatoric subgrid stress tensor as,

τ d,sgsij = τ sgsij −
1

3
τ sgskk δij, (5.27)

the subgrid stress is approximated by,

τ d,sgsij ≈ −2νtSij = −2(Cs∆)2|S|Sij , (5.28)

where, ∆ is the filter width, νt is the eddy viscosity, |S| ≡ (2SijSij)
1/2, and typically

Cs ≈ 2 depending on the filter type, numerical method, and flow configuration [7].
This model is basically identical to Prandtl’s mixing length model with l = Cs∆.

The dynamic procedure [1, 4] eliminates the need to specify the model constant,
Cs, a priori, with the basic assumption that the constant is the same for two different
filter scales. The smaller scale is historically referred to as the “grid scale” (though the
filter width need not equal the grid spacing, ∆ ≥ h)), and the larger scale is referred
to as the “test scale”. Implicit in this assumption is the requirement that both scales
lie within the inertial subrange.

Defining the deviatoric residual stress tensor as,

T dij = Tij −
1

3
Tkkδij , (5.29)

the residual stress at the test scale is given by,

T dij ≡ ûiuj − ûiûj ≈ −2(Cs∆̂)2|Ŝ|Ŝij . (5.30)

where ∆̂ is the test filter width and the hat defines an explicit test filter. By test
filtering Equation 5.9 and combining this with 5.30, one can construct the Leonard
term, Lij. This is also known as the “Germano identity”,

Lij = Tij − τ̂ sgsij = ûiuj − ûiûj . (5.31)
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Notice that the Leonard term is directly computable from resolved LES quantities. By
restating the Smagorinsky model in terms of the Germano identity, one ends up with
an over-determined system of equations for the unknown, Cs,

Lij = 2(Cs∆)2|̂S|Sij − 2(Cs∆̂)2 |̂S|Ŝij . (5.32)

Although we have pulled Cs out of the test filtering operation of the subgrid stress,
this approximation yields acceptable results. In practice, one takes a least squares
approach to determining the length scale [3],

(Cs∆)2 =
〈LijMij〉
〈MijMij〉

, (5.33)

where
Mij ≡ 2

(
|̂S|Sij − α

2|Ŝ|Ŝij
)
. (5.34)

The only model parameter, then, is the filter width ratio, α = ∆̂/∆, usually taken to
be 2.

The angled brackets in Equation 5.33 conceptually represent averaging over a ho-
mogeneous region of space which, experience has shown, is necessary for stability. We
have found that averaging over the test filter width is adequate. With these implemen-
tation practices, the dynamic model is generally robust. The implementation can be
made more efficient by computing the constant roughly every 10 time steps (based on
the advective CFL), and only for the first Runge-Kutta step.

5.2.3 LES Algorithm

Figure 5.1: Staggered grid arrangement in
two dimensions with u and v velocity cell
centers located on the face centers of the
scalar cells.

The set of filtered equations (Equations
5.13-5.16) are discretized in space and
time and solved on a staggered, finite vol-
ume mesh. The staggering scheme con-
sists of four offset grids. One grid stores
the scalar quantities and the remaining
three grids store each component of the
velocity vector. The velocity components
are situated so that the center of their
control volume is located on the face cen-
ters of the scalar grid in their respective
direction. Figure 5.1 shows an example of
a two-dimensional grid and the staggering
arrangement.

The staggering arrangement is advan-
tageous for computing low-Mach LES re-
acting flows. First, since a pressure pro-
jection algorithm is used, the velocities
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are exactly projected without interpolation error because the location of the pressure
gradient coincides directly with the location of the velocity storage location. Second,
Morinishi et al. [5] showed that kinetic energy is exactly conserved when using a cen-
tral differencing scheme on the convection and diffusion terms without a subgrid model
and in combination with a staggered grid. Having a spatial scheme that conserves ki-
netic energy is advantageous because it limits artificial dissipation that arises from the
differencing scheme. These conservation properties make the staggered grid a prime
choice for LES reacting flow simulation.

For the spatial discretization of the LES scalar equations, flux limiting and up-
wind schemes for the convection operator are used. These schemes are advantageous
for ensuring that scalar values remain bounded. For the momentum equation, a cen-
tral differencing scheme for the convection operator is used. All diffusion terms are
computed with a second order approximation of the gradient.

When computing the 2d surface filtered field on the faces of the control volume, one
is forced to use an interpolation from the 3d volume filtered field. This approximation
is tolerated because computing the 2d surface field is simply not possible with the given
grid scheme.

An explicit time stepping scheme is chosen. A general, multistep explicit update
for a variable, φ, may be written as,

φ0 = φn ,

φ(i) = V
m−1∑
k=0

(
αi,kφ

(k) + ∆tβi,kL(φ(k))
)
, i = 1, ...,m (5.35)

φ(m) = φn+1 ,

where n is the time level, m is the substep between n and n+1, α and β are integration
coefficients, and L is a linearization operator on the the convective flux and source
terms. Letting m = 1 and α = β = 1 the forward-Euler time integration scheme is
determined,

(φ)n+1 = (φ)n + ∆t(L(φ)n) . (5.36)

A higher order, multistep method is derived by letting m > 1 and choosing appropri-
ate constants for α and β. For this study, two step and three step, strong stability
preserving (SSP) coefficients were chosen from Gottlieb et al. [2].

Using the coefficients given by Gottlieb et al., the SSP-RK 2 stepping scheme is

(φ)(1) = (φ)n + ∆t(L(φ)n) (5.37)

(φ)n+1 =
1

2
(φ)n +

1

2
(φ)1 +

1

2
∆t(L(φ)(1)) .
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SSP-RK 3 time stepping scheme is,

(φ)(1) = (φ)n + ∆t(L(φ)n) (5.38)

(φ)(2) =
3

4
(φ)n +

1

4
(φ)(1) +

1

4
∆t(L(φ)(1))

(φ)(n+1) =
1

3
(φ)n +

2

3
(φ)(2) +

1

4
∆t(L(φ)(2)) .

The time step is limited by
∆t ≤ c∆tF.E. (5.39)

where ∆tF.E. is the forward-Euler time step limited by the Courant-Friedrichs-Levy
condition and c is a constant less than or equal to one.

A higher order, multistep method is derived by letting m > 1 and choosing appro-
priate constants for α and β. For this study, two step and three step, strong stability
preserving (SSP) coefficients were chosen from Gottlieb et al. [2]. The coefficients for
SSP-RK 2 and SSP-RK 3 are optimal in the sense that the scheme is stable when c = 1
if the forward-Euler time step is stable for hyperbolic problems. In practice, for the
Navier-Stokes equations, the value of c is taken less than one.

Choosing an explicit time stepping scheme, rather than an implict one, creates a
challenge for solving the set of equations. The density at the n + 1 timestep, which
is required to determine the cardinal variables, requires an estimation. Taking the
estimated density for ρn+1 to be ρ∗, the estimation can be as simple as ρ∗ = ρn. Note
that the 2d and 3d filter distinction is dropped for the remainder of this discussion for
the sake of simplicity. A slightly more complicated procedure involves a forward-Euler
step of the continuity equation to obtain ρ∗. This is written as,

ρ∗ = ρn −∆t
Sk
V
nkj (ρũj) . (5.40)

Ideally, one would like to know ρn+1 rather than an estimate. While more details will
be discussed in Section ??, one recognizes that ρ is a function of the same variables
that are being updated in time, namely, the mixture fraction, f , and enthalpy, h. This
quandary is a result of the explicit time stepping method will not be resolved for vari-
able density flows without using a fully implicit method. Explicit methods, however,
do have advantages, especially for large scale parallel computations. Specifically, ex-
plicit methods are easier to load balance because the amount of work required for each
processor is readily determined a priori, which makes for an efficient parallel computa-
tion. Explicit methods are also easier to code into a computer and to debug. For these
reasons, the current algorithm discussion is limited to explicit methods only.

The explicit algorithm for solving the set of filtered equations is shown in Algorithm
5.1.
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Listing 5.1: Explicit LES algorithm

f o r t := t {min} to t {max} do
f i l l in l a t e r . .
f o r $RK { s tep }$:=1 to $N$
end ;
end ;

5.3 Uintah Specification

5.3.1 Basic Inputs

In order to run the the Arches component, the correct specification must be made for
the simulation controller using the SimulationComponent tag. In this case (similar to
the other Uintah components) the Arches component is specified as

<SimulationComponent type="arches" />

as a child of the Uintah specification section.
Most other Arches specifications are located in the CFD→ARCHES section of the

input file. Unless otherwise specified, the system of units for all Arches input parame-
ters are SGI.

5.3.2 Time Integrator

Explicit Time Integrator

Arches is commonly run in a fully explicit time-stepping mode. That is, the update in
time for any variable φ is expressed as

φt+∆t =
1

ρ∗
(
(ρφ)t + ∆tRHSt)

)
, (5.41)

where RHS represents all forcing terms in the transport equation for φ at time level
t. For the purposes of this discussion, we have dealt with the implicit nature of the
density term by simply assuming we have a density approximation, called ρ∗, that suits
the current update (for details of the ρ issue, see Section 5.2.3).

The explicit time integrator is activated (as a child node of CFD→ARCHES) by
simply inserting the <ExplicitIntegrator> node. Within this node, the other solvers
for the various transport equations will be defined along with a few parameters. The
general structure will look something like this:

<ExplicitSolver>
<!--Solver Options-->
<option-1/>
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<option-2/>
....
<!--Transport Equations-->

<MomentumSolver>
...
</MomentumSolver>

<PressureSolver>
...
</PressureSolver>

<MixtureFractionSolver>
...
</MixtureFractionSolver>

<EnthalpySolver>
...
</EnthalpySolver>

</ExplicitSolver>

The options for each transport equation will be described in Section 5.3.3.
Options for the <ExplicitSolver> section include:

1. Initial time step: <initial dt>
Input type: Required, double
Default: NA
Description: The explicit solver can be stepped forward in time by using a
fixed time step or letting the code estimate a time step via a CFL condition (see
Section 5.2.3). In either case, an initial time step must be specified.

2. Variable time step: <variable dt>
Input type: Required, boolean
Default: NA
Description: One may either step at a fixed time step with ∆t equal to the
intial dt tag or let the code guess a stable time step according to a CFL condition.
It is recommended that one sets the variable dt to true as it helps maintain
stability during the time integration.

3. Time integration order: <timeIntegratorType>
Input type: Required, string
Default: FE
Description: Current options include one of the following:

• FE, 1st order Forward-Euler

• RK2SSP, Second Order, Strong-Stability Preserving Runge-Kutta
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• RK3SSP, Third Order, Strong-Stability Preserving Runge-Kutta

See Section 5.2.3 for full details.

4. Stability option for the density guess: <restartOnNegativeDensityGuess>
Input type: Optional, boolean
Default: false
Description: This parameter restarts a time step, regardless of the time inte-
grator order, if the predicted density guess (see Section 5.2.3) from the continuity
equation is negative and therefore unphysical. If this option is true, the time step
is reduced by half and the time step is restarted with the new, smaller time step.
The process with repeat until a) the density guess is physical or b) the code goes
unstable. Instability usually will occur in the implicit pressure projection. If b)
occurs, it is advised to set this option to false. By default this option is false and
is not required. Note that in cases where this parameter is false and a negative
density guess occurs, the density from the previous time step is used.

5. Message control on density guess: <NoisyDensityGuess>
Input type: Optional, boolean
Default: true
Description : The negative density guess warning prints for every cell with a
negative density guess. One may want to suppress the warning and can do so
with this option. When used, a warning is printed for every patch rather than
every cell.

6. Turbulence model calculation frequency: <turbModelCalcFreq>
Input type: Optional, integer
Default: 1
Description: This parameter allows one to control the frequency of the exe-
cution of the turbulence model. One may want to decrease the frequency for
efficiency reasons.

7. Turbulence model calculation frequency on time integrator sub-steps:
<turbModelCalcForAllRKSteps>
Input type: Optional, boolean
Default: true
Description: If false, the turbulence closure will only be computed for the first
time sub-step and then applied for all subsequent time sub-steps. By default,
this parameter is true.

8. Additional time step constraint: <scalarUnderflowCheck>
Input type: Optional, boolean
Default: false
Description: Guaranteeing stability for a problem with large length and time
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scales is difficult. As previously mentioned, a guess at a stable time step is
made using a CFL condition. The scalar underflow check option uses additional
information about the local flow information to compute an additional time step
guess. The minimum of this estimation and the CFL condition is used to step
the equations forward in time. Here, a time step is computed from the inverse of
the continuity equation by considering outward mass fluxes only. In other words,
given the local velocity state, there is a limit to the amount of mass that can
leave any given cell. This limit is computed from

∂ρ

∂t
= −∇ · (ρU)|+

when only outward facing fluxes are considered (as indicated by the |+ symbol).
Thus one can rearrange this equation to give an estimate for ∆t as,

∆t ≈ ∂t =
∂ρ

∇ · (ρU)|+
This option is often helpful in helping with stability if your simulation is expe-
riencing underflow (< 1.0) or overflow (> 1.0) errors from the mixture fraction
scalar.

9. Extra pressure projection option: <extraProjection>
Input type: Optional, boolean
Default: false
Description: This option performs a second pressure solve and projection step.
In general, this option is not needed. By default the value is false.

Implicit Time Integrator

Currently the implicit time integrator is not supported. Please check back in subsequent
releases.

5.3.3 Transport Equation Options

In the current configuration of Arches, transport equations are activated by specifying
the option for each equation in a equation-specific node under the ExplicitSolver node.
Currently, all equation nodes are required except for the enthalpy solver node.

Momentum Solver

The moment solver refers to solution of ρU, where U is the vector quantity of velocity.
As mentioned above, the components are solved in a staggered, finite volume config-
uration. By default, the required <MomentumSolver> node must be present in the
<ExplicitSolver> node.

The options for the moment solver include:
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1. The order of the convection scheme: <convection scheme>
Input type: Required, string
Default: NA
Description: The two options that currently are implemented for the convection
term in the moment equation are first-order upwind (set as upwind) and second-
order central difference (set as central). Both types of discretization can be found
in any common CFD text. It is recommended that one use the central option as
it has desirable energy conservation properties (see Moronishi [add reference] ).

2. Filter the divergence of ρU: <filter divergence constraint>
Input type: Optional, boolean
Default: false
Description: This options turns on the filtering of the divergence constraint
used in the pressure solver. When false, the divergence is unfiltered.

Pressure Solver

Arches is solved in an incompressible manner, in the sense that there is a degree of
pressure-velocity decoupling which is resolved through an implicit pressure projection.
This results in the classic Poisson equation for pressure than requires solution. By
default, the required <PressureSolver> node must be present in the <ExplicitSolver>
node.

The options for the pressure solver include:

1. Perform only the last projection: <do only last projection>
Input type: Optional, boolean
Default: false
Description: For multi-step time schemes, only perform the projection on the
last time sub-step. The result is that intermediate time steps do not conserve
mass.

2. Normalize the pressure with the reference pressure: <normalize pressure>
Input type: Optional, boolean
Default: false
Description: When true, this option subtracts the reference pressure, set in
<PhysicalProperties>, from the current value of pressure for each time step.

3. Solver choice for the pressure Poisson equation: <linear solver>
Input type: Required, string
Default: NA
Description: Arches uses external linear solver packages to solve the pressure
Poisson equation. Currently, there are two solver that have an interface to the
pressure equation; hypre or petsc. A solver must be specified and specifics of the
solver follow in the <parameter> section (detailed next).
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4. Solver parameters for the pressure Poisson equation: <parameters>
Input type: Required, NA
Default: NA
Description: The solver parameters, as children of the parameters node, include
the following:

• <solver>, Required solver parameter. Options include: cg.

• <max iter>, Required maximum iterations for the solver.

• <preconditioner>, Required preconditioner. Options include: jacobi, pfmg.

• <res tol>, Required tolerance of the residual (res = b− Ax).

Mixture Fraction Solver

Arches has identified specific scalar variables that require specification, the mixture
fraction being one of them. The mixture fraction equation is a conserved scalar equation
that is used as a parameter to map the thermo-chemical state of the gas. By default,
the required <MixtureFractionSolver> node must be present in the <ExplicitSolver>
node.

1. Initial value of of the mixture fraction in the domian: <initial value>
Input type: Optional, double
Default: 0.0
Description: One may set the mixture fraction everywhere inside the domain
to a constant value. Boundary condition values are set elsewhere.

2. Convection scheme: <convection scheme>
Input type: Required, string
Default: central-upwind, flux-limited
Description:

Enthalpy Solver

5.3.4 Initial and Boundary Conditions

5.3.5 Turbulence Models

5.3.6 Properties, Reaction and Sub-Grid Mixing

5.3.7 Extra Scalar Solvers

This section and all options will soon be replaced with Section 5.3.8.
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5.3.8 Additional Transport Equations

5.3.9 Direct Quadrature Method of Moments (DQMOM)
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5.4 Examples

The following ARCHES examples illustrate the diverse set of problems that can be
solved using the ARCHES component of Uintah code. The first two examples exemplify
techniques used to verify various ARCHES algorithms that were implemented in the
code. The following three [or more] examples illustrate the kinds of problems that
ARCHES can solve. The input files used here can be used as templates to build similar
input files for similar problems. Due to the complexity of ARCHES simulations, exact
solutions (with the exception of MMS) do not exist. Hence the emphasis on model
validation, or the comparison of simulation with experimental results. Model validation
provides a framework that allows the simulation scientist to be confident in his or her
results in the absence of analytical solutions. All modeling should be accompanied by
some form of validation analysis.

Almgren MMS

Problem Description

Methods of Manufactured Solutions (MMS) are verification tools that are used with
computer codes such as ARCHES that seek to solve the Navier-Stokes Equations. They
are extremely useful for finding programming errors and ensuring expected behavior of
the computer code. The Almgren MMS is especially easy to implement because of the
absence of source terms that must be added to the transport equations. ARCHES uses
a second-order spatial discretization scheme and a first-order scheme in the temporal
direction. Therefore, if the Almgren MMS problem is run in Arches at different mesh
resolutions and the normalized error plotted on a semilog plot, the slope of the line
should be 2. To facilitate this exercise, a shell script has been written to perform this
analysis [not done yet....]

Simulation Specifics

Component used: ARCHES

Input file name: almgrenMMS.ups

Command used to run input file:

./runAlmgren.sh

If you examine the shell script you will see the following line of code: mpirun -np 1 sus
inputs/UintahRelease/ARCHES/almgrenMMS.ups This is call to run the ARCHES via sus.

Simulation Domain: 1.0 x 1.0 x 3.0 m
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Cell Spacing:
0.3125 x 0.3125 x 0.275 m

Example Runtimes:
113.2 seconds (1 processor, 2.4 GHz Intel Core 2)

Physical time simulated: 1.0 sec.
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Periodic Box Problem

Problem Description

The Periodic Box Problem indicates how well ARCHES is modeling the kinetic en-
ergy contained in the turbulence modeled on the grid and at a sub-grid level. The
LES algorithm transfers kinetic energy from cell to cell in the ARCHES structured
grid. Turbulence models such as ”compdynamicprocedure,” ”dynamicprocedure,” and
”smagorinsky” are used to model kinetic energy at the sub-grid level. Ideally, there
would be a seamless transition between the resolved turbulence and sub-grid models at
the Nyquist limit. SHOW SAMPLE PLOT Experience has shown that this is not
normally the case. By plotting the kinetic energy as a function of the wave number, it
is possible to determine how well the kinetic energy dissipation is being modeled by the
code. The Periodic Box problem is initialized with a kinetic energy (turbulence) profile
from Direct Numerical Simulation (DNS). As the simulation proceeds that energy is
dissipated.

Simulation Specifics

Component used: ARCHES

Input file name: periodic.ups

Command used to run input file:
This simulation, like many ARCHES simulations, requires another file, in addition to the input
file called by sus. That file is the initial condition called upon in periodic.ups by

mpirun -np 1 sus inputs/UintahRelease/ARCHES/periodic.ups

Simulation Domain: 0.565 x 0.565 x 0.565 m

Cell Spacing:
0.0177 x 0.0177 x 0.0177 m

Example Runtimes:
2 minutes (1 processor, 2.4 GHz Intel Core 2 )

Physical time simulated: 0.1 sec.
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Helium Plume

Problem Description

Helium plumes are classical experiments that allow for the easy capture of turbulent
mixing data that can be used to validate the turbulent mixing models used in LES
algorithms such as Arches. The non-reacting nature of the plume makes it easy to
capture experimental data without damaging expensive equipment. Reacting flows
require special mixing tables that contain temperature, pressure and composition as
a function of the transported scalars in Arches. The coldFlowMixingModel is used to
determine the mixing of isothermal? streams. After the mixing model is specific in
the .ups file, the temperature and densities of the two mixing streams are specified.

Simulation Specifics

Component used: ARCHES

Input file name: helium 1m.ups

Command used to run input file:
mpirun -np 8 sus inputs/UintahRelease/ARCHES/helium 1m.ups

Simulation Domain: 3.0 x 3.0 x 3.0 m

Cell Spacing:
0.06 x 0.06 x 0.0.6 m

Example Runtimes:
54 minutes (8 processors, 2.8 GHz Xeon)

Physical time simulated: 5.0 sec.

Results
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Methane Plume

Problem Description

This methane plume is geometrically identical to the Helium Plume problem. The
difference is the addition of chemistry. Instead of unreacting, isothermal fluids mixing,
a fuel is reacting to combustion products inside of the computational domain. This
chemistry is captured via a mixing table. The input file is pointed to the mixing
table which contains state variables and species mass fractions as a function of mixture
fraction, heat loss, and mixture fraction variance.

Simulation Specifics

Component used: ARCHES

Input file name: helium 1m.ups
Note that the input file is pointed to the mixing table (inputs/UintahRelease/ARCHES/CH4 equil clipped.mxn.gz)

Command used to run input file:
mpirun -np 8 sus inputs/UintahRelease/ARCHES/helium 1m.ups

Simulation Domain: 3.0 x 3.0 x 3.0 m

Cell Spacing:
0.06 x 0.06 x 0.0.6 m

Example Runtimes:
2 hours 10 minutes (8 processors, 2.8 GHz Xeon)

Physical time simulated: 5.0 sec.

Results
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Fast Cookoff

Problem Description

The Fast Cookoff test is a procedure used for hazard classification of energetic ma-
terials. The object is immersed over a jet fuel pool fire and the reaction, if any, is
observed. Current protocol requires that the full size article must be subjected to this
test, making such procedures prohibitively expensive and unfeasible for articles such as
solid rocket motors. An alternative procedure has been proposed, combining sub-scale
experiments with computer simulation. Through validation and uncertainty quantifi-
cation procedures, the computer simulation tool (ARCHES) can be used as a surrogate
for full-scale experimental testing. This Fast Cookoff problem includes a reacting flow
as well as an MPMARCHES object. After performing the simulation, the incident heat
flux to the cylinder can be extracted.

Simulation Specifics

Component used: MPMARCHES

Input file name: fastcookoff.ups

Command used to run input file:
Note that the input file is pointed to the mixing table (inputs/UintahRelease/ARCHES/san-
dia jp8 flmlt cg.mxn)

mpirun -np 64 sus inputs/UintahRelease/ARCHES/fastcookoff.ups To extract the in-
cident heat flux to the cylinder, use the faceextract and timeextract utilities. ¡How to do
this¿

Simulation Domain: 24.0 x 24.0 x 24.0 m

Cell Spacing:
0.24 x 0.24 x 0.24 m

Example Runtimes:
7 hours 27 minutes (64 processors, 2.8 GHz Xeon)

Physical time simulated: 10.0 sec.

Results
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Chapter 6

ICE

6.1 Introduction

The work presented here describes a multi-material CFD approach designed to solve
“full physics” simulations of dynamic fluid structure interactions involving large de-
formations and material transformations (e.g., phase change). “Full physics” refers to
problems involving strong interactions between the fluid field and solid field temper-
atures and velocities, with a full Navier Stokes representation of fluid materials and
the transient, nonlinear response of solid materials. These interactions may include
chemical or physical transformation between the solid and fluid fields.

The theoretical and algorithmic basis for the multi-material CFD algorithm pre-
sented here is based on a body of work of several investigators at Los Alamos National
Laboratory, primarily Bryan Kashiwa, Rick Rauenzahn and Matt Lewis. Several re-
ports by these researchers are publicly available and are cited herein. It is largely
through our personal interactions that we have been able to bring these ideas to bear
on the simulations described herein.

