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1 Introduction

This report considers positivity preserving methods for hyperbolic equations, by combining two distinct areas of
work. The first is the substantial and influential body of work on ENO and WENO methods. The second area is
work on data-bounded polynomial interpolants. The overall aim is to make it possible to derive methods for many
physical problems such as the solution to hyperbolic equations in which the computed solution values should, on
physical grounds, remain non-negative e.g. the advection equation with non-negative initial data as given by

∂u
∂ t

+a
∂u
∂x

= 0 (1)

with appropriate boundary conditions on a spatial interval [A,B], and an exact solution u(x, t).
In spite of the influential and substantial body of work on ENO and WENO methods [10, 11, 16, 21, 18], there

are still a few unresolved theoretical questions with regard to these methods. An early modification to the ENO
approach to enable the method to be TVD is provided in the preprint of Shu [19]. A slightly different approach
so as to keep the ENO stencil closer to a linearly stable stencil is also described by Shu [22]. Balsara and Shu [2]
use the method of Suresh and Huynh [23], to construct sixth order schemes. Shu points out in a recent survey of
WENO methods it is difficult to genralize analysis of some of the methods beyond third order, [20].

The approach taken here is different in that it involves the use of polynomials whose higher divided differences
may be written as bounded multiples of lower divided differences. This will be seen to be important in deriving
schemes with positivity preserving properties. The algorithm used will limit the signs and growth of divided differ-
ence terms to arrive at bounded monotone polynomial approximations of potentially arbitrarily high degree within
an interval. While this limiting process may be used with any divided difference polynomial, its use in conjunction
with ENO and WENO schemes is natural in that both approaches seek to control the size of the differences used
in the schemes. The use of polynomials whose higher divided differences may be written as bounded multiples of
lower divided differences will be seen to be important in deriving schemes with positivity preserving properties.
The overall intention is to derive conditions under which ENO and WENO methods are positive with regard to the

1*SCI Institute, School of Computing, University of Utah, Salt Lake City, Utah

Page 1



SCI Report UUSCI-2009-003

standard definition used here for a positivity preserving scheme for the advection equation. This definition requires
(see Laney [15]) that the numerical solution at time tn+1 be written in terms of the numerical solution at time tn in
the form

Ui(tn+1) = ∑
j

a jUj(tn) where ∑
j

a j = 1, and aj ≥ 0 . (2)

or in semi-discrete form as:

U̇i(tn+1) = ∑
j

b j(Uj(tn)−Ui(tn) where ∑
j

b j = B, and bj ≥ 0 . (3)

The key observation with regard to preserving positivity is due to Godunov [6] who proved that any scheme of
better than first order which preserves positivity for the advection equation must be nonlinear. For example, the
coefficients aj in (2) above must depend on the numerical solution to the p.d.e. For a recent discussion of this topic
see [3]. In obtaining such results for the methods considered here the first step is to prove that the data-bounded
polynomial approximation derived by Berzins [1] is also data-bounded on non-uniform meshes. This is done in
Section 2 of this paper. These results then make it possible to prove results about positivity in Section 3. Numerical
results on three test problems in Section 4 show that it is possible to use higher orders than is often done, but that
it is important to resolve features such as steep waves with enough mesh points for high-order ENO methods to be
effective.

2 ENO Divided Difference Polynomial Interpolation

In common with the standard treatments of ENO and WENO methods e.g. see [18, 20], the divided difference form
of polynomial interpolation is used here as it enables the unified treatment of polynomial approximations based
on any set of spatial points. In this paper we will use divided differences as defined by the usual notation where
U [xi] = U(xi) and

U [xi,xi+1] =
U [xi+1]−U [xi]

xi+1 − xi
, (4)

and subsequent differences are defined recursively by

U [xi,xi+1, ...,xi+k] =
U [xi+1,xi+2...,xi+k]−U [xi,xi+1, ...,xi+k−1]

xi+k − xi
. (5)

Suppose that a set of mesh points are given by xi,xi+1,xi+2,xi+3,xi+4...xi+N with associated solution values U [xi], ...,
U [xi+N ], then the standard Newton divided difference form of the interpolating polynomial U(x)is given by