An exposition of the governing equations is given in the next section, followed by
an algorithmic description of the solution of those equations. This description is first
done separately for the materials in the Eulerian and Lagrangian frames of reference,
before details associated with the integrated approach are given.

6.1.1 Governing Equations

The governing multi-material model equations are stated and described, but not devel-
oped, here. Their development can be found in [6]. Here, our intent is to identify the
quantities of interest, of which there are eight, as well as those equations (or closure
models) which govern their behavior. Consider a collection of N materials, and let the
subscript r signify one of the materials, such that r = 1, 2, 3, . . . , N . In an arbitary
volume of space V (x, t), the averaged thermodynamic state of a material is given by
the vector [Mr,ur, er, Tr, vr, θr,σr, p], the elements of which are the r-material mass,
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velocity, internal energy, temperature, specific volume, volume fraction, stress, and the
equilibration pressure. The r-material averaged density is ρr = Mr/V . The rate of
change of the state in a volume moving with the velocity of r-material is:

1

V

DrMr

Dt
=

PN
s=1Γrs (6.1)

1

V

Dr(Mrur)

Dt
= θr∇ · σ+ ∇ · θr(σr − σ) + ρrg +

PN
s=1frs +

PN
s=1u+

rsΓrs (6.2)

1

V

Dr(Mrer)

Dt
= −ρrp

Drvr

Dt
+ θrτr : ∇ur −∇ · jr +

PN
s=1qrs +

PN
s=1h+

rsΓrs (6.3)

Equations (6.1-6.3) are the averaged model equations for mass, momentum, and
internal energy of r-material, in which σ is the mean mixture stress, taken here to
be isotropic, so that σ = −pI in terms of the hydrodynamic pressure p. The effects
of turbulence have been explicitly omitted from these equations, and the subsequent
solution, for the sake of simplicity. However, including the effects of turbulence is not
precluded by either the model or the solution method used here.

In Eq. (6.2) the term
∑N

s=1 frs signifies a model for the momentum exchange among
materials. This term results from the deviation of the r-field stress from the mean
stress, averaged, and is typically modeled as a function of the relative velocity between
materials at a point. (For a two material problem this term might look like f12 =
K12θ1θ2(u1−u2) where the coefficient K12 determines the rate at which momentum is
transferred between materials). Likewise, in Eq. (6.3),

∑N
s=1 qrs represents an exchange

of heat energy among materials. For a two material problem q12 = H12θ1θ2(T2 −
T1) where Tr is the r-material temperature and the coefficient Hrs is analogous to a
convective heat transfer rate coefficient. The heat flux is jr = −ρrbr∇Tr where the
thermal diffusion coefficient br includes both molecular and turbulent effects (when the
turbulence is included).

In Eqs. (6.1-6.3) the term Γrs is the rate of mass conversion from s-material into
r-material, for example, the burning of a solid or liquid reactant into gaseous products.
The rate at which mass conversion occurs is governed by a reaction model. In Eqs.
(6.2) and (6.3), the velocity u+

rs and the enthalpy h+
rs are those of the s-material that is

converted into r-material. These are simply the mean values associated with the donor
material.

The temperature Tr, specific volume vr, volume fraction θr, and hydrodynamic
pressure p are related to the r-material mass density, ρr, and specific internal energy,
er, by way of equations of state. The four relations for the four quantites (Tr, vr, θr, p)
are:
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er = er(vr, Tr) (6.4)

vr = vr(p, Tr) (6.5)

θr = ρrvr (6.6)

0 = 1−PN
s=1ρsvs (6.7)

Equations (6.4) and (6.5) are, respectively, the caloric and thermal equations of state.
Equation (6.6) defines the volume fraction, θ, as the volume of r-material per total
material volume, and with that definition, Equation (6.7), referred to as the multi-
material equation of state, follows. It defines the unique value of the hydrodynamic
pressure p that allows arbitrary masses of the multiple materials to identically fill the
volume V . This pressure is called the “equilibration” pressure [8].

A closure relation is still needed for the material stress σr. For a fluid σr = −pI+τr

where the deviatoric stress is well known for Newtonian fluids. For a solid, the material
stress is the Cauchy stress. The Cauchy stress is computed using a solid constitutive
model and may depend on the the rate of deformation, the current state of deformation
(E), the temperature, and possibly a number of history variables. Such a relationship
may be expressed as:

σr ≡ σr(∇ur,Er, Tr, . . . ) (6.8)

The approach described here imposes no restrictions on the types of constitutive rela-
tions that can be considered. More specific discussion of some of the models used in
this work is found in Sec. ??

Equations (6.1-6.8) form a set of eight equations for the eight-element state vector,
[Mr,ur, er, Tr, vr, θr,σr, p], for any arbitrary volume of space V moving with the r-
material velocity. The approach described here uses the reference frame most suitable
for a particular material type. As such, there is no guarantee that arbitrary volumes
will remain coincident for materials described in different reference frames. This prob-
lem is addressed by treating the specific volume as a dynamic variable of the material
state which is integrated forward in time from initial conditions. In so doing, at any
time, the total volume associated with all of the materials is given by:

Vt =
PN

r=1Mrvr (6.9)

so the volume fraction is θr = Mrvr/Vt (which sums to one by definition). An evolution
equation for the r-material specific volume, derived from the time variation of Eqs.
(6.4-6.7), has been developed in [6]. It is stated here as:

1

V

Dr(Mrvr)

Dt
= f θr ∇ · u +

[
vrΓr − f θr

PN
s=1vsΓs

]
+

[
θrβr

DrTr

Dt
− f θr

PN
s=1θsβs

DsTs

Dt

]
. (6.10)
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where f θr = θrκrPN
s=1θsκs

, and κr is the r-material bulk compressibility.

The evaluation of the multi-material equation of state (Eq. (6.7)) is still required
in order to determine an equilibrium pressure that results in a common value for the
pressure, as well as specific volumes that fill the total volume identically.

A description of the means by which numerical solutions to the equations in Sec-
tion 6.2 are found is presented next. This begins with separate, brief overviews of the
methodologies used for the Eulerian and Lagrangian reference frames. The algorith-
mic details necesssary for integrating them to achieve a tightly coupled fluid-structure
interaction capability is provided in Sec. ??.

6.2 Algorithm Description

The Eulerian method implemented here is a cell-centered, finite volume, multi-material
version of the ICE (for Implicit, Continuous fluid, Eulerian) method [5] developed by
Kashiwa and others at Los Alamos National Laboratory [7]. “Cell-centered” means
that all elements of the state are colocated at the grid cell-center (in contrast to a
staggered grid, in which velocity components may be centered at the faces of grid cells,
for example). This colocation is particularly important in regions where a material
mass is vanishing. By using the same control volume for mass and momentum it
can be assured that as the material mass goes to zero, the mass and momentum also
go to zero at the same rate, leaving a well-defined velocity. The technique is fully
compressible, allowing wide generality in the types of problems that can be addressed.

Our use of the cell-centered ICE method employs time splitting: first, a Lagrangian
step updates the state due to the physics of the conservation laws (i.e., right hand
side of Eqs. 6.1-6.3); this is followed by an Eulerian step, in which the change due to
advection is evaluated. For solution in the Eulerian frame, the method is well developed
and described in [7].

In the mixed frame approach used here, a modification to the multi-material equa-
tion of state is needed. Equation (6.7) is unambiguous when all materials are fluids
or in cases of a flow consisting of dispersed solid grains in a carrier fluid. However in
fluid-structure problems the stress state of a submerged structure may be strongly di-
rectional, and the isotropic part of the stress has nothing to do with the hydrodynamic
(equilibration) pressure p. The equilibrium that typically exists between a fluid and a
solid is at the interface between the two materials: there the normal part of the traction
equals the pressure exerted by the fluid on the solid over the interface. Because the
orientation of the interface is not explicitly known at any point (it is effectively lost in
the averaging) such an equilibrium cannot be computed.

The difficulty, and the modification that resolves it, can be understood by consider-
ing a solid material in tension coexisting with a gas. For solid materials, the equation
of state is the bulk part of the constitutive response (that is, the isotropic part of
the Cauchy stress versus specific volume and temperature). If one attempts to equate
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the isotropic part of the stress with the fluid pressure, there exist regions in pressure-
volume space for which Eq. (6.7) has no physical solutions (because the gas pressure
is only positive). This can be seen schematically in Fig. ??, which sketches equations
of state for a gas and a solid, at an arbitrary temperature.

Recall that the isothermal compressiblity is the negative slope of the specific volume
versus pressure. Embedded structures considered here are solids and, at low pressure,
possess a much smaller compressibility than the gasses in which they are submerged.
Nevertheless the variation of condensed phase specific volume can be important at very
high pressures, where the compressibilities of the gas and condensed phase materials
can become comparable (as in a detonation wave, for example). Because the speed of
shock waves in materials is determined by their equations of state, obtaining accurate
high pressure behavior is an important goal of our FSI studies.

To compensate for the lack of directional information for the embedded surfaces,
we evaluate the solid phase equations of state in two parts. Above a specified postive
threshold pressure (typically 1 atmosphere), the full equation of state is respected;
below that threshold pressure, the solid phase pressure follows a polynomial chosen
to be C1 continuous at the threshold value and which approaches zero as the specific
volume becomes large. The effect is to decouple the solid phase specific volume from
the stress when the isotropic part of the stress falls below a threshold value. In regions
of coexistence at states below the threshold pressure, p tends to behave according
to the fluid equation of state (due to the greater compressibility) while in regions of
pure condensed phase material p tends rapidly toward zero and the full material stress
dominates the dynamics as it should.

6.3 Uintah Specification

6.3.1 Basic Inputs

Each Uintah component is invoked using a single executable called sus , which chooses
the type of simulation to execute based on the SimulationComponent tag in the input
file. In the case of ICE simulations, this looks like:

<SimulationComponent type="ice" />

near the top of the inputfile. The system of units must be consistent (mks, cgs) and
the majority of input files will be in Meter-Kilogram-Sec system.
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6.3.2 Semi-Implicit Pressure Solve

The equation for the change in the pressure field ∆P during a given timestep is given
by

dP

dt
=

N∑
m=1

ṁ
V ρo

m
−

N∑
m=1

∇ · θ̂m ~Um
∗f

N∑
m=1

θm

ρo
mc

2
m

(6.11)

which can be written in matrix form Ax = b and solved with a linear solver. Details
on the notation, discretization of Eq. 6.11 and the formation of A and b can be found
in

src/CCA/Components/ICE/Docs/implicitPressSolve.pdf

The linear system Ax = b can be solved using the default Uintah:conjugate gradient
solver (cg) (slow) or one of the many that are available through the scalable linear
solvers and preconditioner package hypre [3]. Experience has shown that the most
efficient hypre preconditioner and solver are the pfmg and cg respectively. Below are
typical values for both the Uintah:cg and hypre:cg solver

<ImplicitSolver>
<max_outer_iterations> 20 </max_outer_iterations>
<outer_iteration_tolerance> 1e-8 </outer_iteration_tolerance>
<iters_before_timestep_restart> 5 </iters_before_timestep_restart>
<Parameters variable="implicitPressure">

<tolerance> 1.e-10 </tolerance>

<!-- CGSolver options -->
<norm> LInfinity </norm>
<criteria> Absolute </criteria>

<!-- Hypre options -->
<solver> cg </solver>
<preconditioner> pfmg </preconditioner>
<maxiterations> 7500 </maxiterations>
<npre> 1 </npre>
<npost> 1 </npost>
<skip> 0 </skip>
<jump> 0 </jump>

</Parameters>
</ImplicitSolver>

If the user is interested in altering the tolerance to which the equations are solved they
should look at

<tolerance> and <outer_iteration_tolerance>
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XML tag Description
max outer iterations maximum number of iterations in the outer loop of

the pressure solve.
outer iteration tolerance tolerance XXXXDX
iters before timestep restart number of outer iterations before a timestep is

restarted
tolerance XXXX

6.3.3 Physical Constants

The gravitational constant and a reference pressure are specified in:

<PhysicalConstants>
<gravity> [0,0,0] </gravity>
<reference_pressure> 101325.0 </reference_pressure>

</PhysicalConstants>

6.3.4 Material Properties

For each ICE material the thermodynamic and transport properties must be specified,
in addition to the initial conditions of the fluid inside of each geom object. Below is the
an example of how to specify an invisid ideal gas over square region with dimensions
6mX6mX6m. The initial conditions of the gas in that region are T = 300, ρ =
1.179, vx = 1, vy = 2, vz = 3

(
Note, the pressure XML tag is not used as an initial

condition and is simply there to make the user aware of what the pressure would be at
that thermodynamic state.

)
<MaterialProperties>

<ICE>
<material>
<EOS type = "ideal_gas"> </EOS>
<dynamic_viscosity> 0.0 </dynamic_viscosity>
<thermal_conductivity>0.0 </thermal_conductivity>
<specific_heat> 716.0 </specific_heat>
<gamma> 1.4 </gamma>
<geom_object>

<box label="wholeDomain">
<min> [ 0.0, 0.0, 0.0 ] </min>
<max> [ 6.0, 6.0, 6.0 ] </max>

</box>
<res> [2,2,2] </res>
<velocity> [1.,2.,3.] </velocity>
<density> 1.1792946927374306 </density>
<pressure> 101325.0 </pressure>
<temperature> 300.0 </temperature>

</geom_object>
</material>
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</ICE>
</MaterialProperties>

6.3.5 Equation of State

Below is a list of the various equations of state, along with the user defined constants,
that are available. The reader should consult the literature for the theoretical devel-
opment and applicability of the equations of state to the problem being solved. The
most commonly used EOS is the ideal gas law

p = (γ − 1)cvρT (6.12)

and is specified in the input file with:

<EOS type="ideal_gas"/>

The Thomsen Hartka EOS for cold liquid water (1-100 atm pressure range) is specified
with [15, 1]

<EOS type="Thomsen_Hartka_water">
<a> 2.0e-7 </a> <!-- (K/Pa) -->
<b> 2.6 </b> <!-- (J/kg K^2) -->
<co> 4205.7 </co> <!-- (J/Kg K) -->
<ko> 5.0e-10 </ko> <!-- (1/Pa) -->
<To> 277.0 </To> <!-- (K) -->
<L> 8.0e-6 </L> <!-- (1/K^2) -->
<vo> 1.00008e-3 </vo> <!-- (m^3/kg) -->

</EOS>

The input specification for the “JWLC”, “JWL++” and “Murnahan” equations of
state from [11] are:

<EOS type = "JWLC">
<A> 2.9867e11 </A>
<B> 4.11706e9 </B>
<C> 7.206147e8 </C>
<R1> 4.95 </R1>
<R2> 1.15 </R2>
<om> 0.35 </om>
<rho0> 1160.0 </rho0>

</EOS>

<EOS type = "JWL">
<A> 1.6689e12 </A>
<B> 5.969e10 </B>
<R1> 5.9 </R1>
<R2> 2.1 </R2>
<om> 0.45 </om>
<rho0> 1835.0 </rho0>

</EOS>
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<EOS type = "Murnahan">
<n> 7.4 </n>
<K> 39.0e-11 </K>
<rho0> 1160.0 </rho0>
<P0> 101325.0 </P0>

</EOS>

The “hard sphere” or “Abel” equation of state for dense gases is

p(v − b) = RT (6.13)

where b corresponds to the volume occupied by the molecules themselves [14]. Input
parameters are specified using:

<EOS type="hard_sphere_gas">
<b> 1.4e-3 </b>

</EOS>

Non-idea gas equation of state used in HMX combustion simulations the Twu-Sim-
Tassone(TST) EOS is

p =
(γ − 1)cvT

v − b
− a

(v + 3.0b)(v − 0.5b)
(6.14)

Input parameters are specified using:

<EOS type="TST">
<a> -260.1385968 </a>
<b> 7.955153678e-4 </b>
<u> -0.5 </u>
<w> 3.0 </w>
<Gamma> 1.63 </Gamma>

</EOS>

The input parameters for the Tillotson equation of state [4] for soils :

<EOS type = "Tillotson">
<a> .5 </a>
<b> 1.3 </b>
<A> 4.5e9 </A>
<B> 3.0e9 </B>
<E0> 6.e6 </E0>
<Es> 3.2e6 </Es>
<Esp> 18.0e6 </Esp>
<alpha> 5.0 </alpha>
<beta> 5.0 </beta>
<rho0> 1700.0 </rho0>

</EOS>
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6.3.6 Exchange Properties

The heat and momentum exchange coefficients Krs and Hrs, which determine the rate
at which momentum and heat are transferred between materials, and are specified in
the following format.

0->1, 0->2, 0->3
1->2, 1->3

2->3

For a two material problem the coefficients would be:

<exchange_properties>
<exchange_coefficients>

<momentum> [0, 1e15, 1e15 ] </momentum>
<heat> [0, 1e10, 1e10 ] </heat>

</exchange_coefficients>
</exchange_properties>

6.3.7 BoundaryConditions

Boundary conditions must be specified on each face of the computational domain
(x−, x+, y−, y+, z−, z+) for the variables P,u,T, ρ,v for each material. The three main
types of numerical boundary conditions that can be applied are “Neumann”, “Dirich-
let” and “Symmetric”. A Neumann boundary condition is used to set the gradient
or ∂q

∂n
|surface = value at the boundary. The value of the primative variable in the

boundary cell is given by,

q[boundary cell] = q[interior cell]− value ∗ dn; (6.15)

if we use a first order upwind discretization of the gradient. Dirichlet boundary condi-
tions set the value of primative variable in the boundary cell using

q[boundary cell] = value; (6.16)

<Grid>
<BoundaryConditions>
<Face side = "x-">
<BCType id = "0" label = "Pressure" var = "Neumann">

<value> 0. </value>
</BCType>
<BCType id = "all" label = "Velocity" var = "Neumann">

<value> [0.,0.,0.] </value>
</BCType>
<BCType id = "all" label = "Temperature" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Density" var = "Neumann">

<value> 0.0 </value>
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</BCType>
<BCType id = "all" label = "SpecificVol" var = "computeFromDensity">

<value> 0.0 </value>
</BCType>

</Face>
.
[other faces]
.

</BoundaryConditions>
</Grid>

There is also the field tag id = "all". In principal, one could set different boundary
condition types for different materials. In practice, this is rarely used, so the usage
illustrated here should be used. Note that pressure field id is always 0. Symmetric
boundary conditions are set using:

<Face side = "y-">
<BCType id = "all" label = "Symmetric" var = "symmetry"> </BCType>

</Face>

In addition to “Dirichlet”, “Neumann”, and “Symmetric” type boundary conditions
ICE has several custom or experimental boundary conditions the user can access. The
“Sine” boundary condition was designed to impose a pulsating pressure wave in the
boundary cells by applying

p = preference + Asin(ωt) (6.17)

The input file parameters that control the frequency and magnitude of the wave are:

<SINE_BC>
<omega> 1000 </omega>
<A> 800 </A>

</SINE_BC>

and to specify them add

<BCType id = "0" label = "Pressure" var = "Sine">
<value> 0.0 </value>

</BCType>
<BCType id = "0" label = "Temperature" var = "Sine">

<value> 0.0 </value>
</BCType>

to the input file. For non-reflective boundary conditions the user should specify the
“LODI” or locally one-dimensional invisid type [13]

<LODI>
<press_infinity> 1.0132500000010138e+05 </press_infinity>
<sigma> 0.27 </sigma>
<ice_material_index> 0 </ice_material_index>

</LODI>
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and

<Face side = "x+">
<BCType id = "0" label = "Pressure" var = "LODI">

<value> 0. </value>
</BCType>
<BCType id = "0" label = "Velocity" var = "LODI">

<value> [0.,0.,0.] </value>
</BCType>
<BCType id = "0" label = "Temperature" var = "LODI">

<value> 0.0 </value>
</BCType>
<BCType id = "0" label = "Density" var = "LODI">

<value> 0.0 </value>
</BCType>
<BCType id = ’0’ label = "SpecificVol" var = "computeFromDensity">

<value> 0.0 </value>
</BCType>

</Face>

This boundary condition is designed to suppress all the unwanted effects of an artifical
boundary. This BC is computationally expensive, not entirely effective and
should be used with caution. In flow fields where there are no passing through the
outlet of the domain it reduces the reflected pressure waves significantly.

6.3.8 Output Variable Names

There are numerous variables that can be saved during a simulation. The table below is
a list of the most commonly saved variables. To see the entire list ICE specfic variables
available to the user run

inputs/labelNames ice

Dimensions are given in mass (M), length (L), time (t) and tempertare (T). Bold face
label names signify vectors quantities. The location of the variable on the grid is
denoted by (CC) for the cell-centered or (FC) for face-centered. Conserved quantities
that are summed over all cells, every timestep, and written to a “dat” file inside of the
uda directory are denoted with (dat).
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LabelName Description

delP Dilatate M/Lt2 change in pressure during the, (CC).

delP MassX M/Lt2 change in pressure due to mass addition, (CC).

eng adv ML2/t2 energy of a material after the advection task, (CC).

eng exch error ML2/t2
PAllCells

i=1 Internal Energy After Exchange Process−PAllCells
i=1 Internal Energy Before Exchange Process, (dat).

eng L ME CC ML2/t2 Energy of a material after the exchange task and just before the advection task, (CC).

imp delP M/Lt2 (CC).

KineticEnergy ML2/t2
PAllCells

i=1 (0.5m~(v)2)i, (dat).

mach Mach number, (CC).

mag div vel CC Magnitude of the divergence of the velocity, (CC).

mag grad press CC Magnitude of the gradient of the pressure, (CC).

mag grad rho CC Magnitude of the gradient of the density, (CC).

mag grad temp CC Magnitude of the gradient of the temperature, (CC).

mag grad vol frac CC Magnitude of the gradient of the volume fraction, (CC).

mass adv M Mass of a material after the advection task, (CC).

mass L CC M Mass of a material just before the advection task, (CC).

modelEng src ML2/t2 Energy source term, computed from a reaction model, (CC).

modelMass src M Mass source term, computed from a reaction model, (CC).

modelMom src ML/t Momentum source term, computed from a reaction model, (CC).

modelVol src Volume source term, computed from a reaction model, (CC).

mom exch error ML/t
PAllCells

i=1 Momemtum After Exchange Process−PAllCells
i=1 Momentum Before Exchange Process, (dat).

mom L CC ML/t Momemtum before momentum exchange task, (CC).

mom L ME CC ML/t Momentum after momentum exchange task, (CC).

mom source CC ML/t All sources of momentum,(CC).

press CC M/Lt2 Pressure P = Pequilibration + ∆P , (CC).

press equil CC M/Lt2 Pressure after the compute equilibration task, (CC).

pressX FC M/Lt2 Pressure on the x−,+ cell faces, (FC).

pressY FC M/Lt2 Pressure on the y−,+ cell faces, (FC).

pressZ FC M/Lt2 Pressure on the z−,+ cell faces, (FC).

rho CC M/L3 Density of each material, (CC).

rho micro CC M/L3 Microscopic or intensive density, (CC).

specific heat L2/t2T Constant Specific Heat, (CC).

speedSound CC L/t Speed of sound of each material, (CC).

sp vol adv
sp vol CC L3/M Specific volume of each material, (CC).

temp CC T Temperature of each material, (CC).

TempX FC T temperature on the x−,+ cell faces, (FC).

TempY FC T temperature on the y−,+ cell faces, (FC).

TempZ FC T temperature on the z−,+ cell faces, (FC).

thermalCond ML/t3T Thermal conductivity, (CC).

TotalIntEng ML2/t2
PAllCells

i=1 (mcvT )i, (dat).

TotalMass M
PAllCells

i=1 mi, (dat).

TotalMomentum ML/t
PAllCells

i=1 (m~v)i, (dat).

uvel FC L/t x-component of velocity, before momentum exchange, (FC).

uvel FCME L/t x-component of velocity, after momentum exchange task, (FC).

vel CC L/t Velocity at the end of a timestep, (CC).

viscosity M/Lt Dynamic viscosity, (CC).

vol frac CC Volume fraction of each material, (CC).

vol fracX FC Volume fraction on the x−,+ cell faces, (FC).

vol fracY FC Volume fraction on the y−,+ cell faces, (FC).

vol fracZ FC Volume fraction on the z−,+ cell faces, (FC).

vvel FC L/t y-component of velocity, before momentum exchange task, (FC).

vvel FCME L/t y-component of velocity, after momentum exchange task, (FC).

wvel FC L/t z-component of velocity, before momentum exchange, (FC).

wvel FCME L/t z-component of velocity, after momentum exchange task, (FC).

The variables, mag div vel CC, mag grad press CC, mag grad rho CC, mag grad temp CC,

mag grad vol frac CC, are the magnitude of the gradient or divergence of the respec-
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tive primative variable. If the user visual To are large and based on this information
the adaptive mesh cell refinement criteria can be set.
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Below is a list of the XML tags pertaining specifically to ICE problems.

6.3.9 XML tag description

XML tag Type Dimensions Description

cfl double Courant Number.
gravity Vector [L/t2] gravitational acceleration, ~g.

global material properties
dynamic viscosity double [M/Lt] viscosity, µ.
thermal conditucivity double [ML/t3T ] thermal conductivity, k
specific heat double [L2/t2T ] cp
gamma double ratio of specific heats, γ.

geometry object related
res vector resolution used for defining geometry objects.
velocity vector [L/t] initial velocity, ~u.
density double [M/L3] initial density, ρ.
temperature double [T ] initial temperature, T .
pressure double Not used.

AMR Parameters
orderOfInterpolation integer Order of interpolation at the coarse/fine interfaces.
do Refluxing boolean on/off switch for correcting the flux of mass, momentum, and

energy at the course/fine interfaces.
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6.4 Examples

Below are several example problems that illustrate the wide range of problems that can
be solved using the ICE algorithm. Where possible simulation results are compared
to exact solutions or high fidelity numerical results. Note in order to run the post
processing scripts the user should have a recent version of Octave installed. To visualize
the results the visualization package VisIT should be used. VisIT session files are
included.

Poiseuille Flow

Problem Description

The Poiseuille flow problem is classical viscous flow problem in which flow is driven
through two parallel plates from fixed pressure gradient. The pressure gradient is
balanced by the diffusion x momentum in the y direction.

Simulation Specifics

Component used: ICE

Input file name: CouettePoiseuille.ups
Edit this file and set the boundary condition for the velocity on the y+ = 0.0. Change:

<BCType id = "0" label = "Velocity" var = "Dirichlet">
<value> [1.25,0.,0.] </value>

[to]
<BCType id = "0" label = "Velocity" var = "Dirichlet">

<value> [0,0.,0.] </value>

Command used to run input file:
mpirun -np 1 sus -solver hypre inputs/UintahRelease/ICE/CouettePoiseuille.ups

Postprocessing command:
inputs/UintahRelease/ICE/compare CouettePoiseuille.m -uda Couette-Poiseuille.uda
You must edit compare CouettePoiseuille.m and set wallVel = 0 . This will generate a
postscript file CouettePoiseuille.ps

Simulation Domain: 1 x .01 x .01 m

Cell Spacing:
10 x 5 x 10 mm (Level 0)

Example Runtimes:
8ish minutes (1 processor, 2.66 GHz Xeon)

Physical time simulated: 15 sec.
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Results

Figure 6.1 shows a comparison of the exact and simulated u velocity at time t = 15sec,
5 cells from the end of the domain. The lower plot shows the difference of the velocity
‖u− uexact‖.
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Figure 6.1: Comparison of u velocity t = 15sec

80



Combined Couette-Poiseuille Flow

Problem Description

The combined Couette-Poiseuille flow problem is another classical viscous flow problem
in which flow is driven through a channel by a pressure gradient and a wall moving.
The reduced x momentum equation differential is

µ
d2u

dy2
=
dp

dx
= constant (6.18)

subject to the no slip boundary condition u(±h) = wall velocity, where h is half the
height of the channel [17].

Simulation Specifics

Component used: ICE

Input file name: CouettePoiseuille.ups

Command used to run input file:
mpirun -np 1 sus -solver hypre inputs/UintahRelease/ICE/CouettePoiseuille.ups

Postprocessing command:
inputs/UintahRelease/ICE/compare CouettePoiseuille.m -uda Couette-Poiseuille.uda
This Octave script will generate a postscript file CouettePoiseuille.ps

Simulation Domain: 1 x .01 x .01 m

Cell Spacing:
10 x 5 x 10 mm (Level 0)

Example Runtimes:
8ish minutes (1 processor, 2.66 GHz Xeon)

Physical time simulated: 15 sec.

Results

Figure 6.2 shows a comparison of the exact and simulated u velocity at time t = 15sec,
5 cells from the end of the domain. The lower plot shows the difference of the velocity
‖u− uexact‖.
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Figure 6.2: Comparison of u velocity t = 15sec
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Shock Tube

Problem Description

The shock tube problem is a standard 1D compressible flow problem that has been used
by many as a validation test case [9, 12, 16]. At time t = 0 the computational domain is
divided into two separate regions of space by a diaphram, with each region at a different
density and pressure. The separated regions are at rest with a uniform temperature
= 300K. The initial pressure ratio is PR

PL
= 10 and density ratio is ρR

ρL
= 0.1 The

diaphram is instantly removed and a traveling shockwave, discontinutity and expansion
fan form. The expansion fan moves towards the left while the shockwave and contact
discontinutity move to the right. This problem tests the algorithm’s ability to capture
steep gradients and solve Eulers equations.

Simulation Specifics

Component used: ICE

Input file name: rieman sm.ups

Command used to run input file: sus inputs/UintahRelease/ICE/shockTube.ups

Postprocessing command:
inputs/UintahRelease/ICE/plot shockTube 1L shockTube.uda y
This Octave script will generate a postscript file shockTube.ps

Simulation Domain: 1 x .001 x .001 m

Cell Spacing:
1 x 1 x 1 mm (Level 0)

Example Runtimes:
1 minute (1 processor, 2.66 GHz Xeon)

Physical time simulated: 0.005 sec.

Results

Figure 6.3 shows a comparison of the exact versus simulated results at time t = 5msec.
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Figure 6.3: Shock tube results at time t = 5msec
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Shock Tube with Adaptive Mesh Refinement

Simulation Specifics

Component used: ICE

Input file name: shocktube AMR.ups

Command used to run input file:
sus inputs/UintahRelease/ICE/shocktube AMR.ups

Postprocessing command:
inputs/UintahRelease/ICE/plot shockTube AMR shockTube AMR.uda y
This Octave script will generate a postscript file shockTube AMR.ps

Simulation Domain: 1 x .001 x .001 m

Cell Spacing:
10 x 1 x 1 mm (Level 0)
2.5 x 1 x1 mm (Level 1)
0.625 x1 x1 mm (Level 2)

Example Runtimes:
2ish minutes (1 processor, 2.66 GHz Xeon)

Physical time simulated: 0.005 sec.

Results

Figure 6.4 shows a comparison of the exact versus simulated results at time t = 5msec.
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Figure 6.4: Shock tube results at time t = 5msec
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2D Riemann Problem with Adaptive Mesh Refinement

Problem Description

In two-dimensional Riemann problems there 15 different solutions that combine rar-
efaction waves, shock waves and a slip line or contact discontinuities [2, 10]. Here we
simulate 4 slip lines that form a symmetrical single vortex turning counter clockwise.
At time t = 0 the computational domain is divided into four quadrants by the lines
x = 1/2, y = 1/2 The initial condition for V = (p, ρ, u, v) in the four quadrants are Vll =
(1, 1,−0.75, 0.5), Vlr = (1, 3,−0.75,−0.5), Vul = (1, 2, 0.75, 0.5), Vur = (1, 1, 0.75,−0.5)
where, p is pressure, ρ is the density of the polytropic gas, u and v are the x and y
component of velocity.

Simulation Specifics

Component used: ICE

Input file name: riemann2D AMR.ups

Command used to run input file:
mpirun -np 5 sus inputs/UintahRelease/ICE/riemann2D AMR.ups

VisIT session file: inputs/UintahRelease/ICE/riemann2D.session

Simulation Domain: 0.96 x 0.96m x 0.1 m

Cell Spacing:
40 x 40 x 1 mm (Level 0)
10 x 10 x 1 mm (Level 1)
2.5 x 2.5 x 1 mm (Level 2)

Example Runtimes:
5ish minutes (5 processors, 2.66 GHz Xeon)

Physical time simulated: 0.3 sec.

Results

Figure 6.5 shows a flood and line contour plot(s) of the density of the gas at 0.03sec.
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Figure 6.5: Contour plot of density for the 2D Riemann problem at time t = 0.3sec.
Bottom plot shows the outline of the patches on the 3 levels.
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Explosion 2D

Problem Description

For the multidimensional blast wave orexplosion test is a standard compressible flow
problem that has been used by many as a validation test case. At time t = 0 there
is a circular region of gas at the center of the domain at a relatively high pressure
and density. The expansion of high pressure gas forms a circular shock wave and
contact surface that expands into surrounding atmosphere. At the same time a circular
rarefaction travels towards the origin. As the shock wave and contact surface move
outwards they become weaker and at some point the contact reverses direction and
travels inward. The rarefraction reflects from the center and forms an overexpanded
region, creating a shock that travels inward [16]. At time t = 0 the computational
domain is divided into two region, circular high pressure region with a radius R = 0.4
and the surrounding box 2x2x0.1. The initial condition inside of the circular region
were (p = 1, ρ = 1, u = 0, v = 0) and outside (p = 0.1, ρ = 0.125, u = 0, v = 0). The
fluid was an ideal, inviscid, polytropic gas.

Simulation Specifics

Component used: ICE

Input file name: Explosion.ups

Command used to run input file:
mpirun -np 4 sus inputs/UintahRelease/ICE/Explosion.ups

Visualization net file: inputs/UintahRelease/ICE/Explosion.session

Postprocessing command:
inputs/ICE/Scripts/plot explosion AMR Explosion AMR.uda y

This Octave script will generate a postscript file explosion AMR.ps

Simulation Domain: 2 x 2 x .1

Cell Spacing:
62.5 x 62.5 x 10 (Level 0)
15.625 x 15.625 x 10 (Level 1)
3.9 x 3.9 x 10 (Level 2)

Example Runtimes:
20 minutes (4 processor, 2.66 GHz Xeon)

Physical time simulated: 0.25 (non-dimensional).
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Results

Figures 6.6 and 6.7 shows surface plots of the pressure and density at t = 0.25. Since
this test is symetrical we can use results from the equivalent 1 dimensional problem to
compare against
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Figure 6.6: Pressure field at t = 0.25
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Figure 6.7: Density field at time t = 0.25
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Figure 6.8: t = 0.25

93



ANFO Rate Stick

Problem Description

A cylindrical stick (r = 8mm) of Ammonium Nitrate Fuel Oil (ANFO) given an initial
velocity of 90m/s. As it strikes the domain boundary, pressure is generated sufficient to
reach the initial pressure required to activate the JWL++ [11] detonation model. This
empirically based model results in a steady state detonation that traverses the stick,
consuming the solid explosive and generating high pressure gas. The experimentally
observed curvature is generated at the detonation front, a feature that will not develop
in programmed burn models. By running this simulation at a variety of cylinder radii,
one can observe the ”size effect”, namely that cylinders of larger radii will reach a
higher steady state detonation velocity, due to the increased effective confinement. An
infinite radius case can be simulated by shrinking the computational domain to one
cell in each of the transverse directions.

Simulation Specifics

Component used: ICE

Input file name: JWLpp8mmRS.ups

Command used to run input file:
mpirun -np 4 sus inputs/UintahRelease/ICE/JWLpp8mmRS.ups

Visualization net file: inputs/UintahRelease/ICE/RateStick.session

Simulation Domain: 0.1 m x 0.015 m x 0.015 m

Cell Spacing:
0.0005 x 0.0005 x 0.0005 (Level 0)

Example Runtimes:
1.5 hours (4 processor, 3.16 GHz Xeon)

Physical time simulated: 20.0 µseconds

Results

Figure 6.9 shows a volume rendering of the density of the reactant. Note the curvature
of the reaction zone.
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Figure 6.9: Density of reactant material.
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Chapter 7

MPM

7.1 Introduction

The material point method (MPM) was described by Sulsky et al. [50, 52] as an exten-
sion to the FLIP (Fluid-Implicit Particle) method of Brackbill [11], which itself is an
extension of the particle-in-cell (PIC) method of Harlow [26]. Interestingly, the name
“material point method” first appeared in the literature two years later in a description
of an axisymmetric form of the method [51]. In both FLIP and MPM, the basic idea
is the same: objects are discretized into particles, or material points, each of which
contains all state data for the small region of material that it represents. This includes
the position, mass, volume, velocity, stress and state of deformation of that material.
MPM differs from other so called “mesh-free” particle methods in that, while each
object is primarily represented by a collection of particles, a computational mesh is
also an important part of the calculation. Particles do not interact with each other
directly, rather the particle information is accumulated to the grid, where the equations
of motion are integrated forward in time. This time advanced solution is then used to
update the particle state.

The method usually uses a regular structured grid as a computational mesh. While
this grid, in principle, deforms as the material that it is representing deforms, at the
end of each timestep, it is reset to its original undeformed position, in effect providing a
new computational grid for each timestep. The use of a regular structured grid for each
time step has a number of computational advantages. Computation of spatial gradients
is simplified. Mesh entanglement, which can plague fully Lagrangian techniques, such
as the Finite Element Method (FEM), is avoided. MPM has also been successful in
solving problems involving contact between colliding objects, having an advantage over
FEM in that the use of the regular grid eliminates the need for doing costly searches
for contact surfaces[6].

In addition to the advantages that MPM brings, as with any numerical technique, it
has its own set of shortcomings. It is computationally more expensive than a compara-
ble FEM code. Accuracy for MPM is typically lower than FEM, and errors associated
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with particles moving around the computational grid can introduce non-physical os-
cillations into the solution. Finally, numerical difficulties can still arise in simulations
involving large deformation that will prematurely terminate the simulation. The sever-
ity of all of these issues (except for the expense) has been significantly reduced with
the introduction of the Generalized Interpolation Material Point Method, or GIMP[8].
The basic concepts associated with GIMP will be described below. Throughout this
document, MPM (which ends up being a special case of GIMP) will frequently be
referred to interchangably with GIMP.

In addition, MPM can be incorporated with a multi-material CFD algorithm as
the structural component in a fluid-structure interaction formulation. This capabil-
ity was first demonstrated in the CFDLIB codes from Los Alamos by Bryan Kashiwa
and co-workers[32]. There, as in the Uintah-MPMICE component, MPM serves as the
Lagrangian description of the solid material in a multimaterial CFD code. Certain
elements of the solution procedure are based in the Eulerian CFD algorithm, including
intermaterial heat and momentum transfer as well as satisfaction of a multimaterial
equation of state. The use of a Lagrangian method such as MPM to advance the
solution of the solid material eliminates the diffusion typically associated with Eule-
rian methods. The Uintah-MPM component will be described in later chapter of this
manual.

Subsequent sections of this chapter will first give a relatively brief description of
the MPM and GIMP algorithms. This will, of course, be focused mainly on describing
the capabilities of the Uintah-MPM component. This is followed by a section that
attempts to relate the information in Section 7.2 to the implementation in Uintah.
Following that is a description of the information that goes into an input file. Finally,
a number of examples are provided, along with representative results.

7.2 Algorithm Description

Time and space prohibit an exhaustive description of the theoretical underpinnings of
the Material Point Method. Here we will concentrate on the discrete equations that
result from applying a weak form analysis to the governing equations. The interested
reader should consult [50, 52] for the development of these discrete equations in MPM,
and [8] for the development of the equations for the GIMP method. These end up
being very similar, the differences in how the two developments affect implementation
will be described in Section 7.3.

In solving a structural mechanics problem with MPM, one begins by discretizing
the object of interest into a suitable number of particles, or “material points”. (Aside:
What constitutes a suitable number is something of an open question, but it is typically
advisable to use at least two particles in each computational cell in each direction, i.e.
4 particles per cell (PPC) in 2-D, 8 PPC in 3-D. In choosing the resolution of the
computational grid, similar considerations apply as for any computational method
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(trade-off between time to solution and accuracy, use of resolution studies to ensure
convergence in results, etc.).) Each of these particles will carry, minimally, the following
variables:

• position - xp

• mass - mp

• volume - vp

• velocity - vp

• stress - σp

• deformation gradient - Fp

The description that follows is a recipe for advancing each of these variables from
the current (discrete) time n to the subsequent time n+1. Note that particle mass, mp,
typically remains constant throughout a simulation unless solid phase reaction models
are utilized, a feature that is not present in Uintah-MPM. (Such models are available
in MPMICE, see Section 8.) It is also important to point out that the algorithm for
advancing the timestep is based on the so-called Update Stress Last (USL) algorithm.
The superiority of this approach over the Update Stress First (USF) approach was
clearly demonstrated by Wallstedt and Guilkey [56]. USF was the formulation used in
Uintah until mid-2008.

The discrete momentum equation that results from the weak form is given as:

ma = Fext − Fint (7.1)

where m is the mass matrix, a is the acceleration vector, Fext is the external force
vector (sum of the body forces and tractions), and Fint is the internal force vector
resulting from the divergence of the material stresses. The construction of each of these
quantities, which are based at the nodes of the computational grid, will be described
below.

The solution begins by accumulating the particle state on the nodes of the compu-
tational grid, to form the mass matrix m and to find the nodal external forces Fext,
and velocities, v. In practice, a lumped mass matrix is used to avoid the need to invert
a system of equations to solve Eq. 7.1 for acceleration. These quantities are calculated
at individual nodes by the following equations, where the

∑
p

represents a summation

over all particles:

mi =
∑
p

Sipmp, vi =

∑
p

Sipmpvp

mi

, Fext
i =

∑
p

SipF
ext
p (7.2)
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and i refers to individual nodes of the grid. mp is the particle mass, vp is the particle
velocity, and Fext

p is the external force on the particle. The external forces that start on
the particles typically the result of tractions, the application of which will be discussed
in Section 7.5. Sip is the shape function of the ith node evaluated at xp. The func-
tional form of the shape functions differs between MPM and GIMP. This difference is
discussed in Section 7.3.

Following the operations in Eq. 7.2, Fint is still required in order to solve for ac-
celeration at the nodes. This is computed at the nodes as a volume integral of the
divergence of the stress on the particles, specifically:

Fint
i =

∑
p

Gipσpvp, (7.3)

where Gip is the gradient of the shape function of the ith node evaluated at xp, and
σp and vp are the time n values of particle stress and volume respectively.

Equation 7.1 can then be solved for a.

ai =
Fext
i − Fint

i

mi

(7.4)

An explicit forward Euler method is used for the time integration:

vLi = vi + ai∆t (7.5)

The time advanced grid velocity, vL is used to compute a velocity gradient at each
particle according to:

∇vp =
∑
i

Gipv
L
i (7.6)

This velocity gradient is used to update the particle’s deformation gradient, volume
and stress. First, an incremental deformation gradient is computed using the velocity
gradient:

dFn+1
p = (I +∇vp∆t) (7.7)

Particle volume and deformation gradient are updated by:

vn+1
p = Det(dFn+1

p )vn
p, Fn+1

p = dFn+1
p Fn

p (7.8)

Finally, the velocity gradient, and/or the deformation gradient are provided to a con-
stitutive model, which outputs a time advanced stress at the particles. Specifics of this
operation will be further discussed in Section 7.5
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At this point in the timestep, the particle position and velocity are explicitly up-
dated by:

vp(t+ ∆t) = vp(t) +
∑
i

Sipai∆t (7.9)

xp(t+ ∆t) = xp(t) +
∑
i

Sipv
L
i ∆t (7.10)

This completes one timestep, in that the update of all six of the variables enumerated
above (with the exception of mass, which is assumed to remain constant) has been
accomplished. Conceptually, one can imagine that, since an acceleration and velocity
were computed at the grid, and an interval of time has passed, the grid nodes also
experienced a displacement. This displacement also moved the particles in an isopara-
metric fashion. In practice, particle motion is accomplished by Equation 7.10, and
the grid never deforms. So, while the MPM literature will often refer to resetting the
grid to its original configuration, in fact, this isn’t necessary as the grid nodes never
leave that configuration. Regardless, at this point, one is ready to advance to the next
timestep.

The algorithm described above is the core of the Uintah-MPM implementation.
However, it neglects a number of important considerations. The first is kinematic
boundary conditions on the grid for velocity and acceleration. The manner in which
these are handled will be described in Section 7.4. Next, is the use of advanced con-
tact algorithms. By default, MPM enforces no-slip, no-interpenetration contact. This
feature is extremely useful, but it also means that two bodies initially in “contact”
(meaning that they both contain particles whose data are accumulated to common
nodes) behave as if they are a single body. To enable multi-field simulations with
frictional contact, or to impose displacement based boundary conditions, e.g. a rigid
piston, additional steps must be taken. These steps implement contact formulations
such as that described by Bardenhagen, et al.[7]. The use of the contact algorithms is
described in Section 7.5, but the reader will be referred to the relevant literature for
their development. Lastly, heat conduction is also available in the explicit MPM code,
although it may be neglected via a run time option in the input file. Explicit MPM is
typically used for high rate simulations in which heat conduction is negligible.

7.3 Shape functions for MPM and GIMP

In both MPM and GIMP, the basic idea is the same: objects are discretized into
particles, or material points, each of which contains all state data for the small region of
material that it represents. In MPM, these particles are spatially Dirac delta functions,
meaning that the material that each represents is assumed to exist at a single point in
space, namely the position of the particle. Interactions between the particles and the
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grid take place using weighting functions, also known as shape functions or interpolation
functions. These are typically, but not necessarily, linear, bilinear or trilinear in one,
two and three dimensions, respectively.

More recently, Bardenhagen and Kober [8] generalized the development that gives
rise to MPM, and suggested that MPM may be thought of as a subset of their “Gener-
alized Interpolation Material Point” (GIMP) method. In the family of GIMP methods
one chooses a characteristic function χp to represent the particles and a shape function
Si as a basis of support on the computational nodes. An effective shape function S̄ip
is found by the convolution of the χp and Si which is written as:

S̄ip(xp) =
1

Vp

∫
Ωp∩Ω

χp(x− xp)Si(x) dx. (7.11)

While the user has significant latitude in choosing these two functions, in practice, the
choice of Si is usually given (in one-dimension) as,

Si (x) =


1 + (x− xi) /h −h < x− xi ≤ 0

1− (x− xi) /h 0 < x− xi ≤ h

0 otherwise,

(7.12)

where xi is the vertex location, and h is the cell width, assumed to be constant in
this formulation, although this is not a general restriction on the method. Multi-
dimensional versions are constructed by forming tensor products of the one-dimensional
version in the orthogonal directions.

When the choice of characteristic function is the Dirac delta,

χp(x) = δ(x− xp)Vp, (7.13)

where xp is the particle position, and Vp is the particle volume, then traditional MPM is
recovered. In that case, the effective shape function is still that given by Equation 7.12.
Its gradient is given by:

Gi (x) =


1/h −h < x− xi ≤ 0

−1/h 0 < x− xi ≤ h

0 otherwise,

(7.14)

Plots of Equations 7.12 and 7.14 are shown below. The discontinuity in the gradient
gives rise to poor accuracy and stability properties.

Typically, when an analyst indicates that they are “using GIMP” this implies use of
the linear grid basis function given in Eq. 7.12 and a “top-hat” characteristic function,
given by (in one-dimension),

χp(x) = H(x− (xp − lp))−H(x− (xp + lp)), (7.15)
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Figure 7.1: Effective shape function when using traditional MPM.
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Figure 7.2: Gradient of the effective shape function when using traditional MPM.
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where H(x) is the Heaviside function (H(x) = 0 if x < 0 and H(x) = 1 if x ≥ 0) and lp
is the half-length of the particle. When the convolution indicated in Eq. 7.11 is carried
out using the expressions in Eqns. 7.12 and 7.15, a closed form for the effective shape
function can be written as:

Si (xp) =



(h+lp+(xp−xi))
2

4hlp
−h− lp < xp − xi ≤ −h+ lp

1 + (xp−xi)

h
−h+ lp < xp − xi ≤ −lp

1− (xp−xi)
2+l2p

2hlp
−lp < xp − xi ≤ lp

1− (xp−xi)

h
lp < xp − xi ≤ h− lp

(h+lp−(xp−xi))
2

4hlp
h− lp < xp − xi ≤ h+ lp

0 otherwise,

(7.16)

The gradient of which is:

Gi(xp) =



h+lp+(xp−xi)

2hlp
−h− lp < xp − xi ≤ −h+ lp

1
h

−h+ lp < xp − xi ≤ −lp
− (xp−xi)

hlp
−lp < xp − xi ≤ lp

− 1
h

lp < xp − xi ≤ h− lp
−h+lp−(xp−xi)

2hlp
h− lp < xp − xi ≤ h+ lp

0 otherwise,

(7.17)

Plots of Equations 7.16 and 7.17 are shown below. The continuous nature of the
gradients are largely responsible for the improved robustness and accuracy of GIMP
over MPM.