U(x) = U [xi]+ π1,i(x) U [xi,xi+1]+ π2,i(x) U [xi,xi+1,xi+2]
+π3,i(x) U [xi,xi+1,xi+2,xi+3]+ ....+ πN,i(x) U [xi, ...,xi+N ], (6)

where

π1,i(x) = (x− xi), π2,i(x) = (x− xi)(x− xi+1),
π3,i(x) = (x− xi)(x− xi+1)(x− xi+2), etc. (7)

In this case each additional term in the series makes use of the next mesh point and associated solution value to the
right of the previous ones. An alternative polynomial could have been constructed by starting at the point xj, j > 0
and then adding successive points to the left or right of xj, [13]. As the divided difference, U [xi,xi+1, ...,xi+k], is
invariant under permutations of the points xi,xi+1, ...,xi+k , the convention adopted here is that the points will be
ordered as an increasing sequence when the difference is evaluated. The denominator in equation (5) will also then
be the width of the stencil of points used to evaluate the difference.

The idea behind ENO type interpolants is to vary the difference stencil to consistently pick the best polynomial.
For example suppose that i > 1 then one valid quadratic polynomial for interpolation on the interval [xi,xi+1] is given
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by the first three terms of the sum on the right side of equation (6) which uses the three data points U(xi),U(xi+1)
and U(xi+2). An alternative polynomial using the points U(xi),U(xi+1) and U(xi−1) is given by

U(x) = U [xi]+ π1,i(x) U [xi,xi+1]+ π2,i(x) U [xi−1,xi,xi+1] (8)

with the same values of the functions π1,i(x) and π2,i(x). The central idea in ENO methods [10] is to pick the
polynomial with the smallest divided differences in order to potentially reduce oscillations. In the above case if

|U [xi−1,xi,xi+1]| < |U [xi,xi+1,xi+2]| (9)

then the polynomial defined by equation (8) is used rather than the polynomial defined by the first three terms on
the right side of equation (6). WENO methods use a combination of both of these polynomials, see [20], to achieve
a higher degree of accuracy.

2.1 A Recursive Formulation of ENO Interpolants

A key step in constructing a provably data-bounded interpolant is to write the divided difference interpolation
scheme in recursive form. This is important as it enables techniques used in in the finite volume solution of
hyperbolic equations to generate data-bounded low-order polynomials to be extended to high order polynomials.
In order to do this it is helpful to define the ratios of divided differences, for example, by

r[i,i+1]
[i−1,i] =

U [xi,xi+1]
U [xi−1,xi]

, (10)

with obvious extensions to higher differences and other indices. As an example, when a divided difference approx-
imation incorporates a new point from the left xi−1, is

U [xi−1,xi, ...,xi+k,xi+k] =

(
1− r[xi−1,...,xi+k−1 ]

[xi,...,xi+k ]

)
xi+k − xi−1

U [xi,xi+1, ...,xi+k]. (11)

An alternative divided difference computed from U [xi,xi+1, ...,xi+k] is

U [xi,xi+1,xi+2, ...,xi+k+1] =

(
r[xi+1,...,xi+k+1 ]
[xi,...,xi+k ]

−1
)

xi+k+1 − xi
U [xi,xi+1, ...,xi+k]. (12)

In this case the ENO scheme picks the next difference to be U [xi−1,xi, ...,xi+k,xi+k] if(
|1− r[xi−1,...,xi+k−1 ]

[xi,...,xi+k ]
|
)

|xi+k − xi−1| <

(
|r[xi+1,...,xi+k+1 ]

[xi,...,xi+k ]
−1|

)
|xi+k+1 − xi| , (13)

or picks U [xi,xi+1,xi+2, ...,xi+k+1] otherwise. In the approach of [1], providing that the values of r[...][...] satisfy the
restriction

0 ≤ r[...]
[...] ≤ 1. (14)

then, if equation (13) holds we pick the next stencil point to be to the ”left” i.e. xi−1 as in equation (11) and

1 ≥ λk+1 =
(

1− r[xi−1,...,xi+k−1 ]
[xi,...,xi+k ]

)
≥ 0 (15)

Alternatively if equation (13) does not hold, then the next stencil point is picked to the ”right”, as in equation (12),
xi+1 and

−1 ≤ λk+1 =
(

r[xi+1,...,xi+k+1]
[xi,...,xi+k ]

−1
)
≤ 0. (16)

In both cases it follows that
|λk| ≤ 1. (17)

although the sign of λk is positive in one case and negative in the other. Berzins [1] proved for uniform meshes that
this polynomial was data-bounded i.e.