There is one further consideration in defining the effective shape function, and that
is whether or not the size (length in 1-D) of the particle is kept fixed (denoted as
“UGIMP” here) or is allowed to evolve due to material deformations (“Finite GIMP”
or “Contiguous GIMP” in (1) and “cpGIMP” here). In one-dimensional simulations,
evolution of the particle (half-)length is straightforward,

lnp = F n
p l

0
p, (7.18)

where F n
p is the deformation gradient at time n. In multi-dimensional simulations, a

similar approach can be used, assuming an initially rectangular or cuboid particle, to
find the current particle shape. The difficulty arises in evaluating Eq. 7.11 for these
general shapes. One approach, apparently effective, has been to create a cuboid that
circumscribes the deformed particle shape [35]. Alternatively, one can assume that
the particle size remains constant (insofar as it applies to the effective shape function
evaluations only). This is the approach currently implemented in Uintah.
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Figure 7.3: Effective shape function when using GIMP.

−h − l −h −h + l −l 0 l h − l h h + l

−1/h

0

1/h

xp

G
i(x

p)

Figure 7.4: Gradient of the effective shape function when using GIMP.
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7.4 Uintah Implementation

Users of Uintah-MPM needn’t necessarily bother themselves with the implementation
in code of the algorithm described above. This section is intended to serve as a reference
for users who find themselves needing to modify the source code, or those who are
simply interested. Anyone just wishing to run MPM simulations may skip ahead to
Sections 7.5 and 7.6. The goal of this section is to provide a mapping from the the
algorithm described above to the software that carries it out. This won’t be exhaustive,
but will be a good starting point for the motivated reader.

The source code for the Uintah-MPM implementation can be found in

src/CCA/Components/MPM

Within that directory are a number of files and subdirectories, these will be discussed
as needed. For the moment, consider the various files that end in “MPM.cc”:

AMRMPM.cc FractureMPM.cc ImpMPM.cc RigidMPM.cc SerialMPM.cc ShellMPM.cc

AMRMPM.cc is the nascent beginnings of an AMR implementation of MPM. It is
far from complete and should be ignored. FractureMPM.cc is an implementation of
the work of Guo and Nairn [22], and while it is viable, it is undocumented and un-
supported. ShellMPM.cc is a treatment of MPM particles as shell and membrane
elements, developed by Biswajit Bannerjee. It is also viable, but also undocumented
and unsupported. ImpMPM.cc is an implicit time integration form of MPM based on
the work of Guilkey and Weiss [21]. It is also viable, and future releases of Uintah will
include documentation of its capabilities and uses. For now, interested readers should
contact Jim Guilkey directly for more information. RigidMPM.cc contains a very re-
duced level of functionality, and is used solely in conjunction with the MPMArches
component.

This leaves SerialMPM.cc. This contains, despite its name, the parallel imple-
mentation of the algorithm described above in Section 7.2. For now, we will skip over
the initialization procedures such as:

SerialMPM::problemSetup
SerialMPM::scheduleInitialize
SerialMPM::actuallyInitialize

and focus mainly on the timestepping algorithm described above. Reference will be
made back to these functions as needed in Section 7.5.

Each of the Uintah components contains a function called scheduleTimeAdvance.

The algorithms implemented in these components are broken into a number of steps.
The implementation of these steps in Uintah take place in “tasks”. Each task is re-
sponsible for performing the calculations needed to accomplish that step in the al-
gorithm. Thus, each task requires some data upon which to operate, and it also
creates some data, either as a final result, or as input to a subsequent task. Before
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individual tasks are executed, each is first “scheduled”. The scheduling of tasks de-
scribes the dataflow and data dependencies for a given algorithm. By describing the
data dependencies, both temporally and spatially, each task can be executed in the
proper order, and communication tasks can automatically be generated by the Uin-
tah infrastructure to achieve parallelism. Thus, scheduleTimeAdvance calls a series of
functions, each of which schedules the individual tasks. Let’s begin by looking at the
scheduleTimeAdvance for SerialMPM, pasted below.

void
SerialMPM::scheduleTimeAdvance(const LevelP & level,

SchedulerP & sched)
{
MALLOC_TRACE_TAG_SCOPE("SerialMPM::scheduleTimeAdvance()");
if (!flags->doMPMOnLevel(level->getIndex(), level->getGrid()->numLevels()))
return;

const PatchSet* patches = level->eachPatch();
const MaterialSet* matls = d_sharedState->allMPMMaterials();

scheduleApplyExternalLoads( sched, patches, matls);
scheduleInterpolateParticlesToGrid( sched, patches, matls);
scheduleExMomInterpolated( sched, patches, matls);
scheduleComputeContactArea( sched, patches, matls);
scheduleComputeInternalForce( sched, patches, matls);

scheduleComputeAndIntegrateAcceleration(sched, patches, matls);
scheduleExMomIntegrated( sched, patches, matls);
scheduleSetGridBoundaryConditions( sched, patches, matls);
scheduleSetPrescribedMotion( sched, patches, matls);
scheduleComputeStressTensor( sched, patches, matls);
if(flags->d_doExplicitHeatConduction){
scheduleComputeHeatExchange( sched, patches, matls);
scheduleComputeInternalHeatRate( sched, patches, matls);
scheduleComputeNodalHeatFlux( sched, patches, matls);
scheduleSolveHeatEquations( sched, patches, matls);
scheduleIntegrateTemperatureRate( sched, patches, matls);

}
scheduleAddNewParticles( sched, patches, matls);
scheduleConvertLocalizedParticles( sched, patches, matls);
scheduleInterpolateToParticlesAndUpdate(sched, patches, matls);

if(flags->d_canAddMPMMaterial){
// This checks to see if the model on THIS patch says that it’s
// time to add a new material
scheduleCheckNeedAddMPMMaterial( sched, patches, matls);

// This one checks to see if the model on ANY patch says that it’s
// time to add a new material
scheduleSetNeedAddMaterialFlag( sched, level, matls);

}
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sched->scheduleParticleRelocation(level, lb->pXLabel_preReloc,
d_sharedState->d_particleState_preReloc,
lb->pXLabel,
d_sharedState->d_particleState,
lb->pParticleIDLabel, matls);

if(d_analysisModule){
d_analysisModule->scheduleDoAnalysis( sched, level);

}
}

The preceding includes scheduling for a number of rarely used features. For now,
let’s condense the preceding to the essential tasks:

void
SerialMPM::scheduleTimeAdvance(const LevelP & level,

SchedulerP & sched)
{
if (!flags->doMPMOnLevel(level->getIndex(), level->getGrid()->numLevels()))
return;

const PatchSet* patches = level->eachPatch();
const MaterialSet* matls = d_sharedState->allMPMMaterials();

scheduleApplyExternalLoads( sched, patches, matls);
scheduleInterpolateParticlesToGrid( sched, patches, matls);
scheduleExMomInterpolated( sched, patches, matls);
scheduleComputeInternalForce( sched, patches, matls);

scheduleComputeAndIntegrateAcceleration(sched, patches, matls);
scheduleExMomIntegrated( sched, patches, matls);
scheduleSetGridBoundaryConditions( sched, patches, matls);
scheduleComputeStressTensor( sched, patches, matls);
scheduleInterpolateToParticlesAndUpdate(sched, patches, matls);

sched->scheduleParticleRelocation(level, lb->pXLabel_preReloc,
d_sharedState->d_particleState_preReloc,
lb->pXLabel,
d_sharedState->d_particleState,
lb->pParticleIDLabel, matls);

}

As described above, each of the “schedule” functions describes dataflow, and it also
calls the function that actually executes the task. The naming convention is illustrated
by an example, scheduleComputeAndIntegrateAcceleration calls computeAndIntegrateAcceleration.
Let’s examine this particular task, which executes Equations 7.4 and 7.5, more care-
fully. First, the scheduling of the task:

void SerialMPM::scheduleComputeAndIntegrateAcceleration(SchedulerP& sched,
const PatchSet* patches,
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const MaterialSet* matls)
{
if (!flags->doMPMOnLevel(getLevel(patches)->getIndex(),

getLevel(patches)->getGrid()->numLevels()))
return;

printSchedule(patches,cout_doing,"MPM::scheduleComputeAndIntegrateAcceleration\t\t\t\t");

Task* t = scinew Task("MPM::computeAndIntegrateAcceleration",
this, &SerialMPM::computeAndIntegrateAcceleration);

t->requires(Task::OldDW, d_sharedState->get_delt_label() );

t->requires(Task::NewDW, lb->gMassLabel, Ghost::None);
t->requires(Task::NewDW, lb->gInternalForceLabel, Ghost::None);
t->requires(Task::NewDW, lb->gExternalForceLabel, Ghost::None);
t->requires(Task::NewDW, lb->gVelocityLabel, Ghost::None);

t->computes(lb->gVelocityStarLabel);
t->computes(lb->gAccelerationLabel);

sched->addTask(t, patches, matls);
}

The if statement basically directs the schedule to only do this task on the finest
level (MPM can be used in AMR simulations, but only at the finest level.) The
printSchedule command is in place for debugging purposes, this type of print state-
ment can be turned on by setting an environmental variable. The real business of this
task begins with the declaration of the Task. In the task declaration, the function
associated with that task is identified. Subsequent to that is a description of the data
dependencies. Namely, this task requires the mass, internal and external forces as
well as velocity on the grid. No ghost data are required as this task is a node by node
calculation. It also requires the timestep size. Note also that most of the required data
are needed from the NewDW where DW refers to DataWarehouse. This simply means that
these data were calculated by an earlier task in the current timestep. The timestep
size for this step was computed in the previous timestep, and thus is required from
the OldDW. Finally, this task computes the acceleration and time advanced velocity
at each node.

The code to execute this task is as follows:

void SerialMPM::computeAndIntegrateAcceleration(const ProcessorGroup*,
const PatchSubset* patches,
const MaterialSubset*,
DataWarehouse* old_dw,
DataWarehouse* new_dw)

{
for(int p=0;p<patches->size();p++){
const Patch* patch = patches->get(p);
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printTask(patches, patch,cout_doing,"Doing computeAndIntegrateAcceleration\t\t\t\t");

Ghost::GhostType gnone = Ghost::None;
Vector gravity = d_sharedState->getGravity();
for(int m = 0; m < d_sharedState->getNumMPMMatls(); m++){
MPMMaterial* mpm_matl = d_sharedState->getMPMMaterial( m );
int dwi = mpm_matl->getDWIndex();

// Get required variables for this patch
constNCVariable<Vector> internalforce, externalforce, velocity;
constNCVariable<double> mass;

delt_vartype delT;
old_dw->get(delT, d_sharedState->get_delt_label(), getLevel(patches) );

new_dw->get(internalforce,lb->gInternalForceLabel, dwi, patch, gnone, 0);
new_dw->get(externalforce,lb->gExternalForceLabel, dwi, patch, gnone, 0);
new_dw->get(mass, lb->gMassLabel, dwi, patch, gnone, 0);
new_dw->get(velocity, lb->gVelocityLabel, dwi, patch, gnone, 0);

// Create variables for the results
NCVariable<Vector> velocity_star,acceleration;
new_dw->allocateAndPut(velocity_star, lb->gVelocityStarLabel, dwi, patch);
new_dw->allocateAndPut(acceleration, lb->gAccelerationLabel, dwi, patch);

acceleration.initialize(Vector(0.,0.,0.));
double damp_coef = flags->d_artificialDampCoeff;

for(NodeIterator iter=patch->getExtraNodeIterator__New();
!iter.done();iter++){

IntVector c = *iter;
Vector acc(0.,0.,0.);
if (mass[c] > flags->d_min_mass_for_acceleration){
acc = (internalforce[c] + externalforce[c])/mass[c];
acc -= damp_coef*velocity[c];

}
acceleration[c] = acc + gravity;
velocity_star[c] = velocity[c] + acceleration[c] * delT;

}
} // matls

}
}

This task contains three nested for loops. First, is a loop over all of the “patches”
that the processor executing this task is responsible for. Next is a loop over all materi-
als (imagine a simulation involving the interaction between, say, tungsten and copper).
Within this loop, the required data are retrieved from the new dw (New DataWare-
house) and space for the data to be created is allocated. The final loop is over all of the
nodes on the current patch, and the calculations described by Equations 7.4 and 7.5
are carried out. (This also includes a linear damping term not described above.)
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Let’s consider each task in turn. The remaining tasks will be described in much
less detail, but the preceding dissection of a fairly simple task, along with a descrip-
tion of what the remaining tasks are intended to accomplish, should allow interested
individuals to follow the remainder of the Uintah-MPM implementation.

1. scheduleApplyExternalLoads This task is mainly responsible for applying
traction boundary conditions described in the input file. This is done by as-
signing external force vectors to the particles. If the user wishes to apply a load
that is not possible to acheive via the input file options, it is straightforward to
modify the code here to do “one-off” tests.

2. scheduleInterpolateParticlesToGrid The name of this task was poorly cho-
sen, but has persisted. This task carries out the operations given in Equation 7.2.
It also sets boundary conditions on some of the variables, such as the grid tem-
perature, and grid velocity (in the case of symmetry BCs).

3. scheduleExMomInterpolated This task actually exists in one of the contact
models which can be found in the Contact directory. Each of those models has
two main tasks. This is the the first of those. It is responsible for modifying the
grid velocity computed by interpolateParticlesToGrid according to the rules for
the particular contact model chosen in the input file. These models are briefly
described in Section 7.5.

4. scheduleComputeInternalForce This task computes the volume integral of
the divergence of stress. Specifically, it carries out the operation given in Equa-
tion 7.3. It also computes some diagnostic data, if requested in the input file,
such as the reaction forces (tractions) on the boundaries of the computational
domain.

5. scheduleComputeAndIntegrateAcceleration As described previously, this task
carries out the operations described in Equations 7.4 and 7.5.

6. scheduleExMomIntegrated This is the second of the contact tasks (see above).
It is responsible for modifiying the time advanced grid velocity computed in
computeAndIntegrateAcceleration.

7. scheduleSetGridBoundaryConditions This task sets boundary conditions on
the time advanced grid velocity. It also sets an acceleration boundary condition
as well. However, rather than just setting the acceleration to a given value, it
is computed by solving Equation 7.5 for acceleration, and then recomputing the
acceleration (on all nodes) as:

ai =
vLi − vi

∆t
(7.19)
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Doing this operation on all nodes has several advantages. For most interior
nodes, the value for acceleration will be unchanged, but for nodes on the where
the velocity has been altered by enforcing boundary conditions, and for nodes
at which the contact models have altered the velocity, the acceleration will be
modified to reflect that alteration.

8. scheduleComputeStressTensor The task, computeStressTensor, exists in
each of the models in the ConstitutiveModel directory. Each model is respon-
sible for carrying out the operations given in Equation 7.8, and of course, as the
name implies, it also computes the material stress. This task has one additional
important function, and that is computing the timestep size for the subsequent
step. The CFL condition dictates that the timestep size be limited according to:

∆t <
∆x

c+ |u|
(7.20)

where ∆x is the cell spacing, c is the wavespeed in the material, and |u| is the
magnitude of the local velocity. Because the wavespeed may depend on the state
of stress that a material is in, this task provides a convenient time at which to
make this calculation. A timestep size is computed for all particles, and the
minimum for the particle set on a given patch is put into a “reduction variable”.
The Uintah infrastructure then does a global reduction to select the smallest
timestep from across the domain.

9. scheduleInterpolateToParticlesAndUpdate This task carries out the opera-
tions in Equations 7.9 and 7.10, namely updating the particle state based on the
grid solution.

10. scheduleParticleRelocation This task is not actually located in the MPM
code, but in the Uintah infrastructure. The idea is that as particles move, some
will cross patch boundaries, and their data will need to be sent to other processors.
This task is responsible for identifying particles that have left the patch that they
were on, finding where they went, and sending their data to the correct processor.

7.5 Uintah Specification

Uintah input files are constructed in XML format. Each begins with:

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>

while the remainder of the file is enclosed within the following tags:

<Uintah_specification>
</Uintah_specification>
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The following subsections describe the remaining inputs needed to construct an
input file for an MPM simulation. The order of the various sections of the input file is
not important. The MPM, ICE and MPMICE components are dimensionless
calculations. It is the responsibility of the analyst to provide the following
inputs using a consistent set of units.

Common Inputs

Each Uintah component is invoked using a single executable called sus , which chooses
the type of simulation to execute based on the SimulationComponent tag in the input
file. For the case of MPM simulations, this looks like:

<SimulationComponent type="mpm" />

There are a number of fields that are required for any component. The first is that
describing the timestepping parameters, these are largely common to all components,
and are described in Section 2.5. The only one that bears commenting on at this point
is:

<timestep_multiplier> 0.5 </timestep_multiplier>

This is effectively the CFL number for MPM simulations, that is the number multiplied
by the timestep size that is automatically calculated by the MPM code. Experience
indicates that one should generally keep this value below 0.5, and should expect to use
smaller values for high-rate, large-deformation simulations.

The next field common to the input files for all components is:

<DataArchiver>
</DataArchiver>

This is described in Section 2.6. To see a list of variables available for saving in MPM
simulations, execute the following command from the StandAlone directory:

inputs/labelNames mpm

Note that for visualizing particle data, one must save p.x, and at least one other
variable by which to color the particles.

The other principle common field is that which describes the computational grid.
For MPM, this is typically broken up into two parts, the <Level> section specifies
the physical extents and spatial resolution of the grid. For more information, consult
Section 2.10. The other part specifies kinematic boundary conditions on the grid
boundaries. These are discussed below in Section 7.5.

114



Physical Constants

The only physical constant required (or optional for that matter) for MPM simulations
is gravity, this is specified as:

<PhysicalConstants>
<gravity> [0,0,0] </gravity>

</PhysicalConstants>

MPM Flags

There are many options available when running MPM simulations. These are generally
specified in the <MPM> section of the input file. Below is a list of these options taken
from inputs/UPS SPEC/mpm spec.xml This file also gives possible values, or at least
expected datatype, for these flags. A description of their functionality is forthcoming,
in the meantime, consult the code and input files. A default value is set for many, see
MPM/MPMFlags.cc for more.

<MPM>
<!-- These are commonly used options -->
<artificial_damping_coeff spec="OPTIONAL DOUBLE ’positive’"/>
<artificial_viscosity spec="OPTIONAL BOOLEAN" />
<artificial_viscosity_coeff1 spec="OPTIONAL DOUBLE" />
<artificial_viscosity_coeff2 spec="OPTIONAL DOUBLE" />
<axisymmetric spec="OPTIONAL BOOLEAN" />
<boundary_traction_faces spec="OPTIONAL STRING" />
<DoExplicitHeatConduction spec="OPTIONAL BOOLEAN" />
<DoPressureStabilization spec="OPTIONAL BOOLEAN" />
<erosion spec="OPTIONAL NO_DATA"

attribute1="algorithm REQUIRED STRING ’none, KeepStress, ZeroStress, RemoveMass’" />
<interpolator spec="OPTIONAL STRING ’linear, gimp, 3rdorderBS, 4thorderBS’" />
<minimum_particle_mass spec="OPTIONAL DOUBLE ’positive’"/>
<minimum_mass_for_acc spec="OPTIONAL DOUBLE ’positive’"/>
<maximum_particle_velocity spec="OPTIONAL DOUBLE ’positive’"/>
<testForNegTemps_mpm spec="OPTIONAL BOOLEAN" />
<time_integrator spec="OPTIONAL STRING ’explicit, fracture, implicit’" />
<use_load_curves spec="OPTIONAL BOOLEAN" />
<UsePrescribedDeformation spec="OPTIONAL BOOLEAN" />
<withColor spec="OPTIONAL BOOLEAN" />

<!-- These are not commonly used options -->
<accumulate_strain_energy spec="OPTIONAL BOOLEAN" />
<CanAddMPMMaterial spec="OPTIONAL BOOLEAN" />
<create_new_particles spec="OPTIONAL BOOLEAN" />
<do_contact_friction_heating spec="OPTIONAL BOOLEAN" />
<do_grid_reset spec="OPTIONAL BOOLEAN" />
<DoThermalExpansion spec="OPTIONAL BOOLEAN" />
<ForceBC_force_increment_factor spec="OPTIONAL DOUBLE" />
<manual_new_material spec="OPTIONAL BOOLEAN" />

115



<interpolateParticleTempToGridEveryStep spec="OPTIONAL BOOLEAN" />
<temperature_solve spec="OPTIONAL BOOLEAN" />

<!-- THE FOLLOWING APPLY ONLY TO THE IMPLICIT MPM CODE -->
<dynamic spec="OPTIONAL BOOLEAN" />
<solver spec="OPTIONAL STRING ’petsc, simple’" />
<convergence_criteria_disp spec="OPTIONAL DOUBLE ’positive’"/>
<convergence_criteria_energy spec="OPTIONAL DOUBLE ’positive’"/>
<num_iters_to_decrease_delT spec="OPTIONAL INTEGER" />
<num_iters_to_increase_delT spec="OPTIONAL INTEGER" />
<iters_before_timestep_restart spec="OPTIONAL INTEGER" />
<DoTransientImplicitHeatConduction spec="OPTIONAL BOOLEAN" />
<delT_decrease_factor spec="OPTIONAL DOUBLE" />
<delT_increase_factor spec="OPTIONAL DOUBLE" />
<DoImplicitHeatConduction spec="OPTIONAL BOOLEAN" />
<DoMechanics spec="OPTIONAL BOOLEAN" />

<!-- THE FOLLOWING APPLY ONLY TO THE FRACTURE MPM CODE -->
<dadx spec="OPTIONAL DOUBLE" />
<smooth_crack_front spec="OPTIONAL BOOLEAN" />
<calculate_fracture_parameters spec="OPTIONAL BOOLEAN" />
<do_crack_propagation spec="OPTIONAL BOOLEAN" />
<use_volume_integral spec="OPTIONAL BOOLEAN" />

</MPM>

Material Properties

The Material Properties section of the input file actually contains not only those,
but also the geometry and initial condition data as well. Below is a simple exam-
ple, copied from inputs/MPM/disks.ups. The name field is optional. The first field
is the material <density>. The <constitutive model> field refers to the model
used to generate a stress tensor on each material point. The use of these mod-
els is described in detail in Section 7.5. Next are the thermal transport properties,
<thermal conductivity> and <specific heat>. Note that these are required even
if heat conduction is not being computed. These are the required material properties.
There are additional optional parameters that are used in other auxiliary calculations,
for a list of these see the inputs/UPS SPEC/mpm spec.xml .

Next is the specification of the geometry, and, along with it, the initial state of the
material contained in that geometry. For more information on how initial geometry
can be specified, see Section 2.8. Within the <geom object> is the <res> field. This
indicates how many particles per cell are to be used in each of the coordinate directions.
Following that are initial values for velocity and temperature. Finally, the <color>

designation has a number of uses, for example when one wishes to identify initially
distinct regions of the same material. In Section 7.5 is a description of how this field
is used to identify particles for on the fly data extraction.

An arbitray number of <material> fields can be specified. As the calculation
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proceeds, each of these materials has their own field variables, and, as such, each
material behaves independently of the others. Interactions between materials occur as
a result of “contact” models. Their use is described in detail in Section 7.5.

<MaterialProperties>
<MPM>

<material name="disks">
<density>1000.0</density>
<constitutive_model type="comp_mooney_rivlin">

<he_constant_1>100000.0</he_constant_1>
<he_constant_2>20000.0</he_constant_2>
<he_PR>.49</he_PR>

</constitutive_model>
<thermal_conductivity>1.0</thermal_conductivity>
<specific_heat>5</specific_heat>
<geom_object>

<cylinder label = "gp1">
<bottom>[.25,.25,.05]</bottom>
<top>[.25,.25,.1]</top>
<radius> .2 </radius>

</cylinder>
<res>[2,2,2]</res>
<velocity>[2.0,2.0,0]</velocity>
<temperature>300</temperature>
<color> 0 </color>

</geom_object>
</material>

<contact>
<type>null</type>
<materials>[0]</materials>

</contact>
</MPM>

</MaterialProperties>

Constitutive Models

The MPM code contains a large number of constitutive models that provide a Cauchy
stress on each particle based on the velocity gradient computed at that particle. The
following is a list and very brief description of the most commonly used models. The
reader may wish to consult the inputs/MPM and inputs/MPMICE directories to find
explicit examples of the use of these models, and others not described below.

1. Compressible Neo-Hookean Models There are a number of implementations
based on a hyperelastic-plastic model described by Simo and Hughes[47] (pp.
307 – 321). Several of these models should be combined, but for now, they are
separate. Below the usage for each is given. These models are very robust, and
hyperelastic models don’t require rotation back and forth between laboratory and
material frames of reference.
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<comp neo hook> is a basic elastic model.

<constitutive_model type="comp_neo_hook">
<bulk_modulus>2000.0</bulk_modulus>
<shear_modulus>1500.0</shear_modulus>

</constitutive_model>

<comp neo hook plastic> is the basic elastic model extended to include plas-
ticity with isotropic linear hardening.

<constitutive_model type="comp_neo_hook_plastic">
<bulk_modulus>2000.0</bulk_modulus>
<shear_modulus>1500.0</shear_modulus>
<yield_stress>100.0</yield_stress>
<hardening_modulus>500.0</hardening_modulus>
<alpha> 0.0 </alpha> <!-- optional defaults to 0.0 -->

</constitutive_model>

<cnh damage> is a basic elastic model, with an extension to failure based on a
stress or strain as given below, thus yielding an elastic-brittle failure model. This
model also allows a distribution of failure strain (or stress) based on normal or
Weibull distributions. Note that the post-failure behaviour of simulations is not
always robust.

When either this or the subsequent model is chosen, one must also specify the
following MPMFlag

<!-- choices are: "AllowNoTension", "ZeroStress" -->
<erosion algorithm="ZeroStress"/>

in the <MPM> section of the input file.

<constitutive_model type="cnh_damage">
<bulk_modulus> 8.9e9 </bulk_modulus>
<shear_modulus>3.52e9 </shear_modulus>

<!-- choices are true or false (default) -->
<failure_by_stress>true </failure_by_stress>

<!-- when failure_by_stress is true, values are stress not strain -->
<failure_strain_mean> 900 </failure_strain_mean>
<failure_strain_std> 0.1 </failure_strain_std>

<!-- choices are "constant", "gauss" or "weibull" -->
<failure_strain_distrib> "constant" </failure_strain_distrib>

</constitutive_model>

<cnhp damage> is the elastic plastic model above, with an extension to failure
based on a stress or strain as given below, thus yielding an elastic-plastic model
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with failure. Note that the post-failure behaviour of simulations is not always
robust.

<constitutive_model type="cnhp_damage">
<bulk_modulus> 8.9e9 </bulk_modulus>
<shear_modulus>3.52e9 </shear_modulus>
<yield_stress>100.0</yield_stress>
<hardening_modulus>500.0</hardening_modulus>

<!-- choices are true or false (default) -->
<failure_by_stress>true </failure_by_stress>

<!-- when failure_by_stress is true, values are stress not strain -->
<failure_strain_mean> 900 </failure_strain_mean>
<failure_strain_std> 0.1 </failure_strain_std>

<!-- choices are "constant", "gauss" or "weibull" -->
<failure_strain_distrib> "constant" </failure_strain_distrib>

</constitutive_model>

2. Compressible Mooney-Rivlin Model This model is generally parameterized
for rubber type materials. Usage is as follows:

<constitutive_model type="comp_mooney_rivlin">
<he_constant_1>100000.0</he_constant_1>
<he_constant_2>20000.0</he_constant_2>
<he_PR>.49</he_PR>

</constitutive_model>

where <he constant (1,2)> are usually referred to as C1 and C2 in the litera-
ture.

3. Kayenta This is the model formerly known as the Sandia Geomodel. Use is
limited to licensees, see Rebecca Brannon for details. It also requires an obscene
number of input parameters which are best covered in the users guide for this
model. For a simple list, see the source code in Kayenta.cc.

4. Water This is a model for water, reported in [17]. The P-V relationship is given
by:

p = κ

[(
ρ

ρ0

)γ
− 1

]
(7.21)

Shear stress is simple Newtonian behavior. It has not been validated, but gives
qualitatively reasonable behavior. Usage is given by:

<constitutive_model type="water">
<bulk_modulus>15000.0</bulk_modulus>
<viscosity>.5</viscosity>
<gamma>7.0</gamma>

</constitutive_model>
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5. Ideal Gas This is simply an equation of state, with no shear stress. Usage is
given by:

<constitutive_model type="ideal_gas">
<specific_heat> 717.5 </specific_heat>
<gamma> 1.4 </gamma>

</constitutive_model>

6. Rigid Material This model was designed for use with the specified contact
model described in Section 7.5. It is designed to compute zero stress and de-
formation of the material, and is basically a fast place holder for materials that
won’t be developing a stress anyway.

7. ElasticPlastic The <elastic plastic> model is a general purpose model that
was primarily implemented for the purpose of modeling high strain rate metal
plasticity. Dr. Biswajit Banerjee has written an extensive description of the
theory, implementation and use of this model. Because of the amount of detail
involved, and because these subtopics are interwoven, this model is given its own
section below.

There is a large number remaining models but these are not frequently utilized.
This includes models for viscoelasticity, soil models, and transverse isotropic materials
(i.e., fiber reinforced composites). Examples of their use can be found in the inputs

directory. Input files can also be constructed by checking the source code to see what
parameters are required.

There are a few models whose use is explicitly not recommended. In particular,
HypoElasticPlastic, Membrane and SmallStrainPlastic. Input files calling for
the first of these should be switched to the ElasticPlastic model instead.

Hypo-Elastic Plasticity in Uintah

The hypoelastic-plastic stress update is based on an additive decomposition of the
rate of deformation tensor into elastic and plastic parts. Incompressibility is assumed
for plastic deformations. The volumetric response is therefore determined either by a
bulk modulus and the trace of the rate of deformation tensor or using an equation of
state. The deviatoric response is determined either by an elastic constitutive equation
or using a plastic flow rule in combination with a yield condition.

The material models that can be varied in these stress update approaches are (this
list is not exhaustive):

1. The elasticity model, for example,

• Isotropic linear elastic model.

• Anisotropic linear elastic models.
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• Isotropic nonlinear elastic models.

• Anisotropic nonlinear elastic models.

2. Isotropic hardening or Kinematic hardening using a back stress evolution rule,
for example,

• Ziegler evolution rule .

3. The flow rule and hardening/softening law, for example,

• Perfect plasticity/power law hardening plasticity.

• Johnson-Cook plasticity .

• Mechanical Threshold Stress (MTS) plasticity .

• Anand plasticity .

4. The yield condition, for example,

• von Mises yield condition.

• Drucker-Prager yield condition.

• Mohr-Coulomb yield condition.

5. A continuum or nonlocal damage model with damage evolution given by, for
example,

• Johnson-Cook damage model.

• Gurson-Needleman-Tvergaard model.

• Sandia damage model.

6. An equation of state to determine the pressure (or volumetric response), for
example,

• Mie-Gruneisen equation of state.

The currently implemented stress update algorithms in Uintah do not allow for
arbitrary elasticity models, kinematic hardening, arbitrary yield conditions and con-
tinuum or nonlocal damage (however a damage parameter is updated and used in the
erosion algorithm). The models that can be varied are the flow rule models, damage
variable evolution models and the equation of state models. Note that there are no
checks to prevent users from mixing and matching inappropriate models.

This section describes the current implementation of the hypoelastic- plastic model.
The stress update algorithm is a slightly modified version of the approach taken by
Nemat-Nasser et al. (1991,1992) [38, 39], Wang (1994) [57], Maudlin (1996) [36], and
Zocher et al. (2000) [62].
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Simplified theory for hypoelastic-plasticity A simplified version of the theory
behind the stress update algorithm (in the contex of von Mises plasticity) is given
below.

Following [36], the rotated spatial rate of deformation tensor (d) is decomposed
into an elastic part (de) and a plastic part (dp)

d = de + dp (7.22)

If we assume plastic incompressibility (tr(dp) = 0), we get

η = ηe + ηp (7.23)

where η, ηe, and ηp are the deviatoric parts of d, de, and dp, respectively. For isotropic
materials, the hypoelastic constitutive equation for deviatoric stress is

ṡ = 2µ(η − ηp) (7.24)

where s is the deviatoric part of the stress tensor and µ is the shear modulus. We
assume that the flow stress obeys the Huber-von Mises yield condition

f :=

√
3

2
‖s‖ − σy ≤ 0 or, F :=

3

2
s : s− σ2

y ≤ 0 (7.25)

where σy is the flow stress. Assuming an associated flow rule, and noting that dp = ηp,
we have

ηp = dp = λ
∂f

∂σ
= Λ

∂F

∂σ
= 3Λs (7.26)

where σ is the stress. Let u be a tensor proportional to the plastic straining direction,
and define γ as

u =
√

3
s

‖s‖
; γ :=

√
3Λ ‖s‖ =⇒ γu = 3Λs (7.27)

Therefore, we have
ηp = γu; ṡ = 2µ(η − γu) (7.28)

From the consistency condition, if we assume that the deviatoric stress remains constant
over a timestep, we get

γ =
s : η

s : u
(7.29)

which provides an initial estimate of the plastic strain-rate. To obtain a semi-implicit
update of the stress using equation (7.28), we define

τ 2 :=
3

2
s : s = σ2

y (7.30)

Taking a time derivative of equation (7.30) gives us

√
2τ̇ =

√
3
s : ṡ

‖s‖
(7.31)
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Plugging equation (7.31) into equation (7.28)2 we get

τ̇ =
√

2µ(u : η − γu : u) =
√

2µ(d− 3γ) (7.32)

where d = u : η. If the initial estimate of the plastic strain-rate is that all of the devi-
atoric strain-rate is plastic, then we get an approximation to γ, and the corresponding
error (γer) given by

γapprox =
d

3
; γer = γapprox − γ =

d

3
− γ (7.33)

The incremental form of the above equation is

∆γ =
d∗∆t

3
−∆γer (7.34)

Integrating equation (7.32) from time tn to time tn+1 = tn + ∆t, and using equation
(7.34) we get

τn+1 = τn +
√

2µ(d∗∆t− 3∆γ) = τn + 3
√

2µ∆γer (7.35)

where d∗ is the average value of d over the timestep. Solving for ∆γer gives

∆γer =
τn+1 − τn

3
√

2µ
=

√
2σy −

√
3 ‖sn‖

6µ
(7.36)

The direction of the total strain-rate (uη) and the direction of the plastic strain-rate
(us) are given by

uη =
η

‖η‖
; us =

s

‖s‖
(7.37)

Let θ be the fraction of the time increment that sees elastic straining. Then

θ =
d∗ − 3γn

d∗
(7.38)

where γn = dn/3 is the value of γ at the beginning of the timestep. We also assume
that

d∗ =
√

3η : [(1− θ)uη +
θ

2
(uη + us)] (7.39)

Plugging equation (7.38) into equation (7.39) we get a quadratic equation that can be
solved for d∗ as follows

2√
3

(d∗)2 − (η : us + ‖η‖)d∗ + 3γn(η : us − ‖η‖) = 0 (7.40)

The real positive root of the above quadratic equation is taken as the estimate for d.
The value of ∆γ can now be calculated using equations (7.34) and (7.36). A semi-
implicit estimate of the deviatoric stress can be obtained at this stage by integrating
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equation (7.28)2

s̃n+1 = sn + 2µ

(
η∆t−

√
3∆γ

s̃n+1

‖sn+1‖

)
(7.41)

= sn + 2µ

(
η∆t− 3√

2
∆γ
s̃n+1

σy

)
(7.42)

Solving for s̃n+1, we get

s̃n+1 =
strial
n+1

1 + 3
√

2µ
∆γ

σy

(7.43)

where strial
n+1 = sn + 2µ∆tη. A final radial return adjustment is used to move the stress

to the yield surface

sn+1 =

√
2

3
σy

s̃n+1

‖s̃n+1‖
(7.44)

A pathological situation arises if γn = un : ηn is less than or equal to zero or ∆γer ≥
d∗

3
∆t. This can occur is the rate of plastic deformation is small compared to the rate of

elastic deformation or if the timestep size is too small (see [39]). In such situations, we
use a locally implicit stress update that uses Newton iterations (as discussed in [46],
page 124) to compute s̃.

Equation of State Models The elastic-plastic stress update assumes that the vol-
umetric part of the Cauchy stress can be calculated using an equation of state. There
are three equations of state that are implemented in Uintah. These are

1. A default hypoelastic equation of state.

2. A neo-Hookean equation of state.

3. A Mie-Gruneisen type equation of state.

Default hypoelastic equation of state In this case we assume that the stress
rate is given by

σ̇ = λ tr(de) 1 + 2 µ de (7.45)

where σ is the Cauchy stress, de is the elastic part of the rate of deformation, and λ, µ
are constants.

If ηe is the deviatoric part of de then we can write

σ̇ =

(
λ+

2

3
µ

)
tr(de) 1 + 2 µ ηe = κ tr(de) 1 + 2 µ ηe . (7.46)
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If we split σ into a volumetric and a deviatoric part, i.e., σ = p 1 + s and take the
time derivative to get σ̇ = ṗ 1 + ṡ then

ṗ = κ tr(de) . (7.47)

In addition we assume that d = de + dp. If we also assume that the plastic volume
change is negligible, we can then write that

ṗ = κ tr(d) . (7.48)

This is the equation that is used to calculate the pressure p in the default hypoelastic
equation of state, i.e.,

pn+1 = pn + κ tr(dn+1) ∆t . (7.49)

To get the derivative of p with respect to J , where J = det(F ), we note that

ṗ =
∂p

∂J
J̇ =

∂p

∂J
J tr(d) . (7.50)

Therefore,

∂p

∂J
=
κ

J
. (7.51)

This model is invoked in Uintah using

<equation_of_state type="default_hypo">
</equation_of_state>

The code is in .../MPM/ConstitutiveModel/PlasticityModels/DefaultHypoElasticEOS.cc

If an EOS is not specified then this model is the default.

Default hyperelastic equation of state In this model the pressure is computed
using the relation

p =
1

2
κ

(
Je −

1

Je

)
(7.52)

where κ is the bulk modulus and Je is determinant of the elastic part of the deformation
gradient.

We can also compute

dp

dJ
=

1

2
κ

(
1 +

1

(Je)2

)
. (7.53)

This model is invoked in Uintah using

<equation_of_state type="default_hyper">
</equation_of_state>

The code is in .../MPM/ConstitutiveModel/PlasticityModels/HyperElasticEOS.cc.
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Mie-Gruneisen equation of state The pressure (p) is calculated using a Mie-
Grüneisen equation of state of the form ([58, 62])

pn+1 = −
ρ0 C

2
0 (1− Jen+1)[1− Γ0(1− Jen+1)/2]

[1− Sα(1− Jen+1)]2
− Γ0 en+1 ; Je := detF e (7.54)

where C0 is the bulk speed of sound, ρ0 is the initial mass density, Γ0 is the Grüneisen’s
gamma at the reference state, Sα = dUs/dUp is a linear Hugoniot slope coefficient, Us is
the shock wave velocity, Up is the particle velocity, and e is the internal energy density
(per unit reference volume), F e is the elastic part of the deformation gradient. For
isochoric plasticity,

Je = J = det(F ) =
ρ0

ρ
.

The internal energy is computed using

E =
1

V0

∫
CvdT ≈

Cv(T − T0)

V0

(7.55)

where V0 = 1/ρ0 is the reference specific volume at temperature T = T0, and Cv is the
specific heat at constant volume. Also,

∂p

∂Je
=
ρ0 C

2
0 [1 + (Sα − Γ0) (1− Je)]

[1− Sα (1− Je)]3
− Γ0

∂e

∂Je
. (7.56)

We neglect the ∂e
∂Je

term in our calculations.
This model is invoked in Uintah using

<equation_of_state type="mie_gruneisen">
<C_0>5386</C_0>
<Gamma_0>1.99</Gamma_0>
<S_alpha>1.339</S_alpha>

</equation_of_state>

The code is in .../MPM/ConstitutiveModel/PlasticityModels/MieGruneisenEOS.cc.

Melting Temperature

Default model The default model is to use a constant melting temperature. This
model is invoked using

<melting_temp_model type="constant_Tm">
</melting_temp_model>
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SCG melt model We use a pressure dependent relation to determine the melting
temperature (Tm). The Steinberg-Cochran-Guinan (SCG) melt model ([48]) has been
used for our simulations of copper. This model is based on a modified Lindemann law
and has the form

Tm(ρ) = Tm0 exp

[
2a

(
1− 1

η

)]
η2(Γ0−a−1/3); η =

ρ

ρ0

(7.57)

where Tm0 is the melt temperature at η = 1, a is the coefficient of the first order volume
correction to Grüneisen’s gamma (Γ0).

This model is invoked with

<melting_temp_model type="scg_Tm">
<T_m0> 2310.0 </T_m0>
<Gamma_0> 3.0 </Gamma_0>
<a> 1.67 </a>

</melting_temp_model>

BPS melt model An alternative melting relation that is based on dislocation-
mediated phase transitions - the Burakovsky-Preston-Silbar (BPS) model ([13]) can
also be used. This model has been used to determine the melt temperature for 4340
steel. The BPS model has the form

Tm(p) = Tm(0)

[
1

η
+

1

η4/3

µ
′
0

µ0

p

]
; η =

(
1 +

K
′
0

K0

p

)1/K
′
0

(7.58)

Tm(0) =
κλµ0 vWS

8π ln(z − 1) kb
ln

(
α2

4 b2ρc(Tm)

)
(7.59)

where p is the pressure, η = ρ/ρ0 is the compression, µ0 is the shear modulus at room
temperature and zero pressure, µ

′
0 = ∂µ/∂p is the derivative of the shear modulus

at zero pressure, K0 is the bulk modulus at room temperature and zero pressure,
K
′
0 = ∂K/∂p is the derivative of the bulk modulus at zero pressure, κ is a constant,

λ = b3/vWS where b is the magnitude of the Burgers’ vector, vWS is the Wigner-Seitz
volume, z is the coordination number, α is a constant, ρc(Tm) is the critical density of
dislocations, and kb is the Boltzmann constant.

This model is invoked with

<melting_temp_model type="bps_Tm">
<B0> 137e9 </B0>
<dB_dp0> 5.48 <dB_dp0>
<G0> 47.7e9 <G0>
<dG_dp0> 1.4 <dG_dp0>
<kappa> 1.25 <kappa>
<z> 12 <z>
<b2rhoTm> 0.64 <b2rhoTm>
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<alpha> 2.9 <alpha>
<lambda> 1.41 <lambda>
<a> 3.6147e-9<a>
<v_ws_a3_factor> 1/4 <v_ws_a3_factor>
<Boltzmann_Constant> <Boltzmann_Constant>

</melting_temp_model>

Shear Modulus Three models for the shear modulus (µ) have been tested in our
simulations. The first has been associated with the Mechanical Threshold Stress (MTS)
model and we call it the MTS shear model. The second is the model used by Steinberg-
Cochran-Guinan and we call it the SCG shear model while the third is a model devel-
oped by Nadal and Le Poac that we call the NP shear model.

Default model The default model gives a constant shear modulus. The model
is invoked using

<shear_modulus_model type="constant_shear">
</shear_modulus_model>

MTS Shear Modulus Model The simplest model is of the form suggested by
[55] ([14])

µ(T ) = µ0 −
D

exp(T0/T )− 1
(7.60)

where µ0 is the shear modulus at 0K, and D,T0 are material constants.
The model is invoked using

<shear_modulus_model type="mts_shear">
<mu_0>28.0e9</mu_0>
<D>4.50e9</D>
<T_0>294</T_0>

</shear_modulus_model>

SCG Shear Modulus Model The Steinberg-Cochran-Guinan (SCG) shear mod-
ulus model ([48, 62]) is pressure dependent and has the form

µ(p, T ) = µ0 +
∂µ

∂p

p

η1/3
+
∂µ

∂T
(T − 300); η = ρ/ρ0 (7.61)

where, µ0 is the shear modulus at the reference state(T = 300 K, p = 0, η = 1), p is
the pressure, and T is the temperature. When the temperature is above Tm, the shear
modulus is instantaneously set to zero in this model.

The model is invoked using

<shear_modulus_model type="scg_shear">
<mu_0> 81.8e9 </mu_0>
<A> 20.6e-12 </A>
<B> 0.16e-3 </B>

</shear_modulus_model>
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NP Shear Modulus Model A modified version of the SCG model has been
developed by [37] that attempts to capture the sudden drop in the shear modulus
close to the melting temperature in a smooth manner. The Nadal-LePoac (NP) shear
modulus model has the form

µ(p, T ) =
1

J (T̂ )

[(
µ0 +

∂µ

∂p

p

η1/3

)
(1− T̂ ) +

ρ

Cm
kb T

]
; C :=

(6π2)2/3

3
f 2 (7.62)

where

J (T̂ ) := 1 + exp

[
−

1 + 1/ζ

1 + ζ/(1− T̂ )

]
for T̂ :=

T

Tm
∈ [0, 1 + ζ], (7.63)

µ0 is the shear modulus at 0 K and ambient pressure, ζ is a material parameter, kb is
the Boltzmann constant, m is the atomic mass, and f is the Lindemann constant.

The model is invoked using

<shear_modulus_model type="np_shear">
<mu_0>26.5e9</mu_0>
<zeta>0.04</zeta>
<slope_mu_p_over_mu0>65.0e-12</slope_mu_p_over_mu0>
<C> 0.047 </C>
<m> 26.98 </m>

</shear_modulus_model>

PTW Shear model The PTW shear model is a simplified version of the SCG
shear model. The inputs can be found in .../MPM/ConstitutiveModel/PlasticityModel/PTWShear.h.

Flow Stress We have explored five temperature and strain rate dependent models
that can be used to compute the flow stress:

1. the Johnson-Cook (JC) model

2. the Steinberg-Cochran-Guinan-Lund (SCG) model.

3. the Zerilli-Armstrong (ZA) model.

4. the Mechanical Threshold Stress (MTS) model.

5. the Preston-Tonks-Wallace (PTW) model.

JC Flow Stress Model The Johnson-Cook (JC) model ([29]) is purely empirical
and gives the following relation for the flow stress (σy)

σy(εp, ε̇p, T ) = [A+B(εp)
n]
[
1 + C ln(ε̇∗p)

]
[1− (T ∗)m] (7.64)
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where εp is the equivalent plastic strain, ε̇p is the plastic strain rate, A, B, C, n, m are
material constants,

ε̇∗p =
ε̇p

ε̇p0
; T ∗ =

(T − T0)

(Tm − T0)
, (7.65)

ε̇p0 is a user defined plastic strain rate, T0 is a reference temperature, and Tm is the
melt temperature. For conditions where T ∗ < 0, we assume that m = 1.

The inputs for this model are

<plasticity_model type="johnson_cook">
<A>792.0e6</A>
<B>510.0e6</B>
<C>0.014</C>
<n>0.26</n>
<m>1.03</m>
<T_r>298.0</T_r>
<T_m>1793.0</T_m>
<epdot_0>1.0</epdot_0>

</plasticity_model>

SCG Flow Stress Model The Steinberg-Cochran-Guinan-Lund (SCG) model
is a semi-empirical model that was developed by [48] for high strain rate situations and
extended to low strain rates and bcc materials by [49]. The flow stress in this model
is given by

σy(εp, ε̇p, T ) = [σaf(εp) + σt(ε̇p, T )]
µ(p, T )

µ0

(7.66)

where σa is the athermal component of the flow stress, f(εp) is a function that represents
strain hardening, σt is the thermally activated component of the flow stress, µ(p, T ) is
the shear modulus, and µ0 is the shear modulus at standard temperature and pressure.
The strain hardening function has the form

f(εp) = [1 + β(εp + εpi)]
n; σaf(εp) ≤ σmax (7.67)

where β, n are work hardening parameters, and εpi is the initial equivalent plastic
strain. The thermal component σt is computed using a bisection algorithm from the
following equation (based on the work of [28])

ε̇p =

[
1

C1

exp

[
2Uk
kb T

(
1− σt

σp

)2
]

+
C2

σt

]−1

; σt ≤ σp (7.68)

where 2Uk is the energy to form a kink-pair in a dislocation segment of length Ld, kb
is the Boltzmann constant, σp is the Peierls stress. The constants C1, C2 are given by
the relations

C1 :=
ρdLdab

2ν

2w2
; C2 :=

D

ρdb2
(7.69)
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where ρd is the dislocation density, Ld is the length of a dislocation segment, a is the
distance between Peierls valleys, b is the magnitude of the Burgers’ vector, ν is the
Debye frequency, w is the width of a kink loop, and D is the drag coefficient.