Min(U(xi),U(xi+1)) ≤U(x) ≤ Max(U(xi),U(xi+1)).

In section 2.3 this proof will be extended to non-uniform meshes.
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2.2 Harten’s Example

In order to illustrate the difference between the standard ENO approximation and the new approach consider the
example of Harten [8]. The function being approximated is defined by:

U(x) = (x+b)3/6.0+(x+b),x > −b

U(x) = −(x+b),x ≤−b (18)

where b = 0.1e−3−0.5e−12. the results in Figure 1 for polynomials of degree 4, 8 16 and 32 (with N the number
of points defining the polynomial being one larger) show that the new scheme does not introduce oscillations but
the original ENO scheme does oscillate for the different N evenly spaced mesh points. The L1 error in the standard
ENO case for polynomials of degree 32 is O(103).
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Figure 1: Harten’s Example N=5,9,17,32 ENO vs Bounded ENO

2.3 A General Data-Bounded ENO Polynomial

In order to extend the proof of Berzins [1] to the more general case, it is helpful to define notation to describe the left
and right edges of the stencil of points in use as this considerably simplifies the description of the ENO polynomial.
Mesh points, xi, are defined around a point x0 by adding or subtracting multiples of an the mesh spacing h so that
the mesh points chosen by the ENO approach at each stage are denoted by xei as defined by

xe
i = x0 + eih, i ≥ 1,h = (x1 − x0) (19)
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for some value ei and where e1 = 1. In the case when ei > 0 then ei > 1 otherwise ei could be arbitrarily large
or small. At the ith stage of the ENO process let the leftmost and right most parts of the stencil in use obviously
depend on the choice made with regard to xei and may be defined as

xl
i = min(xe

i ,x
l
i−1), xl

0 = x0, (20)

xr
i = max(xe

i ,x
r
i−1), xr

0 = x0. (21)

At the ith stage of the ENO process let the leftmost and right most parts of the stencil in use be defined by xli and
xr

i . Further define a local co-ordinate in the interval [x0,x1] by:

s =
x− x0

x1 − x0
. (22)

Using these definitions allows the limited form of the general ENO polynomial, as defined by equation (6) for
example, to be written in the form:

Ul(x) = U [x0]+ [U(x1)−U(x0)]PN(s) (23)

where

PN(s) = s(1+
(s−1)

D2
λ2 (1+

(s− e2)
D3

λ3 × (1+
(s− e3)

D4
λ4 × .......1+

(s− eN−1)
DN

(λN). (24)

and where
Di = (xr

i − xl
i)/(x1 − x0). (25)

Equation (23) may be rewritten as

PN(s) = (s+ s
(s−1)

D2
λ̄2 +

s(s−1)(s− e2)
D2D3

λ̄3 +

s(s−1)(s− e2)(s− e3)
D2D3D4

λ̄4 + .......+
s(s−1)(s− e2)...(s− eN−1)

D2D3...DN
λ̄N) (26)

where

λ̄2 = λ2, λ̄3 = λ2 λ3, λ̄4 = λ2 λ3 λ4

and λ̄N = λ2 λ3...λN−1 λN . (27)

and where
−1 ≤ λ̄i ≤ 1, i = 2, ...,N. (28)

Theorem 1 The interpolating function constructed on an evenly spaced mesh using the ENO approach with limited
ratios of divided differences is data-bounded for arbitrary order in that

Min(U(xi),U(xi+1)) ≤UI(x) ≤ Max(U(xi),U(xi+1)).

Proof. In proving this result is that we need to show that for 0 ≤ s ≤ 1,

0 ≤ PN(s) ≤ 1 (29)

where PN(s) is defined by equation (24). for every possible consistent choice of Di,e j and λ̄k. The approach taken
is to construct bounding polynomials such that

P−
N (s) ≤ PN(s) ≤ P+

N (s) (30)

Consider the polynomial defined by

SN(s) = s
N−1

∑
i=0

(1− s)i (31)
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Its value is
SN(s) = (1− (1− s)N). (32)

We will show that one pair of choices is:

P−
N (s) = sN = 1−SN(1− s), (33)

P+
N (s) = SN(s). (34)

The proof starts with the quadratic case in which

P2(s) = s(1+
(s−1)

D2
λ2. (35)

As D2 ≥ 1 and |λ2| ≤ 1 the largest possible polynomial is defined by D2 = 1 and λ2 = −1

P+
2 (s) = s+ s(1− s). (36)