The inputs for this model are of the form

<plasticity_model type="steinberg_cochran_guinan">
<mu_0> 81.8e9 </mu_0>
<sigma_0> 1.15e9 </sigma_0>
<Y_max> 0.25e9 </Y_max>
<beta> 2.0 </beta>
<n> 0.50 </n>
<A> 20.6e-12 </A>
<B> 0.16e-3 </B>
<T_m0> 2310.0 </T_m0>
<Gamma_0> 3.0 </Gamma_0>
<a> 1.67 </a>
<epsilon_p0> 0.0 </epsilon_p0>

</plasticity_model>

ZA Flow Stress Model The Zerilli-Armstrong (ZA) model ([60, 61, 59]) is based
on simplified dislocation mechanics. The general form of the equation for the flow stress
is

σy(εp, ε̇p, T ) = σa +B exp(−β(ε̇p)T ) +B0
√
εp exp(−α(ε̇p)T ) (7.70)

where σa is the athermal component of the flow stress given by

σa := σg +
kh√
l

+Kεnp , (7.71)

σg is the contribution due to solutes and initial dislocation density, kh is the microstruc-
tural stress intensity, l is the average grain diameter, K is zero for fcc materials, B,B0

are material constants. The functional forms of the exponents α and β are

α = α0 − α1 ln(ε̇p); β = β0 − β1 ln(ε̇p); (7.72)

where α0, α1, β0, β1 are material parameters that depend on the type of material (fcc,
bcc, hcp, alloys). The Zerilli-Armstrong model has been modified by [1] for better
performance at high temperatures. However, we have not used the modified equations
in our computations.

The inputs for this model are of the form

<bcc_or_fcc> fcc </bcc_or_fcc>
<c2> </c2>
<c3> </c3>
<c4> </c4>
<n> </n>

131



MTS Flow Stress Model The Mechanical Threshold Stress (MTS) model ([19,
20, 33]) gives the following form for the flow stress

σy(εp, ε̇p, T ) = σa + (Siσi + Seσe)
µ(p, T )

µ0

(7.73)

where σa is the athermal component of mechanical threshold stress, µ0 is the shear
modulus at 0 K and ambient pressure, σi is the component of the flow stress due to
intrinsic barriers to thermally activated dislocation motion and dislocation-dislocation
interactions, σe is the component of the flow stress due to microstructural evolution
with increasing deformation (strain hardening), (Si, Se) are temperature and strain
rate dependent scaling factors. The scaling factors take the Arrhenius form

Si =

[
1−

(
kb T

g0ib3µ(p, T )
ln
ε̇p0i
ε̇p

)1/qi
]1/pi

(7.74)

Se =

[
1−

(
kb T

g0eb3µ(p, T )
ln
ε̇p0e
ε̇p

)1/qe
]1/pe

(7.75)

where kb is the Boltzmann constant, b is the magnitude of the Burgers’ vector, (g0i, g0e)
are normalized activation energies, (ε̇p0i, ε̇p0e) are constant reference strain rates, and
(qi, pi, qe, pe) are constants. The strain hardening component of the mechanical thresh-
old stress (σe) is given by a modified Voce law

dσe
dεp

= θ(σe) (7.76)

where

θ(σe) = θ0[1− F (σe)] + θIV F (σe) (7.77)

θ0 = a0 + a1 ln ε̇p + a2

√
ε̇p − a3T (7.78)

F (σe) =

tanh

(
α
σe

σes

)
tanh(α)

(7.79)

ln(
σes

σ0es

) =

(
kT

g0esb3µ(p, T )

)
ln

(
ε̇p

ε̇p0es

)
(7.80)

and θ0 is the hardening due to dislocation accumulation, θIV is the contribution due
to stage-IV hardening, (a0, a1, a2, a3, α) are constants, σes is the stress at zero strain
hardening rate, σ0es is the saturation threshold stress for deformation at 0 K, g0es is a
constant, and ε̇p0es is the maximum strain rate. Note that the maximum strain rate is
usually limited to about 107/s.

The inputs for this model are of the form
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<plasticity_model type="mts_model">
<sigma_a>363.7e6</sigma_a>
<mu_0>28.0e9</mu_0>
<D>4.50e9</D>
<T_0>294</T_0>
<koverbcubed>0.823e6</koverbcubed>
<g_0i>0.0</g_0i>
<g_0e>0.71</g_0e>
<edot_0i>0.0</edot_0i>
<edot_0e>2.79e9</edot_0e>
<p_i>0.0</p_i>
<q_i>0.0</q_i>
<p_e>1.0</p_e>
<q_e>2.0</q_e>
<sigma_i>0.0</sigma_i>
<a_0>211.8e6</a_0>
<a_1>0.0</a_1>
<a_2>0.0</a_2>
<a_3>0.0</a_3>
<theta_IV>0.0</theta_IV>
<alpha>2</alpha>
<edot_es0>3.42e8</edot_es0>
<g_0es>0.15</g_0es>
<sigma_es0>1679.3e6</sigma_es0>

</plasticity_model>

PTW Flow Stress Model The Preston-Tonks-Wallace (PTW) model ([41]) at-
tempts to provide a model for the flow stress for extreme strain rates (up to 1011/s)
and temperatures up to melt. The flow stress is given by

σy(εp, ε̇p, T ) =

2

[
τs + α ln

[
1− ϕ exp

(
−β −

θεp

αϕ

)]]
µ(p, T ) thermal regime

2τsµ(p, T ) shock regime

(7.81)
with

α :=
s0 − τy
d

; β :=
τs − τy
α

; ϕ := exp(β)− 1 (7.82)

where τs is a normalized work-hardening saturation stress, s0 is the value of τs at 0K,
τy is a normalized yield stress, θ is the hardening constant in the Voce hardening law,
and d is a dimensionless material parameter that modifies the Voce hardening law. The
saturation stress and the yield stress are given by

τs = max

{
s0 − (s0 − s∞)erf

[
κT̂ ln

(
γξ̇

ε̇p

)]
, s0

(
ε̇p

γξ̇

)s1}
(7.83)

τy = max

{
y0 − (y0 − y∞)erf

[
κT̂ ln

(
γξ̇

ε̇p

)]
,min

{
y1

(
ε̇p

γξ̇

)y2

, s0

(
ε̇p

γξ̇

)s1}}
(7.84)
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where s∞ is the value of τs close to the melt temperature, (y0, y∞) are the values of τy at

0K and close to melt, respectively, (κ, γ) are material constants, T̂ = T/Tm, (s1, y1, y2)
are material parameters for the high strain rate regime, and

ξ̇ =
1

2

(
4πρ

3M

)1/3(
µ(p, T )

ρ

)1/2

(7.85)

where ρ is the density, and M is the atomic mass.
The inputs for this model are of the form

<plasticity_model type="preston_tonks_wallace">
<theta> 0.025 </theta>
<p> 2.0 </p>
<s0> 0.0085 </s0>
<sinf> 0.00055 </sinf>
<kappa> 0.11 </kappa>
<gamma> 0.00001 </gamma>
<y0> 0.0001 </y0>
<yinf> 0.0001 </yinf>
<y1> 0.094 </y1>
<y2> 0.575 </y2>
<beta> 0.25 </beta>
<M> 63.54 </M>
<G0> 518e8 </G0>
<alpha> 0.20 </alpha>
<alphap> 0.20 </alphap>

</plasticity_model>

Adiabatic Heating and Specific Heat A part of the plastic work done is converted
into heat and used to update the temperature of a particle. The increase in temperature
(∆T ) due to an increment in plastic strain (∆εp) is given by the equation

∆T =
χσy

ρCp
∆εp (7.86)

where χ is the Taylor-Quinney coefficient, and Cp is the specific heat. The value of the
Taylor-Quinney coefficient is taken to be 0.9 in all our simulations (see [44] for more
details on the variation of χ with strain and strain rate).

The Taylor-Quinney coefficient is taken as input in the ElasticPlastic model using
the tags

<taylor_quinney_coeff> 0.9 </taylor_quinney_coeff>

Default specific heat model The default model returns a constant specific heat
and is invoked using

<specific_heat_model type="constant_Cp">
</specific_heat_model>
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Specific heat model for copper The specific heat model for copper is of the
form

Cp =

{
A0 T

3 −B0 T
2 + C0 T −D0 if T < T0

A1 T +B1 if T ≥ T0 .
(7.87)

The model is invoked using

<specific_heat_model type = "copper_Cp"> </specific_heat_model>

Specific heat model for steel A relation for the dependence of Cp upon tem-
perature is used for the steel ([34]).

Cp =

{
A1 +B1 t+ C1 |t|−α if T < Tc

A2 +B2 t+ C2 t
−α′ if T > Tc

(7.88)

t =
T

Tc
− 1 (7.89)

where Tc is the critical temperature at which the phase transformation from the α to
the γ phase takes place, and A1, A2, B1, B2, α, α

′
are constants.

The model is invoked using

<specific_heat_model type = "steel_Cp"> </specific_heat_model>

The heat generated at a material point is conducted away at the end of a time
step using the transient heat equation. The effect of conduction on material point
temperature is negligible (but non-zero) for the high strain-rate problems simulated
using Uintah.

Adding new models In the parallel implementation of the stress update algorithm,
sockets have been added to allow for the incorporation of a variety of plasticity, damage,
yield, and bifurcation models without requiring any change in the stress update code.
The algorithm is shown in Algorithm 7.1. The equation of state, plasticity model,
yield condition, damage model, and the stability criterion are all polymorphic objects
created using a factory idiom in C++ ([16]).

Addition of a new model requires the following steps (the example below is only for
the flow stress model but the same idea applies to other models) :

1. Creation of a new class that encapsulates the plasticity model. The template for
this class can be copied from the existing plasticity models. The data that is
unique to the new model are specified in the form of

• A structure containing the constants for the plasticity model.

• Particle variables that specify the variables that evolve in the plasticity
model.
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Table 7.1: Stress Update Algorithm

Persistent:Initial moduli, temperature, porosity,
scalar damage, equation of state, plasticity model,
yield condition, stability criterion, damage model

Temporary:Particle state at time t
Output: Particle state at time t+ ∆t

For all the patches in the domain
Read the particle data and initialize updated data storage
For all the particles in the patch

Compute the velocity gradient and the rate of deformation tensor
Compute the deformation gradient and the rotation tensor
Rotate the Cauchy stress and the rate of deformation tensor

to the material configuration
Compute the current shear modulus and melting temperature
Compute the pressure using the equation of state,

update the hydrostatic stress, and
compute the trial deviatoric stress

Compute the flow stress using the plasticity model
Evaluate the yield function
If particle is elastic

Update the elastic deviatoric stress from the trial stress
Rotate the stress back to laboratory coordinates
Update the particle state

Else
Compute the elastic-plastic deviatoric stress
Compute updated porosity, scalar damage, and

temperature increase due to plastic work
Compute elastic-plastic tangent modulus and evaluate stability condition
Rotate the stress back to laboratory coordinates
Update the particle state

End If
If Temperature > Melt Temperature or Porosity > Critical Porosity or Unstable

Tag particle as failed
End If
Convert failed particles into a material with a different velocity field

End For
End For
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2. The implementation of the plasticity model involves the following steps.

• Reading the input file for the model constants in the constructor.

• Adding the variables that evolve in the plasticity model appropriately to the
task graph.

• Adding the appropriate flow stress calculation method.

3. The PlasticityModelFactory is then modified so that it recognizes the added
plasticity model.

Damage Models and Failure Only the Johnson-Cook damage evolution rule has
been added to the DamageModelFactory so far. The damage model framework is
designed to be similar to the plasticity model framework. New models can be added
using the approach described in the previous section.

A particle is tagged as “failed” when its temperature is greater than the melting
point of the material at the applied pressure. An additional condition for failure is
when the porosity of a particle increases beyond a critical limit and the strain exceeds
the fracture strain of the material. Another condition for failure is when a material
bifurcation condition such as the Drucker stability postulate is satisfied. Upon failure,
a particle is either removed from the computation by setting the stress to zero or
is converted into a material with a different velocity field which interacts with the
remaining particles via contact. Either approach leads to the simulation of a newly
created surface. More details of the approach can be found in [2, 3, 4].

Yield conditions When failure is to be simulated we can use the Gurson-Tvergaard-
Needleman yield condition instead of the von Mises condition.

The von Mises yield condition The von Mises yield condition is the default
and is invoked using the tags

<yield_condition type="vonMises">
</yield_condition>

The Gurson-Tvergaard-Needleman (GTN) yield condition The Gurson-
Tvergaard-Needleman (GTN) yield condition [23, 53] depends on porosity. An associ-
ated flow rule is used to determine the plastic rate parameter in either case. The GTN
yield condition can be written as

Φ =

(
σeq
σf

)2

+ 2q1f∗ cosh

(
q2
Tr(σ)

2σf

)
− (1 + q3f

2
∗ ) = 0 (7.90)
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where q1, q2, q3 are material constants and f∗ is the porosity (damage) function given
by

f∗ =

{
f for f ≤ fc,

fc + k(f − fc) for f > fc
(7.91)

where k is a constant and f is the porosity (void volume fraction). The flow stress
in the matrix material is computed using either of the two plasticity models discussed
earlier. Note that the flow stress in the matrix material also remains on the undamaged
matrix yield surface and uses an associated flow rule.

This yield condition is invoked using

<yield_condition type="gurson">
<q1> 1.5 </q1>
<q2> 1.0 </q2>
<q3> 2.25 </q3>
<k> 4.0 </k>
<f_c> 0.05 </f_c>

</yield_condition>

Porosity model The evolution of porosity is calculated as the sum of the rate of
growth and the rate of nucleation [43]. The rate of growth of porosity and the void
nucleation rate are given by the following equations [15]

ḟ = ḟnucl + ḟgrow (7.92)

ḟgrow = (1− f)Tr(Dp) (7.93)

ḟnucl =
fn

(sn
√

2π)
exp

[
−1

2

(εp − εn)2

s2
n

]
ε̇p (7.94)

where Dp is the rate of plastic deformation tensor, fn is the volume fraction of void
nucleating particles , εn is the mean of the distribution of nucleation strains, and sn is
the standard deviation of the distribution.

The inputs tags for porosity are of the form

<evolve_porosity> true </evolve_porosity>
<initial_mean_porosity> 0.005 </initial_mean_porosity>
<initial_std_porosity> 0.001 </initial_std_porosity>
<critical_porosity> 0.3 </critical_porosity>
<frac_nucleation> 0.1 </frac_nucleation>
<meanstrain_nucleation> 0.3 </meanstrain_nucleation>
<stddevstrain_nucleation> 0.1 </stddevstrain_nucleation>
<initial_porosity_distrib> gauss </initial_porosity_distrib>

Damage model After the stress state has been determined on the basis of the yield
condition and the associated flow rule, a scalar damage state in each material point
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can be calculated using the Johnson-Cook model [30]. The Johnson-Cook model has
an explicit dependence on temperature, plastic strain, ans strain rate.

The damage evolution rule for the Johnson-Cook damage model can be written as

Ḋ =
ε̇p

εfp
; εfp =

[
D1 +D2 exp

(
D3

3
σ∗

)]
[1 +D4 ln(ε̇p

∗)] [1 +D5T
∗] ; σ∗ =

Tr(σ)

σeq
;

(7.95)
where D is the damage variable which has a value of 0 for virgin material and a value of
1 at fracture, εfp is the fracture strain, D1, D2, D3, D4, D5 are constants, σ is the Cauchy
stress, and T ∗ is the scaled temperature as in the Johnson-Cook plasticity model.

The input tags for the damage model are :

<damage_model type="johnson_cook">
<D1>0.05</D1>
<D2>3.44</D2>
<D3>-2.12</D3>
<D4>0.002</D4>
<D5>0.61</D5>

</damage_model>

An initial damage distribution can be created using the following tags

<evolve_damage> true </evolve_damage>
<initial_mean_scalar_damage> 0.005 </initial_mean_scalar_damage>
<initial_std_scalar_damage> 0.001 </initial_std_scalar_damage>
<critical_scalar_damage> 1.0 </critical_scalar_damage>
<initial_scalar_damage_distrib> gauss </initial_scalar_damage_distrib>

Erosion algorithm Under normal conditions, the heat generated at a material point
is conducted away at the end of a time step using the heat equation. If special adiabatic
conditions apply (such as in impact problems), the heat is accumulated at a material
point and is not conducted to the surrounding particles. This localized heating can be
used to determine whether a material point has melted.

The determination of whether a particle has failed can be made on the basis of
either or all of the following conditions:

• The particle temperature exceeds the melting temperature.

• The TEPLA-F fracture condition [31] is satisfied. This condition can be written
as

(f/fc)
2 + (εp/ε

f
p)

2 = 1 (7.96)

where f is the current porosity, fc is the maximum allowable porosity, εp is the
current plastic strain, and εfp is the plastic strain at fracture.

• An alternative to ad-hoc damage criteria is to use the concept of bifurcation
to determine whether a particle has failed or not. Two stability criteria have
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been explored in this paper - the Drucker stability postulate [18] and the loss of
hyperbolicity criterion (using the determinant of the acoustic tensor) [45, 40].

The simplest criterion that can be used is the Drucker stability postulate [18] which
states that time rate of change of the rate of work done by a material cannot be negative.
Therefore, the material is assumed to become unstable (and a particle fails) when

σ̇ : Dp ≤ 0 (7.97)

Another stability criterion that is less restrictive is the acoustic tensor criterion which
states that the material loses stability if the determinant of the acoustic tensor changes
sign [45, 40]. Determination of the acoustic tensor requires a search for a normal vector
around the material point and is therefore computationally expensive. A simplification
of this criterion is a check which assumes that the direction of instability lies in the
plane of the maximum and minimum principal stress [10]. In this approach, we assume
that the strain is localized in a band with normal n, and the magnitude of the velocity
difference across the band is g. Then the bifurcation condition leads to the relation

Rijgj = 0 ; Rij = Mikjlnknl +Milkjnknl − σiknjnk (7.98)

where Mijkl are the components of the co-rotational tangent modulus tensor and σij
are the components of the co-rotational stress tensor. If det(Rij) ≤ 0, then gj can be
arbitrary and there is a possibility of strain localization. If this condition for loss of
hyperbolicity is met, then a particle deforms in an unstable manner and failure can be
assumed to have occurred at that particle. We use a combination of these criteria to
simulate failure.

Since the material in the container may unload locally after fracture, the hypoelastic-
plastic stress update may not work accurately under certain circumstances. An im-
provement would be to use a hyperelastic-plastic stress update algorithm. Also, the
plasticity models are temperature dependent. Hence there is the issue of severe mesh
dependence due to change of the governing equations from hyperbolic to elliptic in
the softening regime [27, 9, 54]. Viscoplastic stress update models or nonlocal/gra-
dient plasticity models [42, 25] can be used to eliminate some of these effects and are
currently under investigation.

The tags used to control the erosion algorithm are in two places. In the <MPM> </MPM>

section the following flags can be set

<erosion algorithm = "ZeroStress"/>
<create_new_particles> false </create_new_particles>
<manual_new_material> false </manual_new_material>

If the erosion algorithm is "none" then no particle failure is done.
In the <constitutive_model type="elastic_plastic"> section, the following

flags can be set
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<evolve_porosity> true </evolve_porosity>
<evolve_damage> true </evolve_damage>
<do_melting> true </do_melting>
<useModifiedEOS> true </useModifiedEOS>
<check_TEPLA_failure_criterion> true </check_TEPLA_failure_criterion>
<check_max_stress_failure> false </check_max_stress_failure>
<critical_stress> 12.0e9 </critical_stress>

Implementation The elastic response is assumed to be isotropic. The material
constants that are taken as input for the elastic response are the bulk and shear
modulus. The flow rule is determined from the input and the appropriate plastic-
ity model is created using the PlasticityModelFactory class. The damage evo-
lution rule is determined from the input and a damage model is created using the
DamageModelFactory class. The equation of state that is used to determine the pres-
sure is also determined from the input. The equation of state model is created using
the MPMEquationOfStateFactory class.

In addition, a damage evolution variable (D) is stored at each time step (this need
not be the case and will be transfered to the damage models in the future). The left
stretch and rotation are updated incrementally at each time step (instead of performing
a polar decomposition) and the rotation tensor is used to rotate the Cauchy stress and
rate of deformation to the material coordinates at each time step (instead of using a
objective stress rate formulation).

Any evolution variables for the plasticity model, damage model or the equation of
state are specified in the class that encapsulates the particular model.

The flow stress is calculated from the plasticity model using a function call of the
form

double flowStress = d_plasticity->computeFlowStress(tensorEta, tensorS,
pTemperature[idx],
delT, d_tol, matl, idx);

A number of plasticity models can be evaluated using the inputs in the computeFlowStress
call. The variable d_plasticity is polymorphic and can represent any of the plasticity
models that can be created by the plasticity model factory. The plastic evolution vari-
ables are updated using a polymorphic function along the lines of computeFlowStress.

The equation of state is used to calculate the hydrostatic stress using a function
call of the form

Matrix3 tensorHy = d_eos->computePressure(matl, bulk, shear,
tensorF_new, tensorD,
tensorP, pTemperature[idx],
rho_cur, delT);

Similarly, the damage model is called using a function of the type

double damage = d_damage->computeScalarDamage(tensorEta, tensorS,
pTemperature[idx],
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delT, matl, d_tol,
pDamage[idx]);

Therefore, the plasticity, damage and equation of state models are easily be inserted
into any other type of stress update algorithm without any change being needed in them
as can be seen in the hyperelastic-plastic stress update algorithm discussed below.

Example input file for the elastic-plastic model An example of the portion of
an input file that specifies a copper body with a hypoelastic stress update, Johnson-
Cook plasticity model, Johnson-Cook Damage Model and Mie-Gruneisen Equation of
State is shown below.

<material>

<include href="inputs/MPM/MaterialData/MaterialConstAnnCopper.xml"/>
<constitutive_model type="elastic_plastic">
<tolerance>5.0e-10</tolerance>
<include href="inputs/MPM/MaterialData/IsotropicElasticAnnCopper.xml"/>
<include href="inputs/MPM/MaterialData/JohnsonCookPlasticAnnCopper.xml"/>
<include href="inputs/MPM/MaterialData/JohnsonCookDamageAnnCopper.xml"/>
<include href="inputs/MPM/MaterialData/MieGruneisenEOSAnnCopper.xml"/>

</constitutive_model>

<geom_object>
<cylinder label = "Cylinder">
<bottom>[0.0,0.0,0.0]</bottom>
<top>[0.0,2.54e-2,0.0]</top>
<radius>0.762e-2</radius>

</cylinder>
<res>[3,3,3]</res>
<velocity>[0.0,-208.0,0.0]</velocity>
<temperature>294</temperature>

</geom_object>

</material>

The general material constants for copper are in the file MaterialConstAnnCopper.xml.
The contents are shown below

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<Uintah_Include>
<density>8930.0</density>
<toughness>10.e6</toughness>
<thermal_conductivity>1.0</thermal_conductivity>
<specific_heat>383</specific_heat>
<room_temp>294.0</room_temp>
<melt_temp>1356.0</melt_temp>

</Uintah_Include>

The elastic properties are in the file IsotropicElasticAnnCopper.xml. The con-
tents of this file are shown below.
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<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<Uintah_Include>
<shear_modulus>45.45e9</shear_modulus>
<bulk_modulus>136.35e9</bulk_modulus>

</Uintah_Include>

The constants for the Johnson-Cook plasticity model are in the file JohnsonCookPlasticAnnCopper.xml.
The contents of this file are shown below.

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<Uintah_Include>
<plasticity_model type="johnson_cook">
<A>89.6e6</A>
<B>292.0e6</B>
<C>0.025</C>
<n>0.31</n>
<m>1.09</m>

</plasticity_model>
</Uintah_Include>

The constants for the Johnson-Cook damage model are in the file JohnsonCookDamageAnnCopper.xml.
The contents of this file are shown below.

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<Uintah_Include>
<damage_model type="johnson_cook">
<D1>0.54</D1>
<D2>4.89</D2>
<D3>-3.03</D3>
<D4>0.014</D4>
<D5>1.12</D5>

</damage_model>
</Uintah_Include>

The constants for the Mie-Gruneisen model (as implemented in the Uintah Com-
putational Framework) are in the file MieGruneisenEOSAnnCopper.xml. The contents
of this file are shown below.

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<Uintah_Include>
<equation_of_state type="mie_gruneisen">
<C_0>3940</C_0>
<Gamma_0>2.02</Gamma_0>
<S_alpha>1.489</S_alpha>

</equation_of_state>
</Uintah_Include>

As can be seen from the input file, any other plasticity model, damage model and
equation of state can be used to replace the Johnson-Cook and Mie-Gruneisen models
without any extra effort (provided the models have been implemented and the data
exist).
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The material data can easily be taken from a material database or specified for a new
material in an input file kept at a centralized location. At this stage material data for a
range of materials is kept in the directory .../Uintah/StandAlone/inputs/MPM/MaterialData.

Contact

When multiple materials are specified in the input file, each material interacts with its
own field variables. In other words, each material has its own mass, velocity, accelera-
tion, etc. Without any mechanism for their interaction, each material would behave as
if it were the only one in the domain. Contact models provide the mechanism by which
to specify rules for inter material interactions. There are a number of contact models
from which to choose, the use of each is described next. See the input file segment in
Section 7.5 for an example of their proper placement in the input file, namely, after all
of the MPM materials have been described.

The simplest contact model is the null model, which indicates that no inter ma-
terial interactions are to take place. This is typically only used in single material
simulations. Its usage looks like:

<contact>
<type>null</type>

</contact>

The next simplest model is the single velocity model. The basic MPM formula-
tion provides “free” no-slip, no-interpenetration contact, assuming that all particle data
communicates with a single field on the grid. For a single material simulation with mul-
tiple objects, that is the case. If one wishes to achieve that behavior in Uintah-MPM
when multiple materials are present, the single velocity contact model should be
used. It is specified as:

<contact>
<type>single_velocity</type>
<materials>[0,1]</materials>

</contact>

Note that for this, and all of the contact models, the <materials> tag is optional. If
it is omitted, the assumption is that all materials will interact via the same contact
model. (This will be further discussed below.)

The ultimate in contact models is the friction contact model. For a full descrip-
tion, the reader is directed to the paper by Bardenhagen et al.[7]. Briefly, the model
both overcomes some deficiences in the single velocity field contact (either the “free”
contact or the model described above, which behave identically), and it enables some
additional features. With single velocity field contact, initially adjacent objects are
treated as if they are effectively stuck together. The friction contact model overcomes
this by detecting if materials are approaching or departing at a given node. If they are
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approaching, contact is “enforced” and if they are departing, another check is made
to determine if the objects are in compression or tension. If they are in compression,
then they are still rebounding from each other, and so contact is enforced. If tension is
detected, they are allowed to move apart independently. Frictional sliding is allowed,
based on the value specified for <mu> and the normal force between the objects. An
example of the use of this model is given here:

<contact>
<type>friction</type>
<materials>[0,1,2]</materials>
<mu> 0.5 </mu>

</contact>

A slightly simplified version of the friction model is the <approach> model. It is
the same as the frictional model above, except that it doesn’t make the additional
check on the traction between two bodies at each node. At times, it is necessary to
neglect this, but some loss of energy will result. Specification is of the model is also
nearly identical:

<contact>
<type>approach</type>
<materials>[0,1,2]</materials>
<mu> 0.5 </mu>

</contact>

Note, at this time, neither of these models works properly with the
axisymmetric formulation, due to the necessary gradient calculations. This
will be fixed in subseqent releases of Uintah.

Finally, the contact infrastructure is also used to provide a moving displacement
boundary condition. Imagine a billet being smashed by a rigid platen, for example.
Usage of this model, known as <specified> contact, looks like:

<contact>
<type>specified</type>
<filename>TXC.txt</filename>
<materials>[0,1,2]</materials>
<master_material>[0]</master_material>
<direction>[1,1,1]</direction>
<stop_time>1.0 </stop_time>
<velocity_after_stop>[0, 0, 0]</velocity_after_stop>

</contact>

For reasons of backwards compatibility, the <type>specified</type> is interchangable
with <type>rigid</type>. By default, when either model is chosen, material 0 is the
“rigid” material, although this can be over ridden by the use of the <master material>

field. If no <filename> field is specified, then the particles of the rigid material proceed
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with the velocity that they were given as their initial condition, either until the reach a
computational boundary, or until the simulation time has reached <stop time>, after
which, their velocity becomes that given in the <velocity after stop> field. The
<direction> field indicates in which cartesian directions contact should be specified.
Values of 1 indicate that contact should be specified, 0 indicates that the subject ma-
terials should be allowed to slide in that direction. If a <filename> field is specified,
then the user can create a text file which contains four entries per line. These are:

time1 velocity_x1 velocity_y1 velocity_z1
time2 velocity_x2 velocity_y2 velocity_z2

.

.

.

The velocity of the rigid material particles will be set to these values, based on linear
interpolation between times, until <stop time> is reached.

Finally, it is possible to specify more than one contact model. Suppose one has a
simulation with three materials, one rigid, and the other two deformable. The user may
want to have the rigid material interact in a rigid manner with the other two materials,
while the two deformable materials interact with each other in a single velocity field
manner. Specification for this, assuming the rigid material is 0 would look like:

<contact>
<type>single_velocity</type>
<materials>[1,2]</materials>

</contact>

<contact>
<type>specified</type>
<filename>prof.txt</filename>
<stop_time>1.0</stop_time>
<direction>[0, 0, 1]</direction>

</contact>

An example of this usage can be found in inputs/MPM/twoblock-single-rigid.ups.

BoundaryConditions

Boundary conditions must be specified on each face of the computational domain
(x−, x+, y−, y+, z−, z+) for each material. An example of their specification is as follows,
where the entire <Grid> field is included for context:

<Grid>
<BoundaryConditions>
<Face side = "x-">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
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</Face>
<Face side = "x+">

<BCType id = "all" var = "Neumann" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
<Face side = "y-">
<BCType id = "all" var = "Dirichlet" label = "Velocity">

<value> [0.0,0.0,0.0] </value>
</BCType>

</Face>
<Face side = "y+">
<BCType id = "all" var = "Neumann" label = "Velocity">

<value> [0.0,0.0,0.0] </value>
</BCType>

</Face>
<Face side = "z-">
<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>

</Face>
<Face side = "z+">
<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>

</Face>
</BoundaryConditions>
<Level>

... See Section 2.10 ...

</Level>
</Grid>

The three main types of numerical boundary conditions (BCs) that can be applied
are “Neumann”, “Dirichlet”, and “Symmetric”, and the use of each is illustrated above.
In the case of MPM simulations, Neumann BCs are used when one wishes to allow
particles to advect freely out of the computational domain. Dirichlet BCs are used
to specify a velocity, zero or otherwise (indicated by the <value> tag), on one of the
computational boundaries. Symmetric BCs are used to indicate a plane of symmetry.
This has a variety of uses. The most obvious is simply when a simulation of interest
has symmetry that one can take advantage of to reduce the cost of a calculation.
Similarly, since Uintah is a three-dimensional code, if one wishes to achieve plane-
strain conditions, this can be done by carrying out a simulation that is one cell thick
with Symmetric BCs applied to each face of the plane, as in the example above. Finally,
Symmetric BCs also provide a free slip boundary.

There is also the field id = "all" . In principal, one could set different boundary
condition types for different materials. In practice, this is rarely used, so the usage
illustrated here should be used.
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Physical Boundary Conditions

It is often more convenient to apply a specified load at the MPM particles. The load
may be a function of time. Such a load versus time curve is called a load curve.
In Uintah, the load curve infrastructure is available for general use (and not only for
particles). However, it has been implemented only for a special case of pressure loading.
Namely, a surface is specified through the use of the <geom object> description, and
a pressure vs. time curve is described by specifying their values at discrete points in
time, between which linear interpolation is used to find values at any time. At t = 0,
those particles in the vicinity of the the surface are tagged with a load curve ID, and
those particles are assigned external forces such that the desired pressure is achieved.

We invoke the load curve in the <MPM> section (See Section 7.5)of the input file using
<use_load_curves> true </use_load_curves>. The default value is <use_load_curves> false </use_load_curves>.

In Uintah, a load curve infrastructure is implemented in the file
.../MPM/PhysicalBC/LoadCurve.h. This file is essentially a templated structure that
has the following private data

// Load curve information
std::vector<double> d_time;
std::vector<T> d_load;
int d_id;

The variable d_id is the load curve ID, d_time is the time, and d_load is the load.
Note that the load can have any form - scalar, vector, matrix, etc.

In our current implementation, the actual specification of the load curve information
is in the <PhysicalBC> section of the input file. The implementation is limited in
that it applies only to pressure boundary conditions for some special geometries (the
implementation is in .../MPM/PhysicalBC/PressureBC.cc). However, the load curve
template can be used in other, more general, contexts.

A sample input file specification of a pressure load curve is shown below. In this
case, a pressure is applied to the inside and outside of a cylinder. The pressure is
ramped up from 0 to 1 GPa on the inside and from 0 to 0.1 MPa on the outside over
a time of 10 microsecs.

<PhysicalBC>
<MPM>
<pressure>
<geom_object>
<cylinder label = "inner cylinder">
<bottom> [0.0,0.0,0.0] </bottom>
<top> [0.0,0.0,.02] </top>
<radius> 0.5 </radius>

</cylinder>
</geom_object>
<load_curve>
<id>1</id>
<time_point>
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<time> 0 </time>
<load> 0 </load>

</time_point>
<time_point>
<time> 1.0e-5 </time>
<load> 1.0e9 </load>

</time_point>
</load_curve>

</pressure>
<pressure>
<geom_object>
<cylinder label = "outer cylinder">
<bottom> [0.0,0.0,0.0] </bottom>
<top> [0.0,0.0,.02] </top>
<radius> 1.0 </radius>

</cylinder>
</geom_object>
<load_curve>
<id>2</id>
<time_point>
<time> 0 </time>
<load> 0 </load>

</time_point>
<time_point>
<time> 1.0e-5 </time>
<load> 101325.0 </load>

</time_point>
</load_curve>

</pressure>
</MPM>

</PhysicalBC>

The complete input file can be found in inputs/MPM/thickCylinderMPM.ups. An ad-
ditional example which is used to achieve triaxial loading can be found at inputs/MPM/TXC.ups.
There, the material geometry is a block, and so the regions described are flat surfaces
upon which the pressure is applied.

On the Fly DataAnalysis

In the event that one wishes to monitor the data for a small region of a simulation at a
rate that is more frequent than the what the DataArchiver can reasonably provide (for
reasons of data storage and effect on run time), Uintah provides a <DataAnalysis>

feature. As it applies to MPM, it allows one to specify a group of particles, by as-
signing those particles a particular value of the <color> parameter. In addition, a
list of variables and a frequency of output is provided. Then, at run time, a sub-
directory (particleExtract/L-0 ) is created inside the uda which contains a series
of files, named according to their particle IDs, one for each tagged particle. Each of
these files contains the time and position for that particle, along with whatever other
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data is specified. To use this feature, one must include the <withColor> true

</withColor> tag in the <MPM> section of the input file. (See Section 7.5.)
The following input file snippet is taken from inputs/MPM/disks.ups

<DataAnalysis>
<Module name="particleExtract">

<material>disks</material>
<samplingFrequency> 1e10 </samplingFrequency>
<timeStart> 0 </timeStart>
<timeStop> 100 </timeStop>
<colorThreshold>
0

</colorThreshold>

<Variables>
<analyze label="p.velocity"/>
<analyze label="p.stress"/>

</Variables>

</Module>
</DataAnalysis>

For all particles that are assigned a color greater than the <colorThreshold>, the
variables p.velocity and p.stress are saved every every 1/<samplingFrequency>
time units, starting at <timeStart> until <timeStop>.

It is also possible to save grid based data with this module, see Section 6 for more
information.

Prescribed Motion

The prescribed motion capability in Uintah allows the user to prescribe arbitrary mate-
rial deformations and superimposed rotations. This capability is particularly useful in
verifying that the constitutive model is behaving as expected and is frame indifferent.
To prescribe material motion the following tag must be included in the <MPM> section
of the input file:

<MPM>

<UsePrescribedDeformation>true</UsePrescribedDeformation>

</MPM>

The desired motion must then be specified in a file named time defgrad rotation

. The format of this file is as follows:

t0 F11 F12 F13 F21 F22 F23 F31 F32 F33 theta0 a0 a1 a2

t1 F11 F12 F13 F21 F22 F23 F31 F32 F33 theta1 a0 a1 a2

. . .
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tn F11 F12 F13 F21 F22 F23 F31 F32 F33 thetan a0 a1 a2

where the first column is time, columns two through ten are the nine components of
the prescribed deformation gradient, the eleventh column is the desired rotation angle,
and the remaining three columns are the three components of the axis of prescribed
rotation. The components of the deformation gradient are linearly interpolated for
times between those specified in the table. The axis of rotation may be changed for
each specified time. As a result, the angle of rotation about the specified axis linearly
increases from zero to the specified value at the end of the specified interval. For
example, the following table:

0 1 0 0 0 1 0 0 0 1 0 0 0 0

1 1 0 0 0 1 0 0 0 1 90 0 0 1

2 1 0 0 0 1 0 0 0 1 91 0 0 1

specifies a pure rotation (no stretch) about the 3-axis. At time=0 the material will
have rotated 90 degrees about the 3-axis. At time=2 the material will have rotated
an additional 91 degrees about the 3-axis for a total of 181 degrees of rotation. As
a warning to the user, it is possible to specify the deformation gradient such that
interpolating between to entries in the table results in a singular deformation gradient.
For example:

0 1 0 0 0 1 0 0 0 1 0 0 0 0

1 1 0 0 0 1 0 0 0 1 0 0 0 1

2 -1 0 0 0 -1 0 0 0 1 0 0 0 1

would result in the simulation failing due to a negative jacobian error between time=1
and time=2 since the 11 and 22 components are linearly varying from 1 to -1 during that
time, which will attempt to invert the computational cell. The deformation gradient at
time=2 corresponds to a 180 degree rotation about the 3-axis, and can be accomplished
using the rotation feature described above.

As a final example the table:

0 1 0 0 0 1 0 0 0 1 0 0 0 0

1 0.5 0 0 0 0.5 0 0 0 0.5 45 0 1 0

2 0.5 0 0 0.5 0.5 0 0 0 0.5 90 0 0 1

would result in 50% hydrostatic compression at time=1 with a 45 degree superimposed
rotation about the 2-axis, followed by simple shear and a 90 degree rotation about the
3-axis between time=1 and time=2.
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7.6 Examples

The following examples are meant to be illustrative of a variety of capabilities of Uintah-
MPM, but are by no means exhaustive. Input files for the examples given here can be
found in:

inputs/UintahRelease/MPM

Additional (mostly undocumented) input files that exercise a greater range of code
capabilities can be found in:

inputs/MPM

Colliding Disks

Problem Description

This is an implementation of an example calculation from [50] in which two elastic
disks collide and rebound. See Section 7.3 of that manuscript for a description of the
problem.

Simulation Specifics

Component used: MPM

Input file name: disks sulsky.ups

Command used to run input file: sus disks sulsky.ups

Simulation Domain: 1.0 x 1.0 x 0.05 m

Cell Spacing:
.05 x .05 x .05 m (Level 0)

Example Runtimes:
4 seconds (1 processor, 3.16 GHz Xeon)

Physical time simulated: 3.0 seconds

Associate VisIt session: disks.session
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Figure 7.5: Colliding elastic disks. Particles colored according to velocity magnitude.

Results

Figure 7.5 shows a snapshot of the simulation, as the disks are beginning to collide.
Additional data is available within the uda in the form of ”dat” files. In this case,

both the kinetic and strain energies are avaiable and can be plotted to create a graph
similar to that in Fig. 5a of [50]. e.g. using gnuplot:

cd disks.uda.000
gnuplot
gnuplot> plot "StrainEnergy.dat", "KineticEnergy.dat"
gnuplot> quit

Taylor Impact Test

Problem Description

This is a simulation of an Taylor impact experiment calculation from [24] in a copper
cylinder at 718 K that is fired at a rigid anvil at 188 m/s. The copper cylinder has a
length of 30 mm and a diameter of 6 mm. The cylinder rebounds from the anvil after
100 µs.

Simulation Specifics

Component used: MPM
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Input file name: taylorImpact.ups

Command used to run input file: sus taylorImpact.ups

Simulation Domain: 8 mm x 33 mm x 8 mm

Cell Spacing:
1/3 mm x 1/3 mm x 1/3 mm (Level 0)

Example Runtimes:
1 hour (1 processor, Xeon 3.16 GHz)

Physical time simulated: 100 µseconds

Associate VisIt session: taylorImpact.session

Results

Figure 7.6 shows a snapshot from the end of the simulation. There, the cylinder is
allowed to slide laterally across the plate due to the following optional specification in
the <contact> section:

<direction>[1,1,1]</direction>

Figure 7.7 shows a snapshot from the end of a similar simulation. In this case, the
cylinder is restricted from sliding laterally across the plate by altering the <contact>

section as follows:

<direction>[0,1,0]</direction>

Sphere Rolling Down an Inclined Plane

Problem Description

Here, a sphere of soft plastic, initially at rest, rolls under the influence of gravity down
a plane of a harder plastic. Gravity is oriented such that the plane is effectively angled
at 45 degrees to the horizontal. This simulation demonstrates the effectiveness of the
contact algorithm, described in [5]. Frictional contact, using a friction coefficient of
µ = 0.495 causes the ball to start rolling as it impacts the plane, after being dropped
from barely above it. The same simulation is also run using a friction coefficient of
µ = 0.0. The difference in the results is shown below.
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Figure 7.6: Taylor impact simulation with sliding between cylinder and target. Parti-
cles colored according to temperature.

Figure 7.7: Taylor impact simulation with sliding prohibited between cylinder and
target. Particles colored according to temperature.
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Simulation Specifics

Component used: MPM

Input file name: inclinedPlaneSphere.ups

Command used to run input file: sus inclinedPlaneSphere.ups

Simulation Domain: 12.0 x 2.0 x 4.8 m

Cell Spacing:
.2 x .2 x .2 m (Level 0)

Example Runtimes:
2.7 hours (1 core, 3.16 GHz Xeon)

Physical time simulated: 2.2 seconds

Associate VisIt session: incplane.session

Results

Figure 7.8 and Figure 7.9 show snapshots of the simulation, as the sphere is about
halfway down the plane.

Crushing a Foam Microstructure

Problem Description

This calculation demonstrates two important strength of MPM. The first is the ability
to quickly generate a computational representation of complex geometries. The second
is the ability of the method to handle large deformations, including self contact.

In particular, in this calculation a small sample of foam, the geometry for which
was collected using microCT, is represented via material points. The sample is crushed
to 87.5% compaction through the use of a rigid plate, which acts as a constant velocity
boundary condition on the top of the sample. This calculation is a small example
of those described in [12]. The geometry of the foam is created by image procesing
the CT data, and based on the intensity of each voxel in the image data, the space
represented by that voxel either recieves a particle with the material properties of the
foam’s constituent material, or is left as void space. This particle representation avoids
the time consuming steps required to build a suitable unstructured mesh for this very
complicated geometry.
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Figure 7.8: Sphere rolling down an “inclined” plane. The gravity vector is oriented at
a 45 degree angle relative to the plane. Particles are colored by velocity magnitude.
A friction coefficient of µ = 0.495 is used. Particles are colored according to velocity
magnitude, note that the particles at the top of the sphere are moving most rapidly,
and those near the surface of the plane are basically stationary, as expected.

Figure 7.9: Sphere rolling down an “inclined” plane. The gravity vector is oriented at
a 45 degree angle relative to the plane. Particles are colored by velocity magnitude.
A friction coefficient of µ = 0.0 is used. Particles are colored according to velocity
magnitude. In this case, the particles throughout the sphere are moving at roughly the
same velocity, because the sphere is sliding as it moves down the plane, as opposed to
sticking and rolling.
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Simulation Specifics

Component used: MPM

Input file name: foam.ups

Instruction to run input file: First, copy foam.ups and foam.pts.gz to the same
directory as sus. Adjust the number of patches in the ups file based on the
number of processors available to you for this run. First, uncompress the pts file:

gunzip foam.pts.gz

Then the command:

tools/pfs/pfs foam.ups

will divide the foam.pts file, which contains the geometric description of the foam,
into number of patches smaller files, named foam.pts.0, foam.pts.1, etc. This is
done so that for large simulations, each processor is only reading that data which
it needs, and prevents the thrashing of the file system that would occur if each
processor needed to read the entire pts file. This command only needs to be done
once, or anytime the patch distibution is changed. Note that this step must be
done even if only one processor is available.

To run this simulation:

mpirun -np NP sus foam.ups

where NP is the number of processors being used.

Simulation Domain: 0.2 X 0.2 X 0.2125 mm

Number of Computational Cells:
102 X 102 X 85 (Level 0)

Example Runtimes:
2.4 hours (4 cores, 3.16 GHz Xeon)

Physical time simulated: 3.75 seconds

Associated VisIt session 1: foam.iso.session

Associated VisIt session 2: foam.part.session
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Figure 7.10: Compaction of a foam microstructure shown via isosurfacing.

Figure 7.11: Compaction of a foam microstructure rendered as particles colored by
equivalent stress.

Results

Figure 7.10 shows a snapshot of the simulation via isosurfacing, as the foam is at about
50% compaction.

Figure 7.11 shows a snapshot of the simulation via particles colored by equivalent
stress as the foam is at about 60% compaction.

In this simulation, the reaction forces at 5 of the 6 computational boundaries are
also recorded and can be viewed using a simple plotting package such as gnuplot. At
each timestep, the internal force at each of the boundaries is accumulated and stored
in “dat” files within the uda, e.g. BndyForce zminus.dat. Because the reaction force
is a vector, it is enclosed in square brackets which may be removed by use of a script
in the inputs directory:

cd foam.uda.000
../inputs/ICE/Scripts/removeBraces BndyForce\_zminus.dat
gnuplot
gnuplot> plot "BndyForce\_zminus.dat" using 1:4
gnuplot> quit
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These reaction forces are similar to what would be measured on a mechanical testing
device, and help to understand the material behavior.

Hole in an Elastic Plate

Problem Description

A flat plate with a hole in the center is loaded in tension. To achieve a quasi-static
solution, the load is applied slowly and a viscous damping force is used to reduce
transients in the solution. As such, this simulation demonstrates those two capabilities.
Specifically, take note of:

<use_load_curves> true </use_load_curves>
<artificial_damping_coeff>1.0</artificial_damping_coeff>

in the <MPM> section of the input file, and:

<PhysicalBC>
<MPM>
<pressure>
.
.
.

section below that.

Simulation Specifics

Component used: MPM

Input file name: holePlate.ups

Command used to run input file: sus holePlate.ups

Simulation Domain: 5.0 m x 5.0 m x 0.1 m

Cell Spacing:
0.1 m x 0.1 m x 0.1 m (Level 0)

Example Runtimes:
2 minutes (1 processor, Xeon 3.16 GHz)

Physical time simulated: 10 seconds

Associate VisIt session: holeInPlate.session
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Figure 7.12: Elastic plate with a hole loaded in tension. Particles are colored by
equivalent stress, vectors indicate applied load.

Results

Figure 7.12 shows a snapshot of the equivalent stress throughout the plate, as well as
the load applied to the vectors near the edge of the plate. Expected maximum stress is
300Pa. The 238Pa maximum observed here is significantly lower, but upon doubling
the resolution in the x and y directions, the maximum stress is 308Pa.
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Tungsten Sphere Impacting a Steel Target

Problem Description

A 1mm tungsten sphere with an initial velocity of 5000m/s impacts a steel target.
Axisymmetric conditions are used in this case, conversion of the input file to the full
3D simulation is straightforward. The user may wish to do both simulations of both
to gain confidence in the applicability of axisymmetry.

This simulation exercises the elastic plastic constitutive model for the steel
material. This includes sub-models for equations of state, variable shear modulus,
melting, plasticity, etc. The tungsten is modeled using the comp neo hook plastic,

which is simple vonMises plasticity with linear hardening. One difficulty with using
the more sophisticated models is that parameters can be difficult to find for many
materials.

Simulation Specifics

Component used: MPM

Input file name: WSphereIntoSteel.axi.ups

Command used to run input file: sus WSphereIntoSteel.axi.ups

Simulation Domain: 1.0 cm x 1.5 cm x axisymmetric

Cell Spacing:
0.333 mm x 0.333 mm x axisymmetry (Level 0)

Example Runtimes:
15 seconds (1 processor, Xeon 3.16 GHz)

Physical time simulated: 4 µseconds

Associate VisIt session: WSphereSteel.session

Results

Figure 7.13 shows the initial configuration for this simulation, with particles colored
by the magnitude of their velocity. Figure 7.14 shows the state of the simulation after
4µseconds this simulation, with particles still colored by velocity magnitude.
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Figure 7.13: Initial configuration of hypervelocity impact of tungsten sphere into a
steel target. Particles are colored by velocity magnitude.