As λ2 = −1 this means that the cubic polynomial must have the form

P+
3 (s) = s(1+(1− s)+

(1− s)2

D3
λ3. (37)

The closest to zero quadratic polynomial of the required form is then given by D2 = 1 and λ2 = 1 as

P−
2 (s) = s− s(1− s). (38)

Continuing in the same way ensures that the largest polynomial of degree N has the form of equation (31). The
largest possible polynomial of degree N +1 must have the form

P+
N+1(s) = SN(s)+

s(1− s)N

DN+1
λN+1. (39)

Again, it is straightforward, to see that as DN+1 ≥ 1 and |λN+1| ≤ 1, that

P+
N+1(s) = SN+1(s). (40)

Hence confirming the inductive step. Similarly for the lower bound a similar process leads to

P−
N+1(s) = 1−SN(1− s)− (1− s)(s)N , (41)

as required. The bounding polynomial corresponds to a polynomial with data points at s = 0 and then multiple data
points at s = 1. It is possible to get arbritarily close to this polynomial with data points defined by s = 0 and s = 1
and then s = 1+ iε . This polynomial is defined by

TN(s) = s+ s
N−1

∑
i=1

i

∏
j=1

(1− s− ( j−1)ε)
1+ jε

. (42)

In order to illustrate these results random polynomials of degree 23 were created to provide a sample of 100
polynomials in which the underlying mesh varies randomly by mesh ratios that change from one cell to the next
by as much or as little as 105 and 10−5. The left figure plots the polynomials while the righthand figue shows the
distribution of the mesh ratios on a logarithnic scale, for each of the 100 cases. The bounding polynomials used in
the proof are also shown. The polynomial Tn(s) is evaluated with ε = 0.1e−2. The results show the data-bounded
nature of the polynomial, even for extreme mesh ratios samd also the bounding case.
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Figure 2: Random Polynomial coefficient results to illustrate Theorem 1.

2.4 Reintroducing Extrema.

It is well-known that a key feature of schemes for hyperbolic equations is that they must not clip local extrema, [2].
One possible problem with the proposed approach of bounding the polynomial by the values at either end of the
interval is that if the true solution has an extremal value in between the data points then this value will be truncated.
One solution to this is to detect possible extrema in an interval and switch off limiting. The proposed condition for
deetecting possible extrema is given by requiring that the cells on either side of the ”flat” cell have opposite and
significant slopes. In other words the following two conditions must hold for extrema to be assumed to exist:
(i) U [xi+1,xi+2]/U [xi−1,xi] ≤ 0,
(ii) U [xi+1,xi+2]/U [xi,xi+1] ≥ 1 U [xi,xi+1]/U [xi−1,xi] ≤ 1.
In the case when a possible extremal value is detected then limiting is switched off in that interval and a standard
ENO polynomial used. The effectiveness of this approach on Runge’s function with NPTS data points spaced so as
to exclude the extremal value is shown by the numerical results in Table 1. In Table 1, NP is the number of points
used to define the polynomial, or the order plus one. In the case when extrema are introduced the only difference is
that in the central section of the plots in Figure 3 the new method has exactly the same profile as the original ENO
method.

2.5 Derivative Approximations in ENO Schemes

In order to use the above approximation results in the context of numerical schemes fro hyperbolic equations it is
important to understand the behavior of the polynomial derivatives at the the spatial mesh points. This behavior is
described by the following theorem.
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Method NPTS L2 Error L∞ Error Max NP Min NP Avg NP
6 3.4e-3 5.0e-1 4 3 3

No New 14 5.7e-4 1.3e-1 8 3 7
Extrema 30 8.6e-5 2.9e-2 17 3 15
Allowed 60 1.5e-5 7.1e-3 34 3 32

120 2.6e-6 1.3e-4 57 3 53
6 2.9e-3 4.3e-1 6 3 4

New 14 1.9e-4 4.3e-2 14 5 8
Extrema 30 2.3e-6 4.7e-4 30 15 16
Allowed 60 5.7e-9 2.3e-6 60 18 33

120 5.1e-8 1.1e-8 120 38 54

Table 1: Approximation of Runge’s Function With and Without Extrema Creation

Theorem 2: The interpolating function constructed on an evenly spaced mesh using the modified ENO algorithm
is monotone in that

dUI(x)
dx

= (U(x1)−U(x0)) f (x)

where f (x) ≥ 0 for x = x0 and x = x1].
Proof: The interpolating polynomial on an interval [x0,x1] may be written as