Figure 7.14: State of the tunsgsten and steel after 4µseconds. Particles are colored by
velocity magnitude.
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Chapter 8

MPMICE

8.1 Introduction

MPMICE is a marriage of the multi-material ICE method, described in Section 6 and
MPM, described in Section 7. The equations of motion solved for both fluid and
solid are essentially the same, although the physical behavior of these two states of
matter differ, largely due to their constitutive relationships. MPM is used to track the
evolution of solid materials in a Lagrangian frame of reference, while fluids are evolved
in the Eulerian frame.

8.2 Theory - Algorithm Description

At this time, the reader is directed to the manuscript by Guilkey, Harman and Baner-
jee [2] for the theoretical and algorithmic description of the method.

8.3 HE Combustion Models

Three models exist for reaction of high explosive materials. Each simulation using
one of these models utilize MPMICE’s material interactions as its foundation. The
components work by taking several material specific constants as well as a reactant
and product material from the model input section of the .ups file. Following are brief
descriptions of each model, as well as their input parameters.

8.3.1 Simple Burn

Simple Burn, as the name implies, is a simple model of combustion of HMX based on
the rate equation:

ṁ = AP 0.778 (8.1)
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Where ṁ is the mass flux, P is the pressure and n is the pressure dependence
coefficient. The pressure coefficient in Equation (8.1) is that of HMX. The models
input section for a Simple Burn simulation takes the form:

<Models>

<Model type="Simple_Burn">

<fromMaterial> reactant </fromMaterial>

<toMaterial> product </toMaterial>

<Active> true </Active>

<ThresholdTemp> 450.0 </ThresholdTemp>

<ThresholdPressure> 50000.0 </ThresholdPressure>

<Enthalpy> 2000000.0 </Enthalpy>

<BurnCoeff> 75.3 </BurnCoeff>

<refPressure> 101325.0 </refPressure>

</Model>

</Models>

The first two tags take names of materials previously defined in the input file,
defining both reactant and product used by the model. See Section 6.3.4 and 7.5 for in
depth description for defining materials. <Active> is a debugging parameter that takes
a boolean value indicating whether the model is on (i.e. the actual computations take
place during the timestep). True is the value to set for <Active> in most situations.
Each of the other parameters take double values. Threshold temperature and pressure
tags define two criteria the cell must have in order to be flagged burning. The reference
pressure is used to scale the cell centered pressure as well as make it an unitless value.
The burn coefficient corresponds to A in the rate equation. Enthalpy is simply the
enthalpy value for conversion of reactant to product.
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8.3.2 Steady Burn

Steady Burn is a more accurate model than Simple Burn. It is based on WSB model of
combustion developed by Ward, Son and Brewster in [4]. WSB is based on a simplified
two-step chemical model with an initial zero-order, thermally activated (Ec > 0), mildly
exothermic, solid-to-gas reaction, modeled as a thermal decomposition of the solid:

A(solid)→ B(gas) (8.2)

Intermediate B, in the presence of any gas phase collision partner M , reacts in a
highly exothermic fashion producing a flame. This step is modelled as a second-order,
gas phase, free radical chain reaction based on the assumption that Eg = 0:

B(gas) +M(gas)→ C(gas) +M(gas) (8.3)

As such, this second equation represents the reaction in the gas phase that causes
heat convection back to the surface that activate the first reaction. In Steady Burn,
a solution is found by iteratively solving two equations: one for mass burning rate ṁ
and one for surface temperature Ts. Mass flux is initially solved with an assumed value
Ts (in the model set to 850.0K) using WSB:

ṁ (Ts) =

√√√√√√√
κcρcAcRT

2
s exp

(
−Ec
RTs

)
CpEc

(
Ts − T0 −

Qc

2Cp

) (8.4)

The solution to this equation is used to refine the surface temperature and vice-
versus until a self-consistent solution for surface temperature and mass flux has been
found. The surface temperature equation takes the form:

Ts(ṁ, P ) = T0 +
Qc

Cp
+

Qg

Cp

(
1 +

xg (ṁ, P )
xcd(ṁ)

) (8.5)

xg in the third term of Equation (8.5) is the flame standoff distance, computed
from:

xg (ṁ, P ) =
2xcd (ṁ)√

1 +Da (ṁ, P )− 1
(8.6)

where xcd and Da are the convective-diffusive length and Damkohler number, re-
spectively:

xcd (ṁ) =
κg
ṁCp

(8.7)
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Da (ṁ, P ) =
4BgMCpP

2

R2κg
xcd (ṁ)2 (8.8)

WSB model is valid as a 1D model, but needs extension to work in a 3D multimate-
rial CFD environment. As such, Steady Burn is WSB extended with logic for ignition
of energetic materials and computation of surface area for burning cells. Ignition of a
cell is based on three criteria:

• The cell must contain one particle of energetic solid

• The cell is near a surface of an energetic solid (e.g. ratio of minimum node-
centered mass to maximum node-centered mass is less than 0.7)

• One neighboring cell must have at most two particles of energetic material

If a cell is ignited, the model will be applied and mass will be transferred from reactant
material to product material. Total mass burned is computed using mass flux ṁ, ∆t
of the timestep and the calculated surface area, found using:

A =
δxδyδz

δx|gx|+ δy|gy|+ δz|gz|
(8.9)

where δx, δy, and δz are the dimensions of the cell and components of −→g are the nor-
malized density gradients of the particle mass in a cell. A more thorough examination
of Steady Burn can be read about in [5].

The following table describes the input parameters for Steady Burn. The final
column of the table indicates parameters for combustion of HMX.
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Steady Burn Input Parameters

Tag Type Description HMX Value
<fromMaterial> String ’Name’ of reac-

tant material (mass
source)

<toMaterial> String ’Name’ of product ma-
terial (mass sink)

<IdealGasConst> double Ideal gas constant (R) 8.314J/(K ×mol)
<PreExpCondPh> double Condensed phase pre-

exponential coefficient
(Ac)

1.637× 1015s−1

<ActEnergyCondPh> double Condensed phase acti-
vation energy (Ec)

1.76× 105J/mol

<PreExpGasPh> double Gas phase frequency
factor (Bg)

1.6× 10−3m3/(kg × s×K)

<CondPhaseHeat> double Condensed phase heat
release per unit mass
(Qc)

4.0× 105J/kg

<GasPhaseHeat> double Gas phase heat release
per unit mass (Qg)

3.018× 106J/kg

<HeatConductGasPh> double Thermal conductivity
of gas (κg)

0.07W/(m×K)

<HeatConductCondPh> double Thermal conductivity
of condensed phase
(κc)

0.02W/(m×K)

<SpecificHeatBoth> double Specific heat at con-
stant pressure (cp)

1.4× 103J/(kg ×K)

<MoleWeightGasPh> double Molecular weight of
gas (W )

3.42× 10−2kg/mol

<BoundaryParticles> int Max # of particles a
cell can have and be
burning

Resolution dependent

<ThresholdPressure> double Threshold pressure
cell must have ≥ to
burn mass

50000Pa

<IgnitionTemp> double Temperature cell must
have ≥ to be burning

550K
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8.3.3 Unsteady Burn

Unsteady Burn is a model developed at the University of Utah as an extension of
Steady Burn to better represent mass burning rates when pressure at the burning sur-
face fluctuates. A pressure-coupled response is accounted for in the model such that,
qualitatively a pressure increase causes gas phase reaction rates to increase as well as
move the gas phase reactions closer to the burning surface. Increase of near surface
gas phase reactions increases the rate of thermally activated solid state reactions, ul-
timately causing a higher steady burn rate. Unsteady Burn more accurately models
the transition from low pressure to high pressure than Steady Burn by taking into
account the initially overshot burn rate at the time when the pressure increases, and
the relaxation period to steady burn rate. Similarly, Unsteady Burn models undershot
pressures during pressure drops.

The model is an extension of Steady Burn by partial decoupling of the gas phase
and solid state Equations (8.4) and (8.5). An expression for the temperature gradient
of the solid:

β = (Ts − T0)
mcp
κc

(8.10)

is reaarranged for (Ts − T0) and substituted in Equation (8.4) leading to the
quadradic equation:

ṁ2 − 2βκc
Qc

ṁ+
2AcRT

2
s κcρc

EcQC

exp

(
−Ec
RTs

)
= 0 (8.11)

which allows independent tracking of temperature gradient β and surface temper-
ature Ts. The gas phase response is computed using a runnning average of Ts as it
approaches the steady burning value. A solid state response is obtained by computing
a running average of β as it approaches the steady burning value. A slow relaxation
time for β and a fast relaxation time for Ts models the overshoot or undershoot in burn
rate. Burning criteria for a cell is the same as Steady Burn. For more information on
Unsteady Burn see [5].

The following table describes the input parameters for Unsteady Burn.
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Unsteady Burn Input Parameters

Tag Type Description
<fromMaterial> String ’Name’ of reactant material (mass

source)
<toMaterial> String ’Name’ of product material (mass sink)
<IdealGasConst> double Ideal gas constant (R)
<PreExpCondPh> double Condensed phase pre-exponential coef-

ficient (Ac)
<ActEnergyCondPh> double Condensed phase activation energy

(Ec)
<PreExpGasPh> double Gas phase frequency factor (Bg)
<CondPhaseHeat> double Condensed phase heat release per unit

mass (Qc)
<GasPhaseHeat> double Gas phase heat release per unit mass

(Qg)
<HeatConductGasPh> double Thermal conductivity of gas (κg)
<HeatConductCondPh> double Thermal conductivity of condensed

phase (κc)
<SpecificHeatBoth> double Specific heat at constant pressure (cp)
<MoleWeightGasPh> double Molecular weight of gas (W )
<BoundaryParticles> int Max # of particles a cell can have and

be burning
<BurnrateModCoef> double if 6=1.0, scale unsteady rate with steady

rate as ṁu = ṁs

(
ṁu
ṁs

)Bm

<CondUnsteadyCoef> double Coefficient for condensed phase pres-
sure response relaxation

<GasUnsteadyCoef> double Coefficient for gas phase pressure re-
sponse relaxation

<ThresholdPressure> double Threshold pressure cell must be ≥ to
burn mass

<IgnitionTemp> double Temperature cell must be at ≥ to be
burning
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8.4 Examples

Mach 2 Wedge

Problem Description

This is a simulation of a symmetric 20o wedge traveling through initially quiescent
air at Mach 2.0. A shock forms at the leading edge of the wedge and an expansion
fan over its top. Consultation of oblique shock tables, e.g. [3] (pp.308-309) reveals
that the angle of the leading shock compares quite well with the expected value. In
addition, this simulation demonstrates a few other useful features of the fluid-structure
interaction capability. In this case, the structure is rigid, and as such, essentially
provides a boundary condition to the compressible flow calculation. Furthermore, the
geometry of the wedge is described via a triangulated surface, rather than the geometric
primitives usually used. This allows the user to study flow around arbitrarily complex
objects, without the difficulty of generating a body fitted mesh around that object.

Simulation Specifics

Component used: rmpmice (Rigid MPM-ICE)

Input file name: Mach2Wedge.ups

Command used to run input file: sus Mach2Wedge.ups (Note: The files
wedge40.pts and wedge40.tri must also be copied to the same directory as sus.)

Simulation Domain: 0.25 x 0.0375 x 0.001 m

Cell Spacing:
.0005 x .0005 x .001 m (Level 0)

Example Runtimes:
20 minutes (1 processor, 3.16 GHz Xeon)

Physical time simulated: 0.3 milliseconds

Associated visit session: M2wedge.session
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Figure 8.1: 20o wedge moving at Mach 2.0 through initially stationary air. Contour
plot depicts pressure.

Results

Figure 8.1 shows a snapshot of the simulation. Contour plot depicts pressure and
reflects the presence of a leading shock and an expansion fan.
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Cylinder in a Crossflow

Problem Description

In this example the domain is initially filled with air moving at a uniform velocity of
0.03m/s A ridgid cylinder O.D. = 0.02m is placed 0.1m from the inlet and a passive
scalar is injected into the domain through a 0.002m hole on in the inlet boundary of
the domain. A velocity perturbation is placed upstream of the cylinder to produce an
instablity that will help trigger the onset of the Kármán vortex street.

Simulation Specifics

Component used: rmpmice (Rigid MPM-ICE)

Input file name: cylinderCrossFlow.ups

Command used to run input file:
mpirun -np 6 sus inputs/UintahRelease/MPMICE/cylinderCrossFlow.ups

Simulation Domain: 0.3 x 0.15 x 0.001 m

Cell Spacing:
.00015 x .001 x .001 m (Level 0)

Example Runtimes:
7ish hrs (6 processor, 3.16 GHz Xeon)

Physical time simulated: 60 seconds

Associated visit session: cyl crossFlow.session

Results

Figure 8.2 shows a snapshot of the simulation at time t = 60sec. The contour plot of
the passive scalar shows the Kármán vortex street behind the cylinder at Re = 700. A
movie of the results is located at

movies/cyl_crossFlow.mpg
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Figure 8.2: Flow over a stationary cylinder, Re = 700, a passive scalar is used as a
flow marker
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Copper Clad Rate Stick (aka “Cylinder Test”)

Problem Description

This is a two-dimensional version of the “cylinder test” which is used to characterize
equations of state for explosive products. In those tests, a copper tube is filled with
a high explosive and a detonation is initiated at one end. Various means are used to
measure the velocity of the tube as the high pressure product gases expand inside of
it.

Here, a cylinder (r = 2.54cm) of QM100 is jacketed with a copper cylinder that
has a wall thickness of 0.52cm. Detonation is initiated by giving a thin layer of the
explosive a high initial velocity in the axial direction which generates a pressure that
is sufficiently high to reach trigger the detonation model. As the detonation proceeds,
the copper is pushed out of the domain by the expanding product gases.

Note that in this example, to make run times brief, the domain is very short in
the axial direction, and is probably not sufficient for the detonation to reach steady
state. Additionally, the domain has been reduced to two dimensions, as symmetry is
assumed in the Z-plane. Finally, the spatial resolution of 1.0mm is a bit coarse to
achieve convergent results. The full three dimensional result can quickly be obtained
by commenting out the symmetry condition on the z+ plane and uncommenting the
Neumann conditions, as well as changing the spatial extents and resolution in the Z
direction to match those in the Y direction.

Simulation Specifics

Component used: mpmice (MPM-ICE)

Input file name: QM100CuRS.ups

Command used to run input file:
sus inputs/UintahRelease/MPMICE/QM100CuRS.ups

Simulation Domain: 0.055 x 0.032 x 0.0005 m

Cell Spacing:
1.0 mm x 1.0 mm x 1.0 mm (Level 0)

Example Runtimes:
20 minutes (1 processor, 3.16 GHz Xeon)

Physical time simulated: 30 µseconds

Associated visit session: QM100.session

180



Figure 8.3: Detonation in a copper cylinder (2-D). Particles are colored by velocity
magnitude, contours indicate density of unreacted explosive.

Results

Figure 8.3 shows a snapshot of the simulation at time t = 60sec. Particles are col-
ored by velocity magnitude, contours reflect the density of explosive, note the highly
compressed region near the shock front.
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Cylinder Pressurization Using Simple Burn

Problem Description

This example demonstrates use of the Simple Burn algorithm in an explosive scenario.
The exact situation consists of a cylinder of PBX encased in steel. For simplicity it is set
up as a 2D simulation. It demonstrates Symmetric boundaries as a useful construct
for simplifying the computational requirements of a problem. The end result is the
pressurization of a quarter of a cylinder by combustion of PBX 9501. Damage and
failure models simulate cylinder failure in a detonation scenario. The simulation as it
stands falls far short of the required physical time simulated for actual detonation, but
demonstrates how Simple Burn can be used to pressurize a cylinder. For description
of Simple Burn see 8.3.1.

Simulation Specifics

Component used: mpmice (MPM-ICE)

Input file name: guni2dRT.ups

Preprocessing on input file:
1) Comment out or remove <max Timesteps> on line 21
2) Comment out <outputTimestepInterval> on line 96
3) add <outputInterval>5e-5<outputInterval> on line 97

Command used to run input file: mpirun -np 4 sus guni2dRT.ups

Simulation Domain: 8.636 x 8.636 x 0.16933 cm

Example Runtimes:
2 minutes (1 processor, 2.8 GHz Xeon)

Physical time simulated: 8 microseconds

Associated visit session: SimpleBurn.session
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(a) Receding PBX9501 leads to pressure
increase in cylindrical steel shell

(b) Pressure increase causes cylinder to
respond

(c) The left half of the image repre-
sents particles as spheres colored accord-
ing to mass and pressure as background
color. Top-right shows delP Dilatate and
bottom-right shows delP MassX

Figure 8.4:

Results

With the recession of mass comes a pressure increase that causes the case to expand
outward. A snapshot of pressure after the 0.4 milliseconds can be seen in Figure 8.4a.
At this time pressure has increased to three-fold its initial value. A later snapshot
Figure 8.4b shows the response of the steel cylinder to increased pressure. Note that
mass flux will scale according to 8.1. Another interesting view of the simulation can be
seen in Figure 8.4c. On the left is the normal particle and pseudocolor map representing
solid mass and pressure respectively. On the top right, change in pressure during the
timestep can be seen (delP Dilatate). The bottom shows change in pressure due to
mass exchange (del MassX). See table 6.3.8 for description of these variables.
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Exploding Cylinder Using Steady Burn

Problem Description

This problem consistes of a cylinder initially at 600 K causing burning. Steady Burn
acts as the model for burning of HE material. More information on Steady Burn can
be found in 8.3.2. The cylinder is build from an outer shell of steel covering a hollow
bored cylinder of PBX9501. The simulation demonstrates the violence of explosions
when large voids allow rapid expansion of surface area due to collapse of explosive
material into the bore. Information on the violence of explosions with solid and hollow
cores can be attained in [5].

Simulation Specifics

Component used: mpmice (MPM-ICE)

Input file name: SteadyBurn 2dRT.ups

Preprocessing on input file:
1) Comment out or remove <max Timesteps>
2) Comment out <outputTimestepInterval> and uncomment <outputInterval>
around line 101

Command used to run input file: mpirun -np 4 sus SteadyBurn 2dRT.ups

Simulation Domain: 9 x 9 x 0.1 cm

Example Runtimes:
5 hours (1 processor, 2.8 GHz Xeon)

Physical time simulated: 3 milliseconds

Associated visit session: SteadyBurn.session
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(a) Collapse of PBX into hollow bore of
explosive device

(b) Expansion of steel casing as explosion
occurs–response to pressure build-up

(c) Burning Cells denoted by red squares

Figure 8.5:

Results

Figure 8.5a shows a nice view of the cylinder as the PBX particles within is collapsing
into the void, creating more burnable surface area resulting in more violent explosion.
Figure 8.5b shows a view of the cylinder as the steel container begins to expand out-
ward. Arrows represent the speed at which the particles in the steel case are expanding
outward. Figure 8.5c shows cell flagged as burning by Steady Burn.
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T-Burner Example Using Unsteady Burn

Problem Description

The T-Burner problem was inspired by an article by Jerry Finlinson, Richard Stalnaker
and Fred Blomshield in which a T-Burner apparatus was pressurized to a given pressure
and ignited [1]. The T-Burner composed of a cylinder with HMX on each circular
ends, and a pressure inlet halfway between the HMX caps pumps pressure into the
vessel parallel to those walls. Finlinson, et. al. measured pressure oscillations in
the chamber and this simulation mimics the behavior found of Finlinson’s 500 psi
experiment. For simplicity and resource minimization, the simulation is set up as a 2D
T-Burner. The graphs below shows the pressure oscillations over time compared with
that from [1]. This simulation demonstrates the utility of Unsteady Burn in simulations
where pressure oscillations occur in small places. For more information on Unsteady
Burn see 8.3.3.

Simulation Specifics

Component used: mpmice (MPM-ICE)

Input file name: TBurner 2dRT.ups

Command used to run input file: mpirun -np 4 sus TBurner 2dRT.ups

Simulation Domain: 0.822 x 0.138 x 0.003 m

Example Runtimes:
25 minutes (1 processor, 2.8 GHz Xeon)

Physical time simulated: 0.46 milliseconds
0.46 milliseconds of simulation equates flag<max Timesteps>410< /max Timesteps>

Notes:
1)Remove line from input file to allow simulation to run full 0.25 seconds
2)Comment out <outputTimestepInterval> and uncomment <outputInterval>
to make output ∆t constant

Associated visit session: TBurner.session
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Results

Figure 8.6a, 8.6b and 8.6c show successive snapshots of the simulation. Contour plot
depicts pressure and represents the wave front as it oscillates between two sheets of
burning PBX 9501. Figure 8.6d shows velocities of gas cells.

Figure 8.6d shows a snapshot of the simulation at the same instant as the previ-
ous figure. The contour plot depicts pressure. The arrows are vectors depicting the
importance
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(a) Time 1: Oscillatory behavior in the form of a pressure wave in a T-Burner. Contour
plot depicts pressure

(b) Time 2: Oscillatory behavior in the form of a pressure wave in a T-Burner. Contour
plot depicts pressure

(c) Time 3: Oscillatory behavior in the form of a pressure wave in a T-Burner. Contour
plot depicts pressure

(d) Velocity vectors of cell material. Shows how the pressure causes gas to move

Figure 8.6:
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Chapter 9

Glossary

• Data Warehouse (NewDW, OldDW, DW) - The Data Warehouse is an abstrac-
tion (and implementation vehicle) used in Uintah to provide data to simulation
components (across distributed memory spaces as necessary). OldDW refers to
a DW from the previous time step. NewDW refers to the DW for the current
time step. In practice, variables are usually pulled from the OldDW, updated,
and placed in the NewDW.

• Time step - Uintah is a time dependent code. A time step refers to a unique
point in simulation time. The state of the simulation is updated one time step
at a time.

• Adaptive Mesh Refinement (AMR) - In brief, AMR allows spending less CPU
time on “inactive” (less interesting) areas of the simulation, and spend more
time computing where there are many particles reacting. Resolution is low in the
center where things are stable, but high at the edges. This feature is in ICE, but
not ARCHES.

• CCA - Common Component Architecture.

• CFD - Computational Fluid Dynamics modeling.

• DistCC - Parallel, distributed compiler.

• Doxygen - Doxygen (code documentation) web interface.

• GhostCells (and Extra Cells)

• Grid - The problem’s physical domain. The number of cells in the grid determine
the resolution of the simulation.

• Handle - Smart pointers. Handles track the number of references to a given
object, and when the number reaches zero, de-allocates the memory.
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• Level - Not a ’level’ in 3d-space, but a level of recursion into an AMR grid.
ARCHES doesn’t support AMR or nonuniform cells, and therefore doesn’t need
recursion, so it works on a single level ’1’.

• Material Point Method (MPM) - The main component for simulating structures
(physcial objects) in the UCF.

• Message Passing Interface (MPI) - Communication library used by many dis-
tributed software packages to communicate data between multiple processors.
Besides send’ing and recv’ing data, data reduction (UCF Reduction Variables)
is supported.

– OpenMPI

• Patch - A physical region of the grid assigned one to each processor. The processor
working on a patch will compute properties for each of the cells contained in the
patch. Think of this as a big cube that contains hundreds of little cubes.

• Regression Tester (RT) - Runs nightly accuracy, memory, and completion tests
on Uintah simulations.

• SCIRun - A Problem Solving Environment (PSE) originally used to provide core
software building blocks for Uintah as well as an extensive visualization package
for viewing Uintah data archives.

• SUS - Standalone Uintah Simulator. This is the main executable program in the
Uintah project.

• SVN - Subversion code versioning system.

• Uintah - The general name of the C-SAFE simulation code. Sometimes also
refered to as the UCF. The name comes from the Uintah mountain range in
Utah.

• Uintah Computational Framework (UCF) - The core software infrastructure for
Uintah.

– Variables (CC, NC, FC) - Cell centered, Node centered, and Face centered
(respectively) data structures used within the UCF.

• Uintah Data Archive (UDA) - The directory/file/data layout for storing Uintah
simulation data.

• Uintah Problem Specification (UPS (Section 2.3)) - An XML based file used to
specify Uintah simulation properties.

• Uintah Software Organization
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– Visualization

– scinew - a wrapper for the C++ new() function that allows for memory
tracking.
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