UI(x) = U [x0]+
[U(x1)−U(x0)]

(x1 − x0)
(x− x0)(1+(x− x1)P∗(x))

where P∗(x) is defined by collecting together the terms in the polynomial expansion defined by equation (24) as

P∗(x) =
λ2

D2(x1 − x0)2 (1+
(s− e2)

D3
λ3 × (1+

(s− e3)
D4

λ4 × .......1+
(s− eN−1)

DN
(λN).

with s defined as in equation (22). Differentiating this equation gives

dUI(x)
dx

=
U(x1)−U(x0)

(x1 − x0)

[
(x− x0)(x− x1)

dP∗(x)
dx

+(1+(2x− xi− xi+1))P∗(x))
]

Evaluating this at the grid point x = x1 gives

dUI(x1)
dx

=
(U(x1)−U(x0)

(x1 − x0)
[1+(x1 − x0)P∗(x1)]

and at the grid point x = x0 gives

dUI(x0)
dx

=
(U(x1)−U(x0))

(x1 − x0)
[1− (x1 − x0)P∗(x0)] .

As the polynomial UI(x) is data-bounded on the interval it follows that the derivatives at the end points must have
the same sign as the first divided difference of U(x) and so that

[1+(x1 − x0)P∗(x1)] ≥ 0

and that
[1− (x1 − x0)P∗(x0)] ≥ 0.

Thus ensuring that

P∗(x1) ≥ −1
(x1 − x0)

(43)

and that

P∗(x0) ≥ 1
(x1 − x0)

. (44)
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Figure 3: Runge’s function approximated with standard and limited polynomials

2.6 Rounding Error Analysis

The rounding error analysis of Newton polynomials and the Horner’s scheme often used to evaluate them is as
old as modern numerical analysis; Higham [9], pp.109-115, gives an excellent survey of work going back to
Wilkinson. Some of the more recent results show that severe difficulties may be encountered at very high orders. In
the approach here a stencil of points is defined for each interval. Once the points are chosen the polynomial may be
evaluated with any suitable method. An important part of this evaluation for the differential equations considered
here is to evaluate the derivatives of the polynomial at the mesh points. In order to consider the rounding error in
this the approach of [9] may be applied as the polynomial P∗(x) is simply calculated in the same way as applying
Horner’s scheme to PN(x) and then truncating the summation two steps early and dividing by (x1 − x0)2. As the
summation takes place at the mesh points Higham’s analysis is immediately applicable.

It is also worth noting that recent work on the compensated Horner scheme substantially improves the accuracy,
[7]. One possible error with the approach described here is that rounding errors in the individual divided differences
with introduce errors in parameters λ̄ j, in equations (26-28), and hence possibly in the choice of stencil used. In
the worst case using equation (24) directly to evaluate the polynomial will result in a bounded polynomial when
this should not be the case, due to rounding error.

3 Positivity Preserving ENO Schemes

Once the polynomial approximation is defined as above it is straight forward to use the results of Theorem 2 to
prove results about ENO and WENO schemes. These schemes integrate equation (1) over the interval [xi−1,xi]:

∂ ūi+1/2

∂ t
+a

[u(xi, t)−u(xi−1, t)]
(xi − xi−1)

= 0 (45)
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where

ūi+1/2(t) =
1

(xi − xi−1)

∫ xi

xi−1

u(x, t)dx. (46)

Defining the ENO reconstruction function w(x) by:

wi(x, t) =
∫ x

x̄i−1

u(x∗, t)dx∗,x ∈ [xi−1,xi] , (47)

where x̄i−1 is an arbitrary lower limit, immediately provides the relationship

wi(xi, t)−wi(xi−1, t) = ūi+1/2(t)(xi − xi−1). (48)

From differentiating equation (47) it follows that

dwi

dx
(xi)− dwi

dx
(xi−1) = u(xi, t)−u(xi−1, t). (49)

At the boundary x = 0 the appropriate solution value U0(t) is substituted for u(xi−1, t). Using this relation in
equation (45) and integrating in time using the forward Euler method gives.

ūi+1/2(tn+1) = ūi+1/2(tn)−
aδ t

(xi − xi−1)

[
dwi

dx
(xi, tn)− dwi

dx
(xi−1, tn)

]
. (50)

In choosing the values of these derivatives it is necessary to take into account upwind directions, see [22]. The
essence of the ENO algorithm is to take the following steps:
(i) On each interval create initial values of ūi+1/2(t) by using high-order quadrature based on the values u(x, t).
(ii) Use equation (48) to create the first differences of the function wi(x, t).
(iii) Use these differences and subsequent differences to create a high order polynomial approximation on each
interval to wi(x, t) denote this by w∗

i (x, t).
(iv) Calculate dw∗

i
dx (xi) and dw∗

i
dx (xi−1) using the algorithm described in Section 2.

(v) Advance the solution in time using equation (50) with a sufficiently small timestep.
From the analysis of Section 2 it follows that

dw∗
i

dx
(xi, t) =

w(xi, t)−w(xi−1, t)
(xi − xi−1)

(1+hiP
∗
i (xi))+O(hki) (51)

where P∗
i (xi) is the polynomial P∗(x)evaluated on the interval [xi,xi+1], and consequently that

dw∗
i

dx
(xi, t) = ūi+1/2(t)(1+hiP

∗
i (xi))+O(hki). (52)

In similar vein
dw∗

i−1

dx
(xi−1) =

w(xi−1, t)−w(xi−2, t)
(xi − xi−1)

(1+hi−1P∗
i−1(xi−1))+O(hki−1) (53)

and
dw∗

i−1

dx
(xi−1) = ūi−1/2(t)(1+hi−1P∗

i−1(xi−1))+O(hki−1). (54)

Hence equation (50) may be written as

ūi+1/2(tn+1 = ūi+1/2(tn)−
aδ t

(xi − xi−1)
[
ūi+1/2(t)(1+hiP

∗
i (xi))− ūi−1/2(t)(1+hi−1P∗

i−1(xi−1))
]
.

Positivity of the ū1+1/2 values then requires

0 ≤ δ t
(xi − xi−1)

(1+hiP
∗
i (xi)) ≤ 1, (55)

0 ≤ δ t
(xi − xi−1)

(1+hi−1P∗
i−1(xi−1)) ≤ 1. (56)
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For a sufficiently small Courant number this follows from Theorem 2. Positivity of the solution values Ui(t) requires
a further step. From equation (50) it then follows that: the numerical solution values satisfy:

dw∗
i

dx
(xi)−

dw∗
i−1

dx
(xi−1) = u(xi, t)−u(xi−1, t), (57)

and hence that

u(xi, t) =
i

∑
j=1

[
dw∗

j

dx
(x j)−

dw∗
j−1

dx
(x j−1)

]
+u0(t). (58)

From equation (50) it follows that
u(xi, t) = ūi+1/2(t)(1+hiP

∗
i (xi)), (59)

and that positivity of the numerical averaged values ūi+1/2(t) implies positivity of the numerical solution values
Ui(t).

3.1 A Simple Alternative ENO Positivity Preservation Algorithm

The positivity condition based upon data-bounded polynomials is sufficient for positivity but not necessary in
that positivity is still possible if the polynomials P∗i (xi) and P∗

i−1(xi−1) satisfy equations (55) and (56). Hence an
alternative approach to seeking positivity is to simply require that the order of the ENO method be chosen so that

−1 ≤ hiP
∗
i (xi)) ≤ 1

CFL
−1, (60)

−1 ≤ hiP
∗
i (xi−1)) ≤ 1

CFL
−1. (61)

When using this approach it is possible to get results that are as accurate as the original ENO approach by switching
positivity preservation off when

|u(xi, t)−u(xi−1, t)| ≤ TOL (62)

This algorithm has performed well with TOL = 0.0001 in the experiments described below.

4 Investigation of the Order in ENO Methods

In order to illustrate and investigate the effect of using the positivity preserving methods described above three test
problems will be used. In order to perform these experiments in a time-independent way, the spatial truncation
error of the different approaches will be calculated and compared. In these experiments the original ENO method
will be compared against the new approaches as indicated in by Section 3. The original ENO method gives almost
identical results to the method described in Section 3.1.

4.1 ENO truncation Error

The classical spatial truncation error for ENO methods may be calculated from the exact solution u(x, t) by first
calculating ūi+1/2(t) and then forming dw∗

i
dx (xi, t) by using the polynomial approximation procedure to arrive at

approximations dw∗
i

dx (xi, t). The truncation error is then denoted by TEeno(x, t), where

TEeno(x, t) =
u(xi, t)−u(xi−1, t)

xi − xi−1
.− 1

xi − xi−1
.

[
dw∗

i

dx
(xi)−

dw∗
i−1

dx
(xi−1)

]
. (63)

This truncation error provides a measure of how accurate an ENO method with these hig -order polynomial expres-
sions can be.
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4.2 Computational Experiments

The following three examples have been used in the past to demonstrate the properties of hyperbolic equations
solves and are used here to illustrate the properties of the approaches discussed above. In each case the L1 error
norm is used as approximated by a discrete sum over the mesh point values. In the tables below NPTS is the
total number of mesh points used and NP is the number of points used to define a polynomial, in otherwords the
polynomial order +1. The method denoted by BENO is the bounded polynomial approach defined by Section 3.
The method denoted by LENO is the limited ENO approach defined by Section 3.1 above.

4.2.1 Problem 1

The first problem is the Gaussian example was used by Rider at al [12], to illustrate the advantage of using high-
order methods for problems with smooth solutions. The solution is defined by

U(x, t) = 0.1+ e(−(10.0∗xtemp−5)2/0.718125) (64)

In this case it is not surprising that the best results have been obtained with polynomials of degree 12 or higher.

Problem 1 NPTS
Method NP 15 31 63 127 255 511
BENO 3 1.1e-1 5.5e-2 1.2e-2 1.4e-3 1.9e-4 2.6e-5
LENO 3 9.9e-2 5.2e-2 3.4e-3 1.8e-4 1.3e-5 8.0e-7
BENO 6 7.2e-2 2.2e-2 6.5e-4 1.1e-5 2.2e-7 3.5e-9
LENO 6 2.7e-1 2.1e-2 2.4e-4 3.8e-6 4.0e-8 1.9e-9
BENO 12 7.2e-2 2.6e-2 2.9e-5 2.0e-8 7.4e-12 2.2e-14
LENO 12 4.8e-1 6.9e-2 2.9e-5 8.0e-9 1.8e-12 2.4e-14
BENO 24 7.4e-2 3.9e-2 9.8e-4 9.2e-10 1.1e-12 4.1e-13
LENO 24 5.5e-1 2.3e-1 6.2e-3 2.4e-10 2.1e-12 9.4e-13

Table 2: Problem 1 Comparison of Truncation Errors for Gaussian

4.2.2 Problem 2

This is the problem involving the advection of u(x, t) = sin4(x), a problem considered by Shu [22] and others.
In this case too the best results are obtained with polynomials of degree 12 or higher. In this case the B. ENO
method is less accurate than the L.ENO method and the original ENO method as lower-order polynomials are used
at extrema.

Problem 2 NPTS
Method NP 15 31 63 127 255 511
BENO 3 1.9e-1 2.6e-2 3.6e-3 4.6e-4 5.7e-5 7.2e-6
LENO 3 1.3e-1 9.0e-3 5.4e-4 3.1e-5 1.8e-6 1.1e-7
BENO 6 8.5e-2 2.2e-3 5.6e-5 1.7e-6 5.0e-8 1.5e-9
LENO 6 5.3e-2 1.3e-2 2.4e-5 7.8e-8 6.5e-10 5.1e-12
BENO 12 3.4e-1 1.5e-3 5.1e-5 1.5e-6 4.7e-8 1.4e-9
LENO 12 7.8e-2 5.6e-4 1.8e-5 6.6e-13 1.3e-14 1.2e-14
BENO 24 8.9e-1 1.6e-3 1.8e-5 1.5e-6 4.7e-8 1.5e-9
LENO 24 9.0e-2 5.6e-4 1.8e-5 6.3e-12 2.8e-11 3.6e-11

Table 3: Problem 2 Comparison of Truncation Errors for Sin4(x)
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4.2.3 Problem 3

The results of Rider [12] show that may not be substantialy better than low-order methods when solving problems
with discontinuities. In order to investigate this the second problem has a solution which is both smooth and which
has a steep profile as given by Hubbard [14], the 11th order polynomial:

p(z) = z6 [−252z5 +1386z4 −3080z3 +3465z2 −1980z+462
]

(65)

where
z = (0.5+ t +ds∗0.5− x)/ds; (66)

and which has a front of width ds whose centre position is at 0.5 + t. Three sets of numerical experiments were
conducted with this problem. In case (a) the front width is ds = 0.96 and in case (b) the front width is ds = 0.096.
and in case (c) the front width is ds = 0.0096. The three solutions are shown in Figure (4). In case (c) with a mesh
of 511 points there is only one mesh point inside the steep gradient part of the solution. Table 4 shows that with
large values of ds > 0.1, say, using high order leads to an improvement. In the case when ds = 0.0096 and there
is only one mesh-point in the front then the numerical evidence shows that there is little point using more than
quadratic approximations, NP = 3.

−1 −0.5 0 0.5 1
0

0.5

1

1.5

 

 
 Solution ds=0.96

−1 −0.5 0 0.5 1
0
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1.5
VARIABLE FRONT PROBLEM N = 511

 

 
 Solution ds=0.096

−1 −0.5 0 0.5 1
0

0.5

1

1.5

 

 
 Solution ds=0.0096

Figure 4: Problem 3:Steep Front Example Solutions, ds=0.96,ds=0.096,ds=0.0096

The conclusions from these experiments are that for smoopth solutions where there is enough mesh resolution
there are advantages in using high order polynomials. The effective polynomial order does tend to be limited by
the number of mesh points in a front, [1].

5 Summary

In this paper a novel approach to preserving positivity for variable-order ENO methods has been extended in a
general way using the idea of bounded polynomial approximations. Positivity conditions have been proved and
numerical experiments have shown that it is possible to use much higher order methods than is often done with
ENO methods. Achieving the appropriate spatial order is somewhat more problematicali and on steep fronts it is
important to have a mesh that ensures that multiple points are present in the front. One issue that still remains to be
resolved is how to treat extrema in an accurate way without introducing new extrema elsewhere.
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Problem 3 ds=0.96 NPTS
Method NP 15 31 63 127 255 511
B.ENO 3 1.8e-2 6.5e-3 1.3e-3 8.4e-5 3.3e-5 7.3e-6
L.ENO 3 1.1e-2 8.5e-4 6.5e-5 4.1e-6 2.5e-7 1.6e-8
B.ENO 6 5.3e-3 1.7e-4 5.3e-6 7.9e-8 1.8e-9 4.0e-11
L.ENO 6 7.8e-3 8.8e-5 1.6e-6 2.0e-8 2.0e-10 8.7e-12
B.ENO 12 5.9e-2 8.9e-5 2.8e-7 2.7e-9 2.3e-11 7.5e-12
L.ENO 12 7.1e-2 1.5e-4 2.5e-7 1.9e-9 2.0e-11 9.1e-12
B.ENO 24 5.9e-2 1.8e-2 1.6e-4 7.2e-10 8.2e-12 5.8e-12
L.ENO 24 2.6e-1 1.1e-1 2.3e-4 6.8e-10 8.0e-12 5.7e-12
Problem 3 ds=0.096
B.ENO 3 1.3e-1 5.5e-2 1.7e-2 2.6e-3 4.6e-4 7.1e-5
L.ENO 3 1.3e-1 4.7e-2 1.2e-2 1.3e-3 1.7e-4 1.4e-5
B.ENO 6 1.2e-1 4.2e-2 7.7e-3 7.2e-4 2.5e-5 1.1e-6
L.ENO 6 1.2e-1 4.0e-2 7.7e-3 5.0e-4 1.9e-5 4.6e-7
B.ENO 12 5.7e-1 3.4e-2 6.2e-3 2.6e-4 5.5e-6 8.3e-8
L.ENO 12 1.4e-0 3.9e-2 6.1e-3 2.2e-4 5.4e-6 6.2e-8
B.ENO 24 5.7e-1 2.5e-1 6.1e-3 1.7e-4 2.8e-6 3.0e-8
L.ENO 24 2.0e-0 1.2e-0 5.2e-3 1.6e-4 2.7e-6 2.9e-8
Problem 3 ds=0.0096
BOTH 3 1.4e-1 6.9e-2 3.2e-2 1.4e-2 6.3e-3 2.3e-3
BOTH 6 1.4e-1 6.4e-2 3.0e-2 1.4e-2 5.7e-3 1.4e-3
BOTH 12 6.9e-1 6.3e-2 2.9e-2 1.3e-2 4.7e-3 1.1e-3
BOTH 24 6.9e-2 5.4e-2 2.8e-2 1.2e-20 4.4e-32 1.3e-3

Table 4: Problem 3 Comparison of Truncation Errors for Steep Front.
